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Abstract: Accurately forecasting power generation in photovoltaic (PV) installations is a challenging
task, due to the volatile and highly intermittent nature of solar-based renewable energy sources.
In recent years, several PV power generation forecasting models have been proposed in the relevant
literature. However, there is no consensus regarding which models perform better in which cases.
Moreover, literature lacks of works presenting detailed experimental evaluations of different types
of models on the same data and forecasting conditions. This paper attempts to fill in this gap by
presenting a comprehensive benchmarking framework for several analytical, data-based and hybrid
models for multi-step short-term PV power generation forecasting. All models were evaluated on
the same real PV power generation data, gathered from the realisation of a small scale pilot site in
Thessaloniki, Greece. The models predicted PV power generation on multiple horizons, namely for
15 min, 30 min, 60 min, 120 min and 180 min ahead of time. Based on the analysis of the experimental
results we identify the cases, in which specific models (or types of models) perform better compared
to others, and explain the rationale behind those model performances.

Keywords: power forecasting; photovoltaic systems; analytical models; data-based models;
hybrid models; benchmarking

1. Introduction

Photovoltaic (PV) power generation is constantly gaining ground as a renewable energy
source (RES) within the energy market. In 2018, a capacity over 500 GW providing around
600 TWh (roughly 2.5% of the global electricity production) has been documented [1]. By 2019,
the current estimation is that the PV capacity will reach 650 GW providing for the 4% of the global
production [2]. Additionally, future scenarios for RES systems penetration in the market are even
more optimistic, with some countries aiming to reach 100% [3] in the next decades, towards complete
decarbonization. Therefore, it is evident that PV systems, are expected to be a key player in this rapidly
evolving energy landscape.

Nevertheless, PV production is volatile and intermittent, due to its direct dependency on weather
conditions. This introduces considerable uncertainty to the system operation, which is translated into
significant risks to the stability and reliability of both the transmission and distribution networks [4].
The challenge is further exacerbated by the distribution of PV penetration. Several small and medium
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installations are appearing around the world, making such PV plants the most commonly accessed
RES-based distributed energy resource (DER) [5]. This popularity creates the challenge of efficiently
managing PV power generation. Unexpected shortage or excess can lead to severe imbalance between
supply and demand, requiring mitigation actions from the system operator towards avoiding penalties
or more severe consequences to the network operation. From a financial perspective, other market
entities like aggregators and flexibility traders, have also invested in the optimal management of such
resources for maximising their profits through a more efficient market participation.

An important factor in addressing these challenges is the ability to forecast the power generated
by the PV systems as accurately as possible. A lot of effort has been invested in this direction as
indicated by the relevant literature. Depending on the application, the time horizon for forecasting PV
power generation varies from a few minutes (short-term) to days (long-term). The former is usually
employed for improving control schemes as well as the participation to intra-day and ancillary markets,
while the latter is applied mainly for maintenance and planning [6]. In both cases, the several PV
power generation forecasting models can be classified into three categories:

• Analytical: These methods do not require any prior knowledge regarding the power generation
measurements. They deliver the required results using well-known analytical equations that
incorporate the technical characteristics of the PV installation along with weather forecasts derived
by typical numerical weather prediction (NWP) models.

• Data-based: These models are data-driven, meaning that they are solely dependent on the
historical PV power generation data, without any knowledge regarding the PV system itself.
The basis of these models is the discovery of patterns and relations within the provided data.
This category includes statistical time series models (e.g., autoregressive integrated moving
average model—ARIMA), traditional machine learning (ML) models (e.g., artificial neural
networks—ANNs) and deep learning (DL) models.

• Hybrid: These models attempt to combine the best characteristics of the other two categories in order
to achieve higher forecasting accuracy. Different data-based models merged as one, or data-based
models on top of analytical models, or even data-based models using NWP techniques, are some of
the combinations identified in the literature. Interestingly enough, hybrid models seem to hold quite
the potential in delivering the most accurate forecasting results.

In each of the above categories, quite interesting results have been presented over the last few
years, with forecasting errors reaching below 1% [7,8]. Nevertheless, in most cases, those results
are limited and fragmented, due to lack of a common evaluation framework. Some of the factors
limiting their scalability and replicability include: (a) forecasting over clear sky scenarios only,
(b) limited amount of data, (c) presentation of results over very specific time frames, (c) inclusion of
non-productive time slots (i.e., night hours) to the error metrics calculations, (d) elucidation of results
from different locations, datasets and PV plants sizes [6,9]. Due to such factors, it has become quite
difficult to thoroughly evaluate the predictive ability of a specific model. Therefore, a comprehensive
benchmarking framework that will take into account a variety of factors during the evaluation of a
multitude of PV power generation forecasting models from different categories is of great significance.
On top of that, it is important to critically compare different types of methods in order to identify
the objectively strong points of each type. To the best of our knowledge, very few efforts have been
invested towards this direction (e.g., [10]) and even in those, the outcomes were not fully aligned with
the rest of the literature [9].

This paper presents a comprehensive benchmarking framework for several analytical, data-based
and hybrid models for multi-step short-term PV power generation forecasting. All models were
evaluated on the same real-world power data and forecasting conditions (i.e., forecasting objectives,
horizons, evaluation metrics, etc.). The main contributions of the work presented in this paper include:

1. A comprehensive benchmark comparison between analytical, data-driven and hybrid direct PV
power generation forecasting models.
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2. Extensive experimentation on real-world PV power generation data.
3. A novel hybrid short-term PV power generation forecasting model, which outperforms in most

cases several well-established analytical and data-based methods.
4. Introduction of a new metric designed to accurately quantify the divergence error for the PV

power generation forecasting problem.

The rest of this paper is organised as follows. Section 2 reviews current research efforts associated
with the PV power generation forecasting problem. Section 3 presents the real-world power data on which
the PV power generation forecasting models were evaluated, provides a short mathematical formulation
for each model, and describes the overall setup of the evaluation framework. In Section 4, the experimental
results of the evaluation process are presented and thoroughly discussed. Finally, Section 5 concludes the
paper by reviewing its main contributions and suggesting future research directions.

2. Related Work

The last two decades have produced a significant number of solutions for the complex problem of
PV power generation forecasting, employing analytical (or physical), data-based and hybrid models
in order to predict the power output of PV installations of different sizes. Several comprehensive
reviews have been published in the last couple of years [6,9,11–13]. PV power generation can be
predicted directly (i.e., active power output) [14] or indirectly (via forecasting the solar irradiance) [15],
while weather data are used either united or separated in groups with different conditions (e.g., sunny,
cloudy and rainy days) [16]. For all the above approaches, analytical, data-based and hybrid models
have been proposed.

2.1. Analytical Models

Analytical PV power generation forecasting models try to mimic the way in which the entire
PV system operates. They are described by partial differential equations (PDEs) and are configured
according to the installed infrastructure (e.g., the type of solar cells and their corresponding setup).
Analytical models can be applied to both direct and indirect forecasting scenarios. In the former case,
the models predict the active power output in a single iteration after being fed by NWP, while in
the latter they first predict the value of a weather variable (usually the solar irradiance), and then
they use this prediction to predict the PV power generation [17,18]. Additionally, there are some
analytical models that directly convert the incoming meteorological data into electrical power [19].
Essentially, all analytical models are based on the production of an I-V curve for the PV installation
using both the manufacturer data and experimentation under different exposure conditions.

The several analytical models are different from each other with respect to their parametrisation,
ranging from two up to seven parameters [20–24]. The most prevalent models are (a) the simple current
source and diode model, (b) the current source, diode, shunt and series resistor model and (c) the
current source, double diode plus shunt and series models. It is noteworthy that more parameters
do not imply better results. As demonstrated by Dolara et al. [19], in temperate climates simple
three-parameter models exhibit similar, if not better, accuracy than higher order models. Moreover,
in order to improve the accuracy of an analytical model, the thermal properties of the PV must be
taken into account. In this case, two models prevail: the Sandia model [25] and Nominal Operating
Cell Temperature (NOCT) [26] models. The former outperforms the latter for the majority of PV cell
types (i.e., c-Si, CdTe, a-Si:H and organic polymeric cells) [27].

The accuracy of the direct analytical models depends on the accuracy of the NWP models used.
Hence, the NWP model propagates error to the analytical PV power generation model due to its
(in most cases) low spatio-temporal accuracy [19]. Irradiance is the variable that impacts the most
the PV output power, with a Pearson coefficient exceeding 0.95 [28]. Thus, high-accuracy irradiance
forecasting is required when purely analytical PV power generation forecasting models are used.
Irradiance forecasting models (or their equivalent cloud coverage forecasting models) can achieve
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acceptable accuracies in cases where the geographical areas of interest are of the order of tens of square
kilometers [29]. Finally, the analytical direct and indirect models are proven superior in long-term
forecasting scenarios (i.e., from one day to few months) and for large PV installations (order of
magnitude MW), but they present inferior performance in short-term forecasting scenarios and for
small PV arrays (order of magnitude kW) [30,31].

2.2. Data-Based Models

The poor performance of analytical models in short-term forecasting scenarios, led the researchers
to investigate the potential of data-based models. These models depend solely on the available PV
power data when they predict PV power generation directly, while they process both PV power
and weather data when they predict PV power generation indirectly [6]. In this category fall the
typical statistical time series models (e.g., autoregressive integrated moving average model—ARIMA),
the traditional machine learning models (e.g., support vector machines - SVM), and the deep learning
models (e.g., deep neural networks—DNN). A comparative analysis of these data-based approaches is
difficult since each published work presenting such a model uses a completely different evaluation
frameworks (hour-ahead versus day-ahead forecasts, small versus large PV plants, etc.).

In the case of day-ahead PV power generation forecasting for small-scale PV installations,
the majority of published works uses the day-ahead prediction of a weather variable (generated
by a typical NWP model) to feed a data-based model. This explains the non-linearities of the generated
PV power under different weather conditions [32]. In these works, the reported accuracy of the models
varies significantly since there are multiple variables that may impact accuracy. Therefore, it can be
stated that no particular model, published in PV power generation forecasting literature, is proven to
be consistently superior over others [33]. Some data-based models proven to yield acceptable accuracy
for day-ahead PV power generation forecasting are the Extreme Learning Machines (ELM) [34] and
the Self-Organizing Maps (SOM) [35].

As already mentioned, the data-based models contain both direct and indirect approaches.
The indirect approaches combine historical measurements of PV output power and weather variables
(e.g., irradiance, temperature and humidity) in order to build a model that produces highly accurate
predictions. For example, Das et al. [36] proposed a support vector regression (SVR) model for hourly
and day-ahead PV power generation forecasting. Though results were promising, only sunny days
were used for demonstration, thus omitting covering the problem of forecasting in cloudy and rainy
days. In cases where limited historical PV power data exist, iterative multi-task learning can be utilized
by sharing the PV information from multiple similar solar panels [37]. Moreover, the importance
of integrating weather information into data-driven models is highlighted by De Giorgi et al. [38],
who proposed an Elman neural network model for direct day-ahead PV power generation forecasting.
The outcome of this work is the significantly improved prediction accuracy when both temperature and
irradiance historical measurements are added in the input vectors of the network. Finally, weather data
can also be used for data pre-processing tasks instead of being directly integrated into the data-based
prediction model [39]. For example, Yang et al. [40] divided the historical PV power data into
weather-based subsets for sunny, cloudy and rainy days.

2.2.1. Statistical Time Series Models

Statistical time series models are the first data-based models employed for direct PV power
generation forecasting. Some of the first models used were based on the linear regression model [41–43],
the ARIMA model [44,45] and its variants [44,46]. In many studies, these models (along with the naive
persistence model) are used for benchmarking purposes [41,44,47–50]. Additionally, such statistical
models with several input variables are used to estimate the correlation between the PV power
generation and weather variables [48,51]. However, these models are linear with respect to both their
regressors and parameters, which results in poor performance due to the fact that the PV power
generation process is, in general, a nonlinear phenomenon [42].



Energies 2020, 13, 5978 5 of 31

2.2.2. Traditional Machine Learning Models

The second type of data-based PV power generation forecasting models is the traditional
machine learning models [52], namely k-nearest neighbors (kNN) [33], support vector machines
(SVM) [14,49,53] and artificial neural networks (ANN). kNN models appear to yield acceptable
performance [53]. For example, Fernandez-Jimenez et al. [47] proposed kNN and weighted kNN
models for direct PV power generation forecasting with quite accurate results. On the other hand,
SVM models present mediocre results in terms of forecasting accuracy, even in case of very short-term
direct forecasting (i.e., up to 30 min ahead). Shi et al. [14] presented an SVM-based PV power
generation forecasting model that approximately estimated PV power generation using day-ahead
weather predictions.

ANNs have grown in popularity due to their ability to accurately represent the highly nonlinear
mapping between PV power generation and its related variables [54]. Fernandez-Jimenez et al. [47]
proposed five different ANN architectures, which achieved superior performance compared to
ARIMA, kNN and adaptive neuro-fuzzy inference systems (ANFIS). Chen et al. [35] used radial
basis function networks (RBFN) to forecast the day ahead PV power generation, having initially
clustered the predictions of the weather variables. This model presented mediocre forecasting accuracy
in cloudy and rainy days. Similarly, Sideratos and Hatziargyriou [55] proposed an RBFN-based PV
power generation forecasting model demonstrating high accuracy in long-term forecasting scenarios
(e.g., 24 h forecasting horizons) and sunny periods. However, a critical limitation of the ANNs is that
they require large amount of data (and, subsequently, long training times) in order to achieve high
forecasting accuracy [56].

2.2.3. Deep Learning Models

Deep learning (DL) is a sub-field of machine learning, which includes complex ANN architectures
that automatically identify and extract useful features from raw data. Deep learning models have been
extensively used for time series forecasting tasks ([48,56–58]), due to their ability to learn complex
relationships from the data and use them to provide accurate forecasting results. There are (roughly)
three main categories of deep learning models used for time series forecasting: deep neural networks
(DNN), convolutional neural networks (CNN) and recurrent neural networks (RNN). Among RNN
architectures, long short-term memory (LSTM) network is the most widely used architecture for time
series forecasting. Recently, several DL architectures have been proposed in the PV power generation
forecasting literature. For example, Qing and Niu [43] proposed an LSTM architecture to predict the
hour-ahead solar irradiance, which is then used for estimating the PV power generation. This model
was claimed to yield 18% higher forecasting accuracy compared to traditional ANNs.

For example, Ouyang et al. [59] proposed an RNN-based PV power generation forecasting model,
which was combined with clustering algorithms. The model exhibited good forecasting results in
sunny days. Additionally, Ghimire et al. [60] introduced an indirect PV power generation forecasting
approach in which a CNN extracts features of solar irradiation, which in turn are used by an LSTM to
predict the hour-ahead irradiance. Kim and Lee [61] proposed an LSTM model with multiple inputs
that include meteorological factors, seasonal factors and preceding power output information in order
to predict PV power generation in the peak zone. Vidisha De et al. [62] proposed an LSTM-based
model that yielded small forecasting error (i.e., approximately 5% even though it was trained with
limited data. Several other LSTM-based power generation forecasting models have been proposed in
the relevant literature [42,44,48,49,57]. These models present superior forecasting performance compared
to conventional models like ARIMA and DNN, especially in the case of short-term PV power generation
forecasting. However, these models have limitations like the requirement for large amounts of available
data in order to produce highly accurate predictions and the long training times [49].
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2.3. Hybrid Models

Apart from the analytical and data-based models, there are also other PV power generation
forecasting models that attempt to combine the best characteristics of these categories in order to
achieve higher forecasting accuracy. These are the hybrid models. The hybrid models either combine
characteristics from models of the same category (i.e., multiple analytical or multiple data-based
models) or from models from different categories (i.e., analytical and data-based models). The hybrid
approaches make up only 6% of the published PV power generation forecasting models [9]. In this
context, Bracale et al. [63] proposed a probabilistic direct forecasting model based on Bayesian inference
and Monte Carlo simulation. The model used an analytical function in order to connect the hourly
sky clearness index to the maximum power point production of a PV plant. Despite its ability to
identify the probability distribution function of power generation, the model underperformed in the
one step-ahead prediction case. In general, the unstable meteorological conditions usually result in
inferior performance of the hybrid analytical-data-based models [38,56]. Another hybrid approach
for day-ahead direct PV power generation forecasting was proposed by Mosaico and Saviozzi [54].
The authors proposed a decision system that selects between an analytical and an ANN model based
on the current cloud coverage percentage. The model presents acceptable performance in clear
sky days and poor in cloudy days. Additionally, Luyao et al. [64] proposed a hybrid PV power
generation forecasting model that combines three ANN architectures with genetic algorithms (GA).
Finally, Wang et al. [8] presented a hybrid model that fused a CNN with an LSTM architecture.

3. Materials & Methods

In this section, the real-world power generation data used for the evaluation of the several PV
power generation forecasting models are presented. Additionally, a small mathematical description
of each of the nine PV power generation forecasting models is provided. Finally, the configuration
parameters of the overall experimental framework are presented.

3.1. Field Data

In this section, the real-world power generation data used for the evaluation of the several PV
power generation forecasting models are presented and the several preprocessing methods applied on
them are described.

3.1.1. Data Description

The dataset used in this study is collected from a real-world small-scale PV installation, which is
located on the roof of a two-floor family house emulating building. This building is one of the official
European Commission Digital Innovation Hubs (DIH) located within the campus of the Centre for
Research and Technology Hellas (CERTH), 6 km away from the metropolitan area of Thessaloniki,
Greece. This “smart house” is part of the research and experimental infrastructure of CERTH. Its current
installation consists of 58 CIS (copper, indium, and selenium) solar panels with 165 Wp nominal power
each. The solar panels are divided into 9 strings that form in total 9.57 kWp, and they are facing 255◦

south-west with a tilt angle of 18◦ (Figure 1). The PV installation has a very brief shading due to hill
located on the northeast of the building during early morning hours. Finally, the climatic conditions
according to the Köppen Climate Classification Map (https://www.plantmaps.com/koppen-climate-
classification-map-europe.php) is considered Cold Semi-Arid Climate (BSk). The exact longitude and
latitude of the installation are 40.566501 and 22.998864, respectively.

The dataset contains the power generation values of the above PV installation for each 15-min
interval of a total period of 11 months, namely from 24 March 2019 to 29 February 2020. This is a total
period of 343 days. However, 38 days in this period had no available data. Hence, the total number of
days with available PV power generation data is 305. Based on the data granularity (i.e., one value
per 15-min interval) and the total time period covered by the data (i.e., 305 days), the dataset contains

https://www.plantmaps.com/koppen-climate-classification-map-europe.php
https://www.plantmaps.com/koppen-climate-classification-map-europe.php
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29,280 PV power generation values in total. These values are organised in time series, with one time
series for each day of the dataset. Each time series contains 96 PV power generation values, one for
each 15-min interval of a day.

Figure 1. CERTH/ITI Smart House and the roof-based PV Installation (only the rooftop PVs are used
for the current study).

Apart from the dataset of the PV power generation values, a dataset of weather data has also been
assembled. In particular, measurements for three weather variables, namely temperature, wind speed
and cloud coverage, have been collected for the location of the aforementioned PV installation. This data
was collected from the online weather data aggregation service Weatherbit (https://www.weatherbit.io/),
which provides weather information in 15-min intervals (same as the granularity of the PV power
generation dataset) for several locations anywhere on the globe. The total period covered by this data is
the same as the period covered by the PV power generation dataset. Again, the data is organised into time
series. A complementary source of weather information, namely the weather data aggregation service
Darksky (https://darksky.net/dev), was particularly used for cloud coverage data. Predictions are also
given in time series format, in 15-min intervals. Finally, it should be mentioned that the above weather
services have been used in order to collect both actual and forecasted values of the weather variables.
The forecasted values are generated using typical NWP models.

3.1.2. Data Segmentation

As identified in similar works found in literature (e.g., [36,40]), it is considered a good practice
to divide the available PV power generation data into periods with stable weather conditions
(e.g., sunny days period and cloudy days period), and build different forecasting models for each
period. This approach was followed in the present study. In particular, the PV power generation
dataset was initially split into spring, summer, autumn and winter periods containing PV power
generation values from the following time periods:

• Spring: from 24 March 2019 to 31 May 2019
• Summer: from 1 June 2019 to 31 August 2019
• Autumn: from 1 September 2019 to 30 November 2019
• Winter: from 1 December 2019 to 29 February 2020

Within each period, the data were re-divided based on the corresponding cloud coverage values.
Specifically, the days were separated into high and low cloud coverage days based on whether
the corresponding average cloud coverage of the day exceeded a specific cloud coverage threshold.
This threshold was set to 10% after experimentation. Finally, it should be mentioned that most of the
PV power generation measurements from the time intervals before 5:00 A.M. UTC and 17:00 P.M. UTC
were zero and therefore they were discarded.

3.1.3. Data Transformation for Supervised Learning

The data-based and hybrid models presented in this work are trained in a supervised-learning
way. This means that in order to train these models, first a set of training samples of the form

https://www.weatherbit.io/
https://darksky.net/dev
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{(z1, y1) , . . . , (zN , yN)} is required, where zj ∈ Rd and yj ∈ R. The zj vectors and the yj values
should then be applied to the input and output of the models, respectively. However, as mentioned
above, the data is organised as a set of time series xi of size n each. In order to transform a time
series of data into a set of training samples appropriate for training a model in a supervised way,
a window of fixed size p and a forecasting horizon h should be selected. Then, the window passes
over the time series one step at a time and matches the time series values it covers to a training sample.
This transformation technique is called sliding window. Having a fixed window length assists in the
creation of input-output pairs. In particular, the first step is to select the values

[
xi

0, . . . , xi
p−1

]
as the

first training vector z1 and the value xi
p−1+h as the first training output y1. Next, the values

[
xi

1, . . . , xi
p

]
formulate the second training vector z2 and the value xi

p+h the second training output y2, and so on.
In this way, a set of n− p− h + 1 training samples is generated from a time series of size n. For a set of
m time series of size n the number of generated training examples is m× (n− p− h + 1).

3.2. PV Power Generation Forecasting Models

The objective of this work is to present a comprehensive evaluation framework of several
analytical, data-based and hybrid models for multi-step short-term PV power generation forecasting.
Extending previous research findings [8,10], this paper aims to evaluate a wider range of models over
the same dataset and forecasting parameters, towards presenting a more holistic overview over their
performance on multi-step short-term PV power generation forecasting, as presented in Figure 2. In this
subsection, a short mathematical description of each model evaluated in this study is provided.

Figure 2. Overview of the methodology explored (each t corresponds to 15’ interval).

3.2.1. Analytical Model

The first PV power generation forecasting model used in this study is a physical model.
As explained, the physical models emulate both the electrical and thermal properties of the PV cell and
demonstrate highly accurate forecasting performance. The physical model was implemented using
the open source software PVLIB [65]. PVLIB is widely used in the PV power generation forecasting
literature as it implements a simple electrical model that exhibits forecasting performance equivalent
to a higher-order model, and also it incorporates the Sandia thermal model [66]. The model requires
the accurate definition of the following variables:

• Location and time: The solar irradiance values, which are used for the calculation of the actual PV
power generation values, are calculated by a component of the physical model that estimates the
exact position of the sun in terms of installation location and time. Hence, it is important to know
the exact location (i.e., latitude and longitude) of the PV installation and to have accurate time
measurements in the lowest granularity possible (i.e., hh:mm).
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• PV configuration: PV construction details such as type/number of modules, type of inverter,
the installation’s tilt and azimuth angle should be defined.

• Weather data: Cloud coverage and temperature forecasts should also be provided as input to the
physical model.

3.2.2. Statistical Models

As already mentioned, the statistical models are the first data-based models used for direct PV
power generation forecasting. In this section, the details of the statistical models used in this study,
namely the persistence (or random walk) model and the ARIMA model, are provided.

Persistence model

In every time series forecasting task, it is useful to have as a basic benchmarking model, a simplistic
model like the persistence model (also referred to in the forecasting literature as random walk or
naive model). In the persistence model, the forecasted value for the dependent variable is equal to
the current value of the variable, regardless of the forecasting horizon. The prediction equation of the
persistence model is as follows:

x̂t+h = xt, (1)

where h is the forecasting horizon. If the forecasting accuracy of a new model is not higher than the
accuracy of the persistence model, then the new model cannot be considered as useful.

Autoregressive integrated moving average

The ARIMA model is one of the most widely used statistical models for time series forecasting
tasks in general, and for power PV generation forecasting, in particular. The method was popularised
by the work of Box and Jenkins [67] in the 1970s. In short, an ARIMA(p, d, q) model is described by
the following equation: (

1−
p

∑
j=1

ϕjLj

)
(1− L)dxt =

(
1 +

q

∑
j=1

θjLj

)
εt, (2)

where p is the autoregressive order, q is the moving average order, d is the order of differencing
(i.e., how many times to apply the first differences method in order to make a time series stationary),
ϕj are the autoregressive parameters of the model, θj are the moving average parameters of the model,
Lj is the lag operator (i.e., Ljxt = xt−j) and εt is white noise with zero mean and constant variance.
The parameters of the ARIMA model are generally estimated using either the non-linear least squares
method or the maximum likelihood estimation method. When the ARIMA model does not include the
moving average component, its autoregressive parameters can be estimated using the ordinary least
squares (OLS) method.

3.2.3. Traditional Machine Learning Models

This subsection provides the details of the traditional machine learning models used in this study,
namely the support vector regression (SVR) and the gradient boosted trees (GBT).

Support vector regression

SVR is the version of the support vector machine (SVM) model for regression problems. Considering zj ∈
Rd is the input vector of the SVR model, its prediction is given by the following equation:

ŷj = 〈w, zj〉+ b, (3)

where yj is the prediction for the input vector zj, w is the parameter vector of the SVR model,
b is the bias of the SVR model and 〈·〉 denotes dot product. Given a set of training samples
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{(z1, y1) , . . . , (zn, yn)}, the training process of the SVR model (i.e., the process of estimating its
parameter vector w) can be expressed by the following optimisation problem:

min
w

1
2
‖w‖2, (4)∣∣yj − 〈w, zj〉 − b

∣∣ 6 ε, (5)

where ε is a hyperparameter of the SVR model that serves as a threshold. In particular, all predictions
have to be within an ε range of the true predictions. In addition, slack variables may be introduced
to the problem in order to allow prediction errors to flow out of the ε range boundaries. The above
optimisation problem is usually solved using quadratic programming methods like the method of
Lagrange multipliers.

Gradient boosted trees

GBT is a model based on gradient boosting, a technique used for both regression and classification
problems. A gradient-boosting-based model produces predictions as ensembles of multiple predictions
generated by weak prediction models called weak learners. The weak learners are trained sequentially,
each one correcting the errors made by its predecessor. In the case of GBT, the weak learners are
decision trees. GBT aims to minimise an objective function that combines a convex loss function and a
penalty term for model complexity. The training process proceeds iteratively, adding new trees that
predict the residuals of errors of prior trees that are then combined with previous trees to make the
final prediction. The simplified form of the objective function for the new tree ft is [68]:

n

∑
i=1

[gi ft(xi) +
1
2

hi f 2
t (xi)] + Ω( ft), (6)

where gi and hi are the first and second order gradient statistics of the loss function, which are defined
as follows:

gi = ∂ŷi
(t−1) l(yi, ŷi

(t−1)), (7)

hi = ∂2
ŷi

(t−1) l(yi, ŷi
(t−1)). (8)

The second term of the objective function Ω( ft) represents a regularization term in charge of
seeking the appropriate final weights to avoid overfitting.

3.2.4. Deep Learning Models

This section provides the details of the deep learning models used in this study, namely a DNN
architecture and an LSTM network architecture.

Deep neural networks

A DNN is a typical feed-forward ANN, which consists of at least four layers of nodes, namely the
input layer, the output layer and at least two hidden layers. Except for the input layer, all other layers
contain neurons with arbitrary activation functions. These activation functions may be either linear
or nonlinear, but in the majority of the cases, they are nonlinear (e.g., hyperbolic tangent function,
logistic function, rectifier linear unit - ReLU, etc.). The input layer of the DNN just receives the input
vectors. The DNNs are trained using the backpropagation technique in a supervised learning way.
Finally, DNNs are considered as universal function approximators [69], and therefore they can be used
for regression tasks. Moreover, as classification can be considered as a special case of regression in
which the target variable is categorical, the DNNs can also be used for classification tasks.
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Long short-term memory networks

An LSTM network [70] is an RNN architecture which copes with the vanishing gradient problem
(Error gradients tend to become very small or even vanished in very deep neural network models
preventing the weights from changing values and thus the models to be trained) by allowing gradients to
back-propagate unchanged through the network (however, an LSTM can still suffer from the exploding
gradient problem). A common LSTM architecture consists of a cell, which is the memory of the LSTM
unit, and three gates that control the information flow inside the LSTM. In particular, the input gate
controls the extent to which new values flow into the cell, the forget gate controls the extent to which a
value remains to the cell, and the output gate controls the extent to which the values in the cell are used to
compute the output of the LSTM. An overview of a typical LSTM unit is presented in Figure 3.

Figure 3. LSTM unit.

A forward pass of information (i.e., of a vector of values xt ∈ Rd) through an LSTM network is
described by the following equations:

ft = σg

(
W f xt + U f ht−1 + b f

)
, (9)

it = σg (Wixt + Uiht−1 + bi) , (10)

ot = σg (Woxt + Uoht−1 + bo) , (11)

ct = ft � ct−1 + it � σc (Wcxt + Ucht−1 + bc) , (12)

ht = ot � σh (ct) , (13)

where xt ∈ Rd is the input vector of the LSTM network, ft, it, ot ∈ Rh are the activation vectors of
the forget, input and output gates of the LSTM units, respectively, ct ∈ Rh is the state vector of the
cells of the LSTM units, and ht ∈ Rh is the hidden state vector (or activation vector) of the LSTM units.
Additionally, Wq ∈ Rh×d is the weight matrix of the input connections between the input vector xt

and an LSTM element q, where q can be either the input gate i, the forget gate f , the output gate o or
the cell c. Moreover, Uq ∈ Rh×h is the weight matrix of the recurrent connections between the hidden
state vector ht (or more accurately ht−1) and an LSTM element q. Finally, bq ∈ Rh is the bias vector of
an LSTM element q. The σ functions are activation functions. In particular, σg is the sigmoid activation
function of the input, forget and output gates, σc is the hyperbolic tangent activation function of the
cell and σh is the hyperbolic tangent activation function of the LSTM unit. The � symbol represents
the Hadamard product (or element-wise product).
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The initial state vectors c0 and h0 are usually set equal to the zero vector 0 = [0, . . . , 0]T ∈ Rh.
The training process of an LSTM network lies in the estimation of the values of the Wq and Uq

matrices and the bq vectors for all h units of the network, and it is usually performed using the
backpropagation through time (BPTT) algorithm [71]. Unlike typical RNNs, the training process of an
LSTM network does not suffer from the vanishing gradient problem, because while the error values
are back-propagated to the input they remain unchanged inside the cells of the LSTM units and they
do not exponentially degrade. In addition, as understood from the previous description, the cell of
an LSTM unit decides what to store and what to leave using element-wise operations of sigmoids,
which are differentiable and therefore suitable for backpropagation.

3.2.5. Hybrid Models

As presented in Section 2.3, there are a lot of different approaches for combining methods in order
to build a hybrid model with increased forecasting performance. This section provides the details
of the two hybrid models used in this study, namely a data-based model that utilises NWP and a
combination of the presented analytical with a data-based model.

Hybrid GBT mode—NWP-enriched GBT model

This model extends the GBT model described in Section 3.2.3 by fusing into it NWP historical data.
As already mentioned, cloud coverage is the weather variable that predominantly affects PV power
generation, and therefore cloud coverage data is utilized by this model. In particular, the historical
cloud coverage data is initially organized as a set of time series, and then they are transformed into a set
of training samples as described in Section 3.1.3. The main difference here is the fact that the existing
training vector zj =

[
xi

j, . . . , xi
j+p−1

]
expands to a new vector z

′
j =

[
xi

j, . . . , xi
j+p−1, wi

j, . . . , wi
j+p−1

]
,

where wj =
[
wi

j, . . . , wi
j+p−1

]
∈ Rd is the cloud coverage vector.

AI-Corrected NWP for Enriched Analytical PV Forecast

The AI-Corrected NWP for Enriched Analytical PV Forecast (AI-PVF) model is a combination of
the analytical model described in Section 3.2.1 and an error correction method based on data obtained
from the PV plant. The error is divided into clear sky error and cloud coverage error, a separation
routinely found in the literature [14,40]. In the context of this study, clear sky error is associated with
inaccuracies of the PV parameters, such as solar angles, installation angles and PV module/inverter
types. This error exists at all times and it can be isolated on clear sky days.

On the other hand, the cloud coverage error exists only on cloudy days and it essentially represents
the error introduced by inaccurate weather forecasts. Weather stochasticity makes it impossible to
achieve cloud coverage forecast with satisfyingly high accuracy. By investigating the power generation
data of the PV plant, it was found that the weather forecast errors follow specific patterns each time of
the day. When those patterns are taken into consideration, the accuracy of the initial weather forecast
is improved locally, resulting into a more accurate prediction of the PV power output.

In both cases, the error is corrected using the extremely randomised tree regression (EXTRA trees) [72]
model. EXTRA trees is a computationally efficient ensemble method that builds unpruned trees with the
classical top-down process. Its main distinctive characteristics from other tree-based ensemble methods
are: (a) node splitting is done by choosing cut-points completely at random and (b) the algorithm uses
the whole learning sample to grow the trees and not just a bootstrap replica. Concerning the feature
extraction process, the PV power output derived from the analytical model along with NWP data and
the solar azimuth/elevation angles are fed as features into the regression model. The actual PV power
output is the model’s target variable. Thus, the models essentially learn the error patterns that occur
under specific weather conditions (NWP forecasts) on each time of the day (sun angles). The AI-PVF
method is thoroughly analysed in [73].
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3.3. General Experimental Settings

This paper presents a comprehensive evaluation framework of different types of PV power
generation forecasting models. In this section, the configuration details of this framework are
provided. In this experimental framework, the main objective is to forecast the value of the PV
power generation in multiple forecasting horizons ahead in time using all the aforementioned models,
and then compare them in terms of forecasting accuracy. Five different forecasting horizons were
evaluated, namely 1, 2, 4, 8 and 12 steps ahead. Given the 15-minute data granularity, these steps
correspond to 15 min, 30 min, 1 h, 2 h and 3 h ahead of time. After the data has been transformed
into a supervised-learning-compatible form (see Section 3.1.3) with p = 3 and h = {1, 2, 4, 8, 12}
according to the chosen forecasting horizons, they are split into training, validation and test sets.
In particular, 80% of the data samples were used for training, 10% for validation and 10% for testing.
Finally, since the problem investigated is essentially a multi-step time series forecasting problem,
an appropriate forecasting strategy was selected, namely the direct strategy [74,75]. In this, each step
is forecasted independently from each other. This means that if forecasts should be computed for k
steps ahead in total, then k different models should be built. Hence, this strategy can lead to higher
training times. It should be noted that, in all data-based model only the PV power generation values
were used as inputs. Cloud coverage was only utilised for splitting the original dataset into different
sub-datasets according to the forecasting period (e.g., spring).

3.3.1. Model Configuration and Hyperparameter Tuning

As mentioned above, 10% of the available data was used for validation of the models,
namely hyperparameter tuning. This process is required by the data-based and the hybrid models.
Regarding the ARIMA, SVR and GBT models, the same hyperparameters have been selected for all data
partitions. In particular, for all data partitions and forecasting horizons ARIMA(3, 1, 0) models were
implemented (the term ‘models’ here refers to different instances of the ARIMA model based on the
different data used for its training). Additionally, the hyperparameters of the SVR models were C = 1,
degree = 3, ε = 0.1, γ = 1/number o f f eatures and kernel = radial basis f unction. Moreover, the optimal
hyperparameters of the GBT model were maxdepth = 8 for the maximum depth of the decision trees and
nestimators = 40 for the number of trees used by the GBT. The hyperparameter tuning process for these
models was performed using the grid search method. Regarding the AI-PVF approach, which utilises
EXTRA trees for the error correction process, grid search was also conducted in order to find the
optimal model hyperparameters. Through this process, the best parameters found were: maxdepth = 12,
minsamples−split = 9 and nestimators = 150.

In contrast with the above models, for each data partition and forecasting horizon different DNN
and LSTM architectures, with different structure (e.g., number of neurons per hidden layer) and
hyperparameters, were implemented. These configurations are presented in Table 1 (Nu stands for
number of units, where units refer to either input units or computational neurons) for the DNNs and
in Table 2 for the LSTMs. These configurations were estimated using the grid search method.
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Table 1. DNN architectures.

Data Forecasting Nu Nu Nu Nu #
Partitions Horizons Input Hidden Layer 1 Hidden Layer 2 Output Epochs

Spring,
sunny
days

1 3 4 8 1 30
2 3 8 8 1 50
4 3 8 8 1 40
8 3 8 8 1 100

12 3 4 16 1 80

Spring,
cloudy
days

1 3 4 8 1 10
2 3 8 8 1 30
4 3 8 8 1 40
8 3 8 8 1 40

12 3 4 8 1 25

Summer,
sunny
days

1 3 4 8 1 25
2 3 8 8 1 40
4 3 8 8 1 40
8 3 8 8 1 100

12 3 8 8 1 50

Summer,
cloudy
days

1 3 4 8 1 30
2 3 8 8 1 40
4 3 8 8 1 40
8 3 16 8 1 100

12 3 8 8 1 50

Autumn,
sunny
days

1 3 8 4 1 50
2 3 8 16 1 50
4 3 4 8 1 40
8 3 16 8 1 60

12 3 8 16 1 100

Autumn,
cloudy
days

1 3 4 4 1 10
2 3 4 4 1 20
4 3 4 4 1 20
8 3 4 4 1 40

12 3 4 8 1 50

Winter,
sunny
days

1 3 4 4 1 30
2 3 4 4 1 40
4 3 4 8 1 50
8 3 8 4 1 50

12 3 4 8 1 100

Winter,
cloudy
days

1 3 8 16 1 100
2 3 8 16 1 50
4 3 16 8 1 100
8 3 8 16 1 50

12 3 16 16 1 100

The PV power generation forecasting models presented in this work were implemented using
well-known Python statistical, machine learning and deep learning libraries. In particular, as already
mentioned, the analytical model was implemented using PVLIB. The statistical models were implemented
using the statsmodels library [76], SVR and AI-PVF using the scikit-learn library [77], the GBT models
(i.e., both GBT and HGBT) using the XGBoost library [68], and the neural network architectures
(i.e., DNN and LSTM) using the TensorFlow [78] and Keras [79] libraries.



Energies 2020, 13, 5978 15 of 31

Table 2. LSTM architectures.

Spring, Sunny Days Forecasting Horizons Autumn, Sunny Days Forecasting Horizons
1 2 4 8 12 1 2 4 8 12

Nu Input 3 3 3 3 3 Nu Input 3 3 3 3 3
Nu Hidden Layer 1 2 4 8 16 4 Nu Hidden Layer 1 8 16 16 16 32
Nu Hidden Layer 2 4 8 8 8 8 Nu Hidden Layer 2 8 8 8 8 8

Nu Output 1 1 1 1 1 Nu Output 1 1 1 1 1
# Epochs 50 100 50 100 150 # Epochs 20 15 15 25 50

Spring, cloudy days Forecasting Horizons Autumn, cloudy days Forecasting Horizons
1 2 4 8 12 1 2 4 8 12

Nu Input 3 3 3 3 3 Nu Input 3 3 3 3 3
Nu Hidden Layer 1 2 4 4 8 4 Nu Hidden Layer 1 8 4 4 4 4
Nu Hidden Layer 2 4 4 4 4 8 Nu Hidden Layer 2 8 8 8 8 8

Nu Output 1 1 1 1 1 Nu Output 1 1 1 1 1
# Epochs 50 20 100 100 30 # Epochs 15 15 10 25 25

Summer, sunny days Forecasting Horizons Winter, sunny days Forecasting Horizons
1 2 4 8 12 1 2 4 8 12

Nu Input 3 3 3 3 3 Nu Input 3 3 3 3 3
Nu Hidden Layer 1 4 4 16 8 4 Nu Hidden Layer 1 8 8 8 16 16
Nu Hidden Layer 2 4 4 8 8 8 Nu Hidden Layer 2 8 8 8 8 8

Nu Output 1 1 1 1 1 Nu Output 1 1 1 1 1
# Epochs 50 20 20 50 50 # Epochs 30 30 30 40 40

Summer, cloudy days Forecasting Horizons Winter, cloudy days Forecasting Horizons
1 2 4 8 12 1 2 4 8 12

Nu Input 3 3 3 3 3 Nu Input 3 3 3 3 3
Nu Hidden Layer 1 2 4 8 8 4 Nu Hidden Layer 1 16 8 8 8 16
Nu Hidden Layer 2 4 4 4 4 8 Nu Hidden Layer 2 8 4 8 16 16

Nu Output 1 1 1 1 1 Nu Output 1 1 1 1 1
# Epochs 50 50 50 30 30 # Epochs 20 50 70 50 100

3.3.2. Forecasting Evaluation Metrics

In order to evaluate the accuracy of the presented PV power generation forecasting models,
three main error metrics were used, namely the mean absolute error (MAE), the mean absolute
percentage error (MAPE) and the root mean squared error (RMSE). These metrics are defined by the
following equations:

MAE =
1
n

n

∑
i=1
|yi − ŷi|, (14)

MAPE =
1
n

n

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100, (15)

RMSE =

√
∑n

i=1(yi − ŷi)2

n
, (16)

where yi the actual PV power generation value, ŷi is the predicted value and n is the total number
of predictions. These metrics are widely used for evaluating the accuracy of PV power generation
forecasting models. MAE and RMSE are expressed in the units of the predicted variable, in this
case kilowatts (kW). On the other hand, MAPE is expressed as a percentage and so it is more
easily interpretable.

In addition to these well-known metrics, a new metric, namely the weighted relative squared
error (WRSE), is introduced. This metric is defined by the following equation:
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WRSE =

[
∑i=h

i=1

[√
(ŷi−yi)

2

yi

]]2

h ∑i=h
i=1 yi

× 100, (17)

where yi is the actual PV power generation value, ŷi is the predicted value and h is the forecasting
horizon. WRSE expresses the relative forecasting error in terms of the magnitude of the evaluated
PV power generation. It also takes into account the direction of the error and provides a uniform
weighting for all errors. Finally, the metric disregards zero PV power generation values.

4. Results

The forecasting accuracy results of all PV power generation forecasting models studied in this
work, for all forecasting horizons and data partitions, are presented in Tables 3–6 for the spring,
summer, autumn and winter period, respectively. In these tables, the models demonstrating the highest
performance (in terms of MAPE) in each case are highlighted with their respective performance metrics
in bold letters.

Table 3. Forecasting accuracy results for the spring period.

Steps Models
Sunny Days Cloudy Days

MAE MAPE RMSE WRSE MAE MAPE RMSE WRSE
(kWh) (%) (kWh) (%) (kWh) (%) (kWh) (%)

1 Analytical 0.073 4.043 0.092 0.153 0.398 79.437 0.495 18.816
Persistence 0.103 6.229 0.155 0.361 0.154 25.021 0.233 2.565

ARIMA 0.063 3.452 0.157 0.123 0.152 28.758 0.227 2.668
SVR 0.151 9.743 0.165 0.823 0.17 40.005 0.233 3.572
GBT 0.076 4.142 0.156 0.172 0.145 23.677 0.228 2.213
DNN 0.082 4.502 0.17 0.209 0.159 28.27 0.238 2.792
LSTM 0.061 3.382 0.149 0.118 0.151 22.582 0.226 2.339
HGBT 0.071 4.153 0.151 0.174 0.141 24.332 0.231 2.28

AI-PVF 0.053 2.898 0.092 0.076 0.294 88.793 0.442 15.022

2 Analytical 0.077 3.683 0.101 0.135 0.433 80.351 0.512 18.875
Persistence 0.167 11.213 0.206 1.04 0.233 46.222 0.319 6.672

ARIMA 0.076 4.278 0.175 0.181 0.225 52.178 0.307 6.671
SVR 0.2 12.018 0.206 1.335 0.226 52.823 0.305 6.515
GBT 0.094 5.158 0.142 0.246 0.211 44.42 0.323 5.89
DNN 0.105 6.234 0.147 0.363 0.225 41.985 0.309 5.535
LSTM 0.063 3.576 0.16 0.126 0.223 45.488 0.305 6.04
HGBT 0.084 4.578 0.142 0.202 0.212 42.091 0.321 5.371

AI-PVF 0.052 2.714 0.113 0.069 0.296 90.961 0.453 15.4

4 Analytical 0.072 3.667 0.998 0.14 0.411 83.484 0.512 19.968
Persistence 0.299 18.964 0.351 3.124 0.382 88.03 0.475 19.471

ARIMA 0.075 4.337 0.105 0.179 0.355 92.93 0.438 17.597
SVR 0.195 11.314 0.204 1.217 0.338 83.996 0.437 15.654
GBT 0.101 5.467 0.143 0.291 0.291 86.234 0.421 12.595
DNN 0.229 13.107 0.237 1.65 0.333 78.374 0.421 13.724
LSTM 0.073 4.1 0.112 0.166 0.277 80.339 0.382 11.446
HGBT 0.086 4.611 0.13 0.2 0.287 74.771 0.412 10.611

AI-PVF 0.056 2.876 0.112 0.081 0.311 94.644 0.457 16.313
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Table 3. Cont.

Steps Models
Sunny Days Cloudy Days

MAE MAPE RMSE WRSE MAE MAPE RMSE WRSE
(kWh) (%) (kWh) (%) (kWh) (%) (kWh) (%)

8 Analytical 0.101 5.121 0.133 0.266 0.43 91.348 0.531 23.041
Persistence 0.511 28.45 0.599 7.688 0.618 199.45 0.744 58.724

ARIMA 0.151 7.964 0.17 0.634 0.53 195.031 0.608 44.886
SVR 0.21 10.776 0.233 1.197 0.507 201.05 0.597 44.164
GBT 0.153 7.625 0.181 0.598 0.412 133.64 0.551 25.152
DNN 0.367 18.927 0.393 3.673 0.492 162.751 0.585 38.321
LSTM 0.096 4.829 0.132 0.244 0.404 146.537 0.531 27.372
HGBT 0.131 6.67 0.165 0.443 0.37 129.471 0.512 22.256

AI-PVF 0.061 3.432 0.127 0.112 0.32 104.34 0.482 19.154

12 Analytical 0.109 5.227 0.121 0.277 0.441 97.856 0.542 24.983
Persistence 0.681 34.433 0.817 11.64 0.819 291.016 0.95 109.336

ARIMA 0.237 11.668 0.27 1.371 0.598 210.935 0.683 57.454
SVR 0.238 11.614 0.338 1.374 0.576 213.133 0.672 56.045
GBT 0.293 14.098 0.603 2.01 0.478 148.314 0.622 31.059
DNN 0.351 17.022 0.456 2.964 0.578 194.592 0.662 50.619
LSTM 0.107 5.178 0.16 0.274 0.577 178.01 0.664 45.815
HGBT 0.281 13.542 0.651 1.853 0.51 197.48 0.672 46.675

AI-PVF 0.039 1.875 0.055 0.035 0.318 111.339 0.484 20.213

Table 4. Forecasting accuracy results for the summer period.

Steps Models
Sunny Days Cloudy Days

MAE MAPE RMSE WRSE MAE MAPE RMSE WRSE
(kWh) (%) (kWh) (%) (kWh) (%) (kWh) (%)

1 Analytical 0.081 9.328 0.111 0.397 0.181 31.021 0.207 3.706
Persistence 0.083 9.039 0.121 0.452 0.106 33.198 0.122 2.012

ARIMA 0.039 3.821 0.089 0.085 0.095 44.976 0.119 2.215
SVR 0.135 12.223 0.148 0.968 0.114 70.364 0.137 3.851
GBT 0.043 3.425 0.093 0.082 0.048 24.812 0.079 0.503
DNN 0.034 3.558 0.092 0.07 0.107 58.002 0.133 2.904
LSTM 0.035 3.329 0.09 0.066 0.069 27.623 0.086 0.976
HGBT 0.045 3.402 0.097 0.082 0.049 19.778 0.071 0.39

AI-PVF 0.079 7.874 0.113 0.368 0.077 9.602 0.121 0.497

2 Analytical 0.068 6.513 0.102 0.277 0.171 29.728 0.199 3.626
Persistence 0.154 15.327 0.183 1.44 0.213 83.045 0.232 9.395

ARIMA 0.058 4.746 0.133 0.17 0.184 106.125 0.22 9.859
SVR 0.158 11.869 0.179 1.179 0.166 84.252 0.19 6.867
GBT 0.059 4.327 0.132 0.161 0.071 52.834 0.114 1.681
DNN 0.05 3.845 0.119 0.118 0.168 100.353 0.201 8.333
LSTM 0.044 3.531 0.113 0.095 0.074 79.6 0.117 2.968
HGBT 0.061 4.681 0.142 0.183 0.069 51.021 0.131 1.61

AI-PVF 0.079 6.012 0.108 0.281 0.071 8.891 0.109 0.467

4 Analytical 0.064 4.651 0.080 0.168 0.174 30.622 0.193 3.771
Persistence 0.303 24.683 0.344 4.505 0.428 210.696 0.458 48.987

ARIMA 0.092 6.428 0.204 0.355 0.321 235.41 0.389 40.863
SVR 0.17 10.894 0.223 1.137 0.229 159.897 0.274 19.293
GBT 0.094 5.132 0.021 0.302 0.131 229.187 0.221 14.834
DNN 0.073 4.738 0.178 0.21 0.197 165.124 0.254 17.557
LSTM 0.07 4.523 0.195 0.192 0.11 142.994 0.17 8.403
HGBT 0.088 6.392 0.182 0.363 0.121 147.149 0.198 8.256

AI-PVF 0.066 4.728 0.077 0.195 0.071 8.832 0.113 0.449
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Table 4. Cont.

Steps Models
Sunny Days Cloudy Days

MAE MAPE RMSE WRSE MAE MAPE RMSE WRSE
(kWh) (%) (kWh) (%) (kWh) (%) (kWh) (%)

8 Analytical 0.054 3.018 0.062 0.086 0.163 35.072 0.183 4.937
Persistence 0.66 42.765 0.712 16.466 0.836 515.241 0.88 255.806

ARIMA 0.1 6.37 0.176 0.372 0.492 463.461 0.602 140.732
SVR 0.141 8.39 0.157 0.692 0.385 392.454 0.484 92.777
GBT 0.010 6.193 0.202 0.375 0.181 315.132 0.333 34.51
DNN 0.069 4.101 0.1 0.164 0.278 340.524 0.379 59.836
LSTM 0.065 3.923 0.196 0.15 0.179 277.139 0.281 28.147
HGBT 0.091 6.188 0.200 0.28 0.217 395.192 0.393 55.491

AI-PVF 0.066 3.968 0.062 0.151 0.051 8.752 0.089 0.376

12 Analytical 0.047 2.619 0.057 0.067 0.171 46.22 0.186 8.59
Persistence 1.003 57.301 1.056 31.744 1.151 849.754 1.208 622.292

ARIMA 0.157 9.201 0.243 0.795 0.547 556.519 0.647 198.784
SVR 0.104 6.367 0.155 0.365 0.541 588.298 0.649 211.344
GBT 0.084 4.578 0.152 0.211 0.254 401.342 0.393 94.995
DNN 0.074 4.494 0.132 0.183 0.525 553.897 0.624 191.69
LSTM 0.062 3.892 0.125 0.132 0.436 459.917 0.512 125.204
HGBT 0.094 4.708 0.141 0.221 0.303 592.422 0.488 145.237

AI-PVF 0.066 3.743 0.077 0.136 0.045 10.58 0.067 0.448

Table 5. Forecasting accuracy results for the autumn period.

Steps Models
Sunny Days Cloudy Days

MAE MAPE RMSE WRSE MAE MAPE RMSE WRSE
(kWh) (%) (kWh) (%) (kWh) (%) (kWh) (%)

1 Analytical 0.086 26.798 0.142 5.43 0.189 163.776 0.275 67.238
Persistence 0.054 94.033 0.097 6.092 0.108 72.636 0.218 17.661

ARIMA 0.051 69.031 0.069 2.881 0.114 92.745 0.21 20.602
SVR 0.118 189.461 0.125 11.001 0.169 208.859 0.229 55.079
GBT 0.027 40.836 0.055 1.225 0.122 83.312 0.227 21.532
DNN 0.029 62.957 0.052 1.74 0.12 105.383 0.21 23.229
LSTM 0.051 82.019 0.071 3.053 0.113 80.737 0.208 18.913
HGBT 0.04 64.383 0.072 3.006 0.123 82.62 0.232 22.025

AI-PVF 0.025 33.549 0.059 0.894 0.224 257.481 0.312 134.189

2 Analytical 0.099 22.467 0.161 4.237 0.19 161.755 0.276 66.511
Persistence 0.081 305.741 0.142 19.126 0.148 133.543 0.27 40.318

ARIMA 0.078 248.732 0.097 8.254 0.162 160.097 0.264 47.179
SVR 0.171 316.716 0.185 15.014 0.199 214.459 0.284 71.138
GBT 0.043 175.97 0.086 3.882 0.167 135.6 0.265 45.264
DNN 0.066 202.241 0.079 4.797 0.157 145.991 0.266 43.466
LSTM 0.068 264.427 0.091 9.705 0.152 143.015 0.268 43.695
HGBT 0.059 183.313 0.15 6.402 0.164 144.939 0.271 48.531

AI-PVF 0.021 26.354 0.041 0.337 0.225 260.527 0.312 134.089

4 Analytical 0.121 21.509 0.184 4.086 0.195 167.746 0.282 69.431
Persistence 0.137 398.498 0.236 32.803 0.22 183.546 0.351 73.561

ARIMA 0.131 154.094 0.163 4.955 0.248 230.569 0.348 91.645
SVR 0.15 160.519 0.173 6.711 0.279 260.503 0.388 118.426
GBT 0.072 16.73 0.125 1.126 0.235 227.827 0.336 98.012
DNN 0.135 27.090 0.176 0.498 0.242 226.255 0.342 89.965
LSTM 0.131 169.734 0.164 5.564 0.256 250.655 0.361 107.936
HGBT 0.089 34.12 0.17 3 0.228 215.417 0.333 89.113

AI-PVF 0.027 19.879 0.051 0.315 0.231 294.799 0.317 142.091
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Table 5. Cont.

Steps Models
Sunny Days Cloudy Days

MAE MAPE RMSE WRSE MAE MAPE RMSE WRSE
(kWh) (%) (kWh) (%) (kWh) (%) (kWh) (%)

8 Analytical 0.168 17.434 0.214 3.057 0.202 192.095 0.294 72.831
Persistence 0.381 28.950 0.473 7.955 0.343 298.781 0.501 143.47

ARIMA 0.153 5.592 0.215 0.306 0.387 432.485 0.463 215.61
SVR 0.186 5.592 0.267 0.314 0.361 385.300 0.461 184.385
GBT 0.306 18.786 0.449 3.539 0.322 318.336 0.42 148.522
DNN 0.119 3.915 0.173 0.158 0.373 380.117 0.44 185.254
LSTM 0.202 6.960 0.264 0.472 0.434 486.760 0.514 291.991
HGBT 0.309 18.94 0.458 3.584 0.311 270.281 0.412 120.602

AI-PVF 0.038 3.831 0.06 0.152 0.237 280.743 0.326 145.337

12 Analytical 0.227 17.227 0.249 2.988 0.205 194.313 0.303 83.789
Persistence 0.738 218.253 0.904 46.433 0.473 338.102 0.637 181.524

ARIMA 0.224 69.777 0.274 5.071 0.503 555.070 0.564 338.556
SVR 0.263 71.057 0.33 4.86 0.454 465.749 0.54 246.662
GBT 0.429 26.776 0.556 7.189 0.451 549.927 0.561 337.949
DNN 0.269 81.495 0.356 5.327 0.46 517.506 0.542 294.673
LSTM 0.472 89.491 0.605 11.239 0.505 576.146 0.576 357.323
HGBT 0.422 25.38 0.557 6.473 0.431 471.48 0.534 278.867

AI-PVF 0.056 4.122 0.074 0.176 0.241 316.105 0.335 169.131

Table 6. Forecasting accuracy results for the winter period.

Steps Models
Sunny Days Cloudy Days

MAE MAPE RMSE WRSE MAE MAPE RMSE WRSE
(kWh) (%) (kWh) (%) (kWh) (%) (kWh) (%)

1 Analytical 0.249 74.62 0.304 8.831 0.316 93.759 0.469 32.029
Persistence 0.167 47.431 0.229 4.152 0.213 68.038 0.392 15.565

ARIMA 0.098 44.299 0.159 2.042 0.212 71.493 0.382 15.226
SVR 0.181 122.508 0.208 8.866 0.256 163.040 0.368 30.275
GBT 0.139 36.331 0.234 2.389 0.233 64.294 0.41 14.96
DNN 0.126 51.247 0.17 2.921 0.215 65.626 0.371 15.103
LSTM 0.125 40.571 0.185 2.255 0.213 68.582 0.36 14.837
HGBT 0.149 37.244 0.25 2.646 0.226 65.674 0.396 14.669

AI-PVF 0.169 74.214 0.217 5.379 0.289 128.983 0.422 36.397

2 Analytical 0.252 69.149 0.306 8.586 0.323 90.641 0.475 31.334
Persistence 0.219 102.493 0.308 10.601 0.304 115.356 0.49 33.604

ARIMA 0.149 79.513 0.21 5.269 0.292 112.678 0.463 29.84
SVR 0.209 128.066 0.242 11.106 0.305 154.637 0.448 35.904
GBT 0.145 82.728 0.216 4.595 0.299 138.026 0.479 30.728
DNN 0.167 62.902 0.231 4.747 0.276 94.667 0.424 25.184
LSTM 0.14 54.189 0.199 3.207 0.283 101.472 0.44 26.615
HGBT 0.14 51.017 0.209 3.252 0.303 136.07 0.485 31.001

AI-PVF 0.169 74.214 0.217 5.379 0.289 128.983 0.422 36.397

4 Analytical 0.258 43.074 0.313 6.776 0.332 84.045 0.486 30.213
Persistence 0.388 211.354 0.493 33.507 0.445 245.596 0.632 80.702

ARIMA 0.227 108.414 0.264 9.894 0.421 230.086 0.605 66.24
SVR 0.243 100.962 0.279 10.249 0.425 249.162 0.598 69.102
GBT 0.213 61.045 0.28 6.122 0.394 157.075 0.558 49.665
DNN 0.191 89.520 0.247 7.099 0.364 191.311 0.526 51.159
LSTM 0.221 46.635 0.279 5.576 0.366 189.151 0.521 49.572
HGBT 0.212 60.904 0.275 5.997 0.388 194.132 0.557 52.459

AI-PVF 0.176 44.863 0.225 3.824 0.306 124.321 0.437 35.163
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Table 6. Cont.

Steps Models
Sunny Days Cloudy Days

MAE MAPE RMSE WRSE MAE MAPE RMSE WRSE
(kWh) (%) (kWh) (%) (kWh) (%) (kWh) (%)

8 Analytical 0.27 24.019 0.324 5.071 0.357 82.051 0.51 29.465
Persistence 0.72 410.840 0.814 87.531 0.608 299.521 0.763 119.64

ARIMA 0.333 136.454 0.385 14.302 0.517 191.974 0.684 66.893
SVR 0.322 116.509 0.378 12.556 0.497 173.045 0.662 57.626
GBT 0.308 92.87 0.37 11.231 0.477 203.216 0.637 62.127
DNN 0.293 90.705 0.356 9.347 0.452 165.597 0.609 47.894
LSTM 0.308 100.780 0.356 11.803 0.482 205.350 0.632 60.168
HGBT 0.319 103.987 0.381 12.66 0.456 216.769 0.637 62.127

AI-PVF 0.187 25.552 0.236 2.64 0.328 126.362 0.457 34.471

12 Analytical 0.291 23.355 0.342 4.894 0.378 82.389 0.533 28.664
Persistence 0.988 297.119 1.096 88.263 0.786 650.118 0.961 259.727

ARIMA 0.4 53.756 0.499 10.63 0.56 269.605 0.735 82.885
SVR 0.436 54.642 0.552 12.372 0.552 193.198 0.741 63.351
GBT 0.385 128.341 0.47 14.261 0.511 237.448 0.678 59.922
DNN 0.444 50.802 0.557 12.81 0.499 138.776 0.674 46.83
LSTM 0.414 84.491 0.5 13.106 0.51 166.407 0.696 49.02
HGBT 0.524 173.485 0.614 25.594 0.516 247.258 0.671 61.988

AI-PVF 0.207 26.995 0.252 2.902 0.341 130.629 0.472 32.946

4.1. Results According to Season

With regard to the spring season, in the sunny days subperiod, the AI-PVF model presents
consistently the best forecasting accuracy across all forecasting horizons. On the contrary, in the
cloudy days subperiod, there is no single model yielding the best performance across all forecasting
horizons. In particular, the LSTM model has the best performance for 1 step ahead, the DNN model
for 2, the HGBT model for 4 and the AI-PVF model for 8 and 12. It is important to highlight
that, as expected [57], the forecasting errors in the cloudy days subperiod are much higher than
the corresponding errors of the sunny days subperiod. For example, the MAPE value of the best
performing model (i.e., AI-PVF) forecasting for 1 step ahead in the sunny days subperiod is 2.898%,
while the corresponding value of the best performing model (i.e., LSTM) in the cloudy days subperiod
is 22.582%. This is also demonstrated by the order of magnitude of the errors, where in the sunny days
subperiod it is at the level of 101 at most while in the cloudy days is at the level of 102.

Regarding the summer season, in the sunny days subperiod, the LSTM model presents the best
forecasting accuracy for 1, 2 and 4 steps ahead, while the analytical model has the best accuracy
for 8 and 12 steps ahead. However, this is not an outcome that can or should be generalised,
because according to both available literature (e.g., [9,38]) and also, the hands-on experience of
the authors, the plain analytical model almost never outperforms data-based or hybrid models when
tested over an extended period of time. The reason for this result here may be the small size of the
testing set, which occurred by the limitation of 10% maximum cloud coverage and the size of the
forecasting horizons, i.e., the more the forecasting horizon increases, the smaller the testing set becomes.
Thus, the authors cannot support the statement that the analytical model outperforms any of the other
forecasting models (and more importantly, the LSTM and the AI-PVF models). Therefore, this particular
finding requires additional experimentation in order to reach a definite conclusion. In the cloudy days
subperiod, the AI-PVF model presents the best forecasting accuracy across all forecasting horizons.
Notably, in some cases, the forecasting error of the AI-PVF model is one or two orders of magnitude
smaller compared to the other models (e.g., for 8 steps ahead). Additionally, as in the case of the spring
period, the forecasting errors in the cloudy days subperiod are much higher than the corresponding
errors of the sunny days subperiod.
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With respect to the autumn season, in the sunny days subperiod, the analytical model yields
the best forecasting accuracy for 1 and 2 steps ahead, the GBT model for 4 steps ahead and the
AI-PVF model for 8 and 12 steps ahead. On the other hand, in the cloudy days period, the persistence
model yields the best forecasting accuracy for 1 and 2 steps ahead and the analytical model for 4,
8 and 12 steps ahead. The fact that the naive persistence model outperforms all the other advanced
models for two forecasting horizons is indicative of the inability of the advanced models to cope
with the variations in the PV power generation variable introduced by the harsh autumn weather.
Additionally, the analytical model that incorporates weather information (in the form NWP predictions)
presents the best forecasting accuracy for the forecasting scenarios of 4, 8 and 12 steps ahead. In this
season, the days in the sunny days subperiod when the cloud coverage is below 10% are very few,
which leads to small available datasets for training the data-based models and the HGBT model.
This fact can explain the very low forecasting performance of both the data-based models and the
HGBT model, and especially that of the traditional statistical model ARIMA and the traditional
machine learning model SVR. The AI-PVF model is more robust in this case due to its error-correction
capabilities. On the other hand, the high cloud coverage values during the autumn’s cloudy days lead
to an intermittent pattern for the PV power generation variable, which cannot easily be captured even
by the complex nonlinear DL models. The integration of the PV installation’s characteristics along
with weather information in the DL models may possibly help them to better capture the complex
distribution of the PV power generation variable during the autumn’s cloudy days.

Finally, in the sunny days subperiod of the winter season, the GBT model presents the best
forecasting accuracy for 1 step ahead, the HGBT model for 2 steps ahead and the analytical model
for 4, 8 and 12 steps ahead. On the other hand, in the cloudy days subperiod, the GBT model is still
the best performing model for 1-step ahead forecasting, while the analytical model in the best for
the other forecasting horizons. In this season, the problems reported for the autumn season have
been greatly amplified. In particular, for the sunny day subperiod, the forecasting error (in terms
of MAPE) of most of the models becomes greater than 50% after the forecasting horizon of 1 step
ahead. Only the analytical and the AI-PVF model with the error-correction capabilities maintain their
performance at relatively acceptable levels. The problem escalates in the cloudy days subperiod when
most of the models yield forecasting error greater than 100% after the 1-step ahead forecasting scenario.
This finding is consistent across all data-based models (statistical, ML or DL) which can support
the argument that in cases with highly intermittent pattern of the PV power generation variable the
data-based models that utilize only past values of the variable in order to predict its future values,
cannot be considered as accurate and cannot be used for forecasting tasks in real RES systems. One way
to mitigate this behaviour is to integrate to the models the PV installation’s characteristics along with
weather information, as in the case of the analytical model.

In order to examine if the forecasting accuracy results of the several models differ from each other
in a statistically significant way, we performed statistical tests on the residuals of the best performing
models from each model category (i.e., analytical, data-based and hybrid) for all data partitions and
forecasting horizons using the Kruskal-Wallis statistical test. This non-parametric test is used for
estimating if two or more independent samples of equal or different sample sizes are drawn from
the same distribution with similar mean and variance (null hypothesis). The results indicate that,
in the majority of cases, the null hypothesis can be rejected. Hence, the forecasting accuracy of the
best performing model in each case is different from the accuracy of the best performing models
of the remaining categories in a statistically significant way. Such a result is illustrated in Table 7,
which contains the results of the Kruskal–Wallis statistical test for the best performing models for the
sunny days subperiod of the summer season and the cloudy days subperiod of the winter season for
all forecasting horizons. In all cases apart from one, the null hypothesis is rejected (highlighted by
green color). The best performing model in each case is highlighted by bold letters.
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Table 7. Results of Kruskal-Wallis statistical test performed for the sunny days subperiod of the summer
season and the cloudy days subperiod of the winter season for all forecasting horizons. The rejection
of the null hypothesis is highlighted by green color, while its acceptance by red. The best performing
model in each case in highlighted by bold letters.

Forecasting Summer Winter
Steps Sunny Days Cloudy Days

Step 1 Analytical, LSTM, HGBT Analytical, GBT, HGBT
Statistical value = 111.073 Statistical value = 9.662

Step 2 Analytical, LSTM, HGBT Analytical, DNN, AI-PVF
Statistical value = 77.278 Statistical value = 0.433

Step 4 Analytical, LSTM, AI-PVF Analytical, GBT, AI-PVF
Statistical value = 50.986 Statistical value = 7.655

Step 8 Analytical, LSTM, AI-PVF Analytical, DNN, AI-PVF
Statistical value = 38.674 Statistical value = 12.483

Step 12 Analytical, LSTM, AI-PVF Analytical, DNN, AI-PVF
Statistical value = 16.261 Statistical value = 12.338

4.2. Generalized Results

Moving forward to generalize some of the aforementioned findings, it is observed that the
AI-PVF model consistently outperforms all others in spring sunny days and summer cloudy days
subperiods. Although it is not very clear as to why this occurs in these two particular scenarios,
there are similarities that could potentially lead to a reasonable justification. Both subperiods have
similar ambient conditions in terms of external temperature and humidity. In that regard, and taking
account the high dependency of PV power generation on temperature, it would be safe to assume
that the hybrid model that takes both physical characteristics and historical performance into account,
presents the best results in close to optimal temperature conditions (not too hot nor too cold).

Another interesting finding is that the data-based models outperform the analytical and the
hybrid models in very short-term forecasting scenarios, namely in 1 step ahead. From the second step
ahead, the integration of weather information to the models (i.e., hybrid approaches) seems to improve
the overall performance. As reported in the relevant literature [44,49], the data-based models are very
precise in very short-term PV power generation forecasting scenarios.

Regarding the long-term forecasting scenarios (i.e., 12 steps or 3 hours ahead), no generalized
finding can be fully justified given the incidental nature of best performance of the analytical model in
the summer sunny days subperiod for 8 and 12 steps ahead forecasts. Nonetheless, given the consistent
best performance of the AI-PVF model in similar spring sunny days subperiod and the relative similar
performance during the summer sunny days, with reservation, the authors support that the AI-PVF
model exhibits overall good behaviour. However this does not apply to PV installations and systems
that have existed for long periods of time, as it does not take into account the material degradation
and the physical corruption of the various physical components. As such, for old PV installations this
finding might not be applicable. However, the AI-PVF model takes into account this factor and also
seems to have good performance in long-term scenarios.

An almost expected outcome is that out of all data-based models, the LSTM architectures present
the best and most consistent forecasting results for forecasting horizons of 2 steps-ahead onwards in
all examined scenarios. This result can be attributed to the ability of the LSTM models to capture the
complex nonlinear long-term dependencies in the PV power generation time series, and exploit them
in order to produce accurate predictions [48,62]. What is not so expected concerning the behaviour of
the data-based models is that the integration of weather data does not improve their accuracy [42].
For example, the GBT and the HGBT models present quite close performance across all forecasting
horizons and for most of the data partitions.
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Another interesting finding is the the abruptly decrease of the forecasting accuracy in the autumn
season in sunny days subperiod. On the opposite side, in the cloudy days subperiod there is a stable
high forecasting error. This result is frequently discussed in literature as a barrier towards accurate
PV power generation forecasting [39,44,56,57]. Additionally, another interesting outcome refers to
the winter season. In particular, for all forecasting horizons and models, the forecasting errors in the
cloudy days subperiod are approximately twice the forecasting errors of the sunny days subperiod.

From the perspective of the several weather-based data partitions, a first finding is that the models
in cloudy days in summer present smaller forecasting errors than in cloudy days in spring across all
forecasting horizons. This behaviour can be justified by the fact that cloudy days in spring are more
often and with higher cloud coverage than the respective ones in summer for the examined test data.
Average cloud coverage and ratio of days with more than 10% cloud coverage in spring is 48.3% and
1.73%, whereas in summer 43.2% and 1.23%, respectively.

Another interesting result is that in spring cloudy days and in summer clear sky days a different
model has the best performance for each forecasting horizon. This is a rather difficult finding to
explain. However, it seems that there are some similar patterns. Up to 2 steps ahead, it is evident
that the data-based models present the best results. However, from 4 step onwards, it appears that
hybrid models (i.e., models that take into account weather forecast) start outperforming the data-based
models. Finally, from 8 steps ahead and beyond, the analytical model and hybrid ones present better
results compared to the data-based models.

Out of all the scenarios examined, the best forecasting accuracy achieved per metric is observed
on sunny days (expected), but not always on the same season (not expected), as shown below:

• MAE : 0.010 kWh - GBT - 8 steps ahead - Sunny Days - Summer
• MAPE : 1.875% - Hybrid - 12 steps ahead - Sunny Days - Spring
• RMSE : 0.021 kWh - GBT - 4 steps ahead - Sunny Days - Summer
• WRSE : 0.035% - Hybrid - 12 steps ahead - Sunny Days - Spring

Based on the above findings, it would appear that the examined models provide more accurate
results when predicting long-term rather than short-term time horizons. When examined the cloudy
days however, the results are slightly different:

• MAE : 0.045 kWh - Hybrid - 12 steps ahead - Cloudy Days - Summer
• MAPE : 8.752% - Hybrid - 8 steps ahead - Cloudy Days - Summer
• RMSE : 0.067 kWh - Hybrid - 12 steps ahead - Cloudy Days - Summer
• WRSE : 0.376% - Hybrid - 8 steps ahead - Cloudy Days - Summer

It is evident that for cloudy days the best performance in all metrics is for long-term predictions
and through the AI-PVF model. Interestingly enough, there is an opposite pattern between clear sky
days and cloudy days. In the former, absolute error metrics (i.e., MAE and RMSE) have good results
in less than 12 steps ahead, with relative ones (i.e., MAPE and WRSE) having their good ones on
12 steps ahead. The exact opposite is observed for the cloudy days. Optimal results are extracted for
the relative metrics for 8 steps ahead, whereas for the absolute ones for 12 steps ahead.

Throughout the present study, the need for further investigation of how weather data affect
the performance of PV power generation forecasting models, is evident. Although errors for clear
sky days remain quite low (i.e., for all examined horizons and models, the maximum average errors
are below 0.17 kWh, 10.5%, 0.2 kWh and 1% for MAE, MAPE, RMSE and WRSE, respectively) this
is not the case for cloudy days (i.e., for all examined horizons and models, the maximum average
errors are below 0.35 kWh, 199%, 0.4 kWh and 52% for MAE, MAPE, RMSE and WRSE, respectively).
This effect of the weather conditions on the accuracy of the PV power generation forecasting models
is highlighted in the boxplots presented in Figures 4–7, in which the distributions of the residuals
of the several forecasting models for the two most extreme cases in terms of weather conditions are
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presented. In particular, Figure 4 presents the the residuals’ distributions of all forecasting models
in the sunny days subperiod of the summer season for 1 step ahead, while Figure 5 presents the
corresponding residuals’ distributions of the models for the same forecasting horizon in the cloudy
days subperiod of the winter season. It is evident, by both the height of the boxes and the range of
the outliers, that most of the models face difficulties when trying to predict the PV power generation
under severe weather conditions. The same result applies for larger forecasting horizons, as shown
in Figures 6 and 7, which present the residuals’ distribution for 12 steps ahead in the sunny days
subperiod of the summer season and the cloudy days subperiod of the winter season, respectively.
Hence, it is apparent that there is a great need for more accurate models on diverse weather conditions.
Hybrid or DL models that integrate both PV installation’s characteristics and NWP, may hold the key
for accurate and generic PV power generation forecasting.

Finally, the results provided by different evaluation metrics are not consistent. There are
cases where MAE and RMSE are reduced, while MAPE and WRSE are increased, and vise versa.
This highlights the need to identify the exact evaluation metric under which such studies need to
be performed towards presenting meaningful and comparable results. The most troubling part is
that even though it would be expected to have more consistent results along all metrics in clear sky
conditions, the most ambiguous ones have instead been observed. This could be due to the smaller
errors observed compared to those of cloudy days. In particular, RMSE seems to be the metric that
deviates the most from all other three, highlighting that this metric may not be suitable for such
evaluation frameworks.

Figure 4. Boxplot of residuals for all PV power generation forecasting models. The data partition
examined in this case is the sunny days subperiod of the summer season and the forecasting horizon is
1 step ahead.
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Figure 5. Boxplot of residuals for all PV power generation forecasting models. The data partition
examined in this case is the cloudy days subperiod of the winter season and the forecasting horizon is
1 step ahead.

Figure 6. Boxplot of residuals for all PV power generation forecasting models. The data partition
examined in this case is the sunny days subperiod of the summer season and the forecasting horizon is
12 steps ahead.
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Figure 7. Boxplot of residuals for all PV power generation forecasting models. The data partition
examined in this case is the cloudy days subperiod of the winter season and the forecasting horizon is
12 steps ahead.

5. Conclusions

This paper presents a comprehensive evaluation framework for the comparison of different PV
power generation forecasting models on the same forecasting conditions. In particular, a dataset has
been assembled, containing PV power generation values from a real-world PV installation, along with
weather data gathered from a well-known online weather data aggregation services. The experiments
have specific characteristics in terms of the objectives, forecasting horizons, model configuration
processes and evaluation metrics. More importantly, the authors designed and implemented a set of
9 PV power generation forecasting models from the three different categories identified in the relevant
literature, namely analytical, data-based and hybrid. Specifically, one analytical, six data-based and
two hybrid models were designed, implemented and evaluated. The extracted findings are considered
useful for both researchers who design new PV power generation forecasting models and managers
of PV installations who want to employ the best forecasting models for each situation in order to
optimize the overall power generation and delivery pipeline. Future directions of our research include
the evaluation of the models on bigger datasets (e.g., from larger PV installations), the design and
implementation of new forecasting models, and the integration of the implemented models into more
generic PV power management pipelines.
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Abbreviations

The following abbreviations are used in this manuscript:

Wp watt-peak
DNN Deep Neural Network
LSTM Long Short-Term Memory
PV Photovoltaic
NWP Numerical Weather Prediction
RMSE Root Mean Square Error
MAPE Mean Absolute Percentage Error
WRSE Weighted Relative Square Error
RES Renewable Energy Source
DER Distributed Energy Resource
ML Machine Learning
NOCT Nominal Operating Cell Temperature
ANN Artificial Neural Networks
SVR Support Vector Regression
ARIMA Autoregressive Integrated Moving Average
DL Deep Learning
ANFIS Adaptive Neuro-Fuzzy Inference Systems
RBFN Radial Basis Function Network
CNN Convolutional Neural Networks
RNN Recurrent Neural Networks
SVM Support Vector Machines
kNN k-Nearest Neighbors
DIH Digital Innovation Hubs
CERTH Centre for Research and Technology Hellas
API Application Programming Interface
UTC Coordinated Universal Time
OLS Ordinary Least Squares
GBT Gradient Boosted Trees
ReLU Rectified Linear Unit
EXTRA Extremely Randomised Tree Regression
kW Kilowatts
GW Gigawatt
TWh Terawatt-hours
MW Megawatt
Wp Watt-peak
AI-PVF AI-Corrected NWP for Enriched Analytical PV Forecast Hellas
PDE Partial Differential Equation
ELM Extreme Learning Machines
SOM Self-Organizing Map
GA Genetic Algorithms
MAE Mean Absolute Error
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