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Abstract: The measurement and analysis of partial discharges (PD) are like medical examinations,
such as Electrocardiogram (ECG), in which there are preestablished criteria. However, each patient
will present his particularities that will not necessarily imply his condemnation. The consolidated
method for PD processing has high qualifications in the statistical analysis of insulation status of
electric generators. However, although the IEEE 1434 standard has well-established standards, it will
not always be simple to classify signals obtained in the measurement of the hydro generator coupler
due to variations in the same type of PD incidence that may occur as a result of the uniqueness of
each machine subject to staff evaluation. In order to streamline the machine diagnostic process, a tool
is suggested in this article that will provide this signal classification feature. These measurements
will be established in groups that represent each known form of partial discharge established by the
literature. It was combined with supervised and unsupervised techniques to create a hybrid method
that identified the patterns and classified the measurement signals, with a high degree of precision.
This paper proposes the use of data-mining techniques based on clustering to group the characteristic
patterns of PD in hydro generators, defined in standards. Then, random forest decision trees were
trained to classify cases from new measurements. A comparative analysis was performed among
eight clustering algorithms and random forest for choosing which is the superior combination to
make a better classification of the equipment diagnosis. R2 was used for assessing the data trend.

Keywords: partial discharges; data-mining techniques; hydro generators; clustering algorithms;
random forest

1. Introduction

Due to the increasing demand for electric energy currently signaled by the market, generators
are operating close to their maximum capacities for longer periods. This operating condition causes
additional stress to generators and, consequently, they are more susceptible to failures [1]. In this
context, failures in stator windings become a real possibility and come from four main factors, which are
named TEAM factor in IEC 60505 standard (International Electrotechnical Commission): high temperatures,
high electrical stress, inadequate environment conditions around windings, and mechanical reasons.
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All these factors have a great potential to generate partial discharges and decisively influence winding
lifespan reduction [2,3].

Partial discharges’ measurements are widely used to establish a diagnosis concerning the
equipment’s electrical insulation. Deterioration caused by the mentioned factors can be traced by
monitoring the discharge evolution and, consequently, it can act in the insulation as preventive
maintenance, when the problem is still at the beginning, reducing the risks of a possible unexpected
failure [3].

Although the methods based on partial discharges’ measurement are widely used, the diagnostics
presented regarding stator winding insulation have yet a very empirical basis. It is necessary for an
expert to analyze all graphical results obtained from the measurements, to determine in which patterns
each discharge fits and how severe it is to the equipment security, considering also trend curves of
PD levels for the specific equipment. The main forms of graphical analysis are phase-resolved partial
discharge (PRPD) and pulse height analysis (PHA) [2,3].

Facilitating the process of PDs’ analysis interpretation will certainly speed up maintenance
programs and preventive actions on the equipment before it presents a severe defect that can generate
problems of greater proportion, thus reducing the equipment time unavailability. So, it is important to
develop tools and methods that allow a better evaluation of equipment condition. Several proposals
have been proposed in the literature addressing the interpretation of partial discharges’ results, and
worth mentioning are those based on machine-learning (ML) and data-mining (DM) techniques as
viable solutions due to their capacity of systematically and automatically processing a large volume of
information [4,5].

Based on exhaustive offline studies, ML and DM usually discover relations between attributes
and objectives in a given database. Several ML and DM techniques need different data treatment,
generally known as data preprocessing. This step involves acts such as standardization and spurious
data treatment, among others [1,4,5]. Several applications based on DM and ML have been proposed
in power system issues [6–8].

Over the years, many researchers have proposed methods for partial discharges’ patterns’
automatic classification or made relevant contributions to perform the obtained data analysis more
accurately. In 2008, decision-tree (DT) and data-mining methods were used to identify partial discharges’
patterns, but only three pattern types were mapped, namely, corona, internal discharges, and surface
discharges [9]. In 2010, the same authors as in [9] made advances in research and continued to use
DM to analyze raw data measurements and validated the proposed method by using the techniques
of back propagation neural network, self-organizing map, and support vector machine to obtain a
predictive model [10].

An overview on partial discharges in high voltage equipment using PD raw data was performed
in [11] using k-means techniques to cluster signals. In another approach, neural networks were applied
to classify partial discharges’ signals into six types using real measurement data from high-voltage
motors [12]. In [13], a preliminary technique to identify simultaneous PDs’ sources was proposed,
also comparing the identification performance for different input features and different combinations
of ML techniques.

A simulation-based software proposal for PDs’ recognition using backpropagation neural network
was presented in 2015, in which five noise signals and four partial discharges were simulated,
making random combinations of these signals, whose results generated a database, so that possible
patterns’ recognition and analyses could be done [14]. A bibliographic survey until 2016 on the advances
of neural network (NN) applications for PDs’ automatic classification in high-voltage equipment was
carried out in [15]. This work raised several suggestions to improve the way neural networks’ training
is performed, highlighting also difficulties faced by researchers in developing neural networks’ models,
making comments on new techniques for results’ optimization.

A proposal for automatic PD classification in hydro generators’ windings using NN based on the
concept of image projection resulted in the identification of only four patterns [16]. Another approach,
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in [17], used machine-learning techniques to classify a database composed of 352 PRPD measurements
obtained from a generator of 37.5 MW and 12.5 kV, in which 96 attributes were extracted for the
computational process of obtaining clusters. Despite the high accuracy, of 95%, the proposed
system managed to obtain only four clusters, three corresponding to known patterns (slot discharges,
internal discharges, and delamination) and the fourth cluster categorized another measurement not
fitted in the previously mentioned.

One way to classify PDs was proposed in [18] based on visual data analysis to create a PD source
classifier with minimal labeled data. Trying to work around the problem of lack of database labeling,
the proposal is based on the PDs’ positive and negative signals’ symmetry using a convolutional
variational autoencoder to determine the best database for training and improving the classifier.
However, the overall hit rate was not higher than 65% in the clusters’ formation. One problem was
the massive high dimensionality of unlabeled data, which is a difficulty for using several DM and
ML techniques [18,19].

Considering the great difficulty of characterizing PD signals and the large amount of data that is
generated in permanent monitoring systems, this article proposes to establish a methodology based on
DM techniques for automatic diagnosis of incipient failures in hydro generators’ stator windings.

The main contributions of this article are: (1) a database creation approach with real cases of
PDs’ measurement, applying clustering techniques in the pulse height analysis to create labels for the
PDs’ types, (2) using the created database to train a random forest (RF) tree to quickly classify new
cases, and (3) it was proposed to use the determination coefficient (R2) to monitor the PDs’ variation
trends, to update the clusters and RF training database. In developing the proposed procedures,
real PDs’ measurements acquired from hydro generators in the Tucurui Hydroelectric Power Plant
were used. The clustering results were compared with standards and patterns of partial discharges
already predetermined using IEC 60270 and IEEE 1434 standards [20,21].

This paper is structured as follows. In Section 2 an introduction to partial discharges in hydro
generators is presented. In Section 3 a brief introduction about RFs and clustering is presented.
In Section 4 the details of the proposed approach are described. The results are presented in Section 5,
testing and comparing the proposed approach using eight clustering algorithms, and the quality of
generated ML models is also evaluated. In Section 6 conclusions are presented.

2. Partial Discharges

Partial discharges can be understood as “sparks” involved in a flow of electrons and ions in small
air volumes encapsulated in cavities, configuring themselves as defects in the insulation material.
These defects are characterized as a space not impregnated by insulating material and that can enclose
gases [22]. Thus, if there is a cavity inside or in the surface of an insulator, it can provoke partial
discharges, as it will imply a potential difference through it [23].

Therefore, norms are established and must be followed for the basis of concepts and patterns of
partial discharges in rotating machines. Among these norms, IEC 60270, IEC 60034-27-2, and IEEE
1434 are highlighted. These standards establish patterns and procedures for graphical analysis of PDs.

Graphic analyses are established in two focuses. The first encompasses an analysis of the
magnitude and quantization of partial discharges’ pulses as a function of the AC phase position PRPD.
The second establishes an analysis criterion according to the number of pulses recorded per second
in each magnitude interval [23]. This second chart was chosen in order to simplify the reading and
organization of PDs’ data.

Pulse height analysis’ charts have a logarithmic division of discharge pulses on their vertical
axis and division into 17 points of magnitude on the horizontal axis. These established divisions
provide information about the intensity and type of occurrence. Each horizontal axis point displays an
average of the amount of pulses at a given axis magnitude. In this way, curves will be formed that will
determine the standards required for the analysis [23,24].
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Phase-resolved partial discharge presents all pulses of partial discharges captured by the coupler,
showing the phases in which they are occurring. This set of factors will establish the severity and type
of partial discharge. When dealing with these two analysis forms, both will provide the magnitude
and pattern, which are the objects of study in this research, with the difference that in PHAs’ analysis
the information is condensed [23,24].

The partial discharges’ measurement establishes the degradation conditions of the stator windings’
insulation and, therefore, new measurement systems are created and/or improved in order to have
clearer and more reliable measurement results. These measurements are performed through a computer
connected through coaxial cables to the machine terminals. This coupling is the way to communicate
with capacitive couplers installed in the hydro generator stator that pick up the partial discharge signal.

Through the intensive measuring tool, installed in each generator for a monthly period, continuous
measurements are carried out. This makes it possible to analyze the intensity of the generator partial
discharges over time. The results of measurements are PRPD, which, for this work, was transformed
into PHAs. It is emphasized that the chosen hydro generator had 864 slots, 24 sensors distributed at eight
per phase. Figure 1 shows the typical measurement arrangement employed, presenting, highlighted
on the screen, the statistical map of magnitude and characteristic phase of a PD under analysis.
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Figure 1. Measurement arrangement and screen displaying a PRPD resulting from the partial
discharge measurement.

Figure 1 shows, on the left side, a general overview of the measurement arrangement, highlighting,
in the middle picture, the terminal box, which is accessing the partial discharge signals emitted by the
couplers installed along the stator windings. The coaxial cables make contact at these terminals and
the other ends are inserted in an oscilloscope. The oscilloscope output is connected to the computer
where the software performs the signals’ filtering. On the right of Figure 1, a PRPD map of the partial
discharge signal from one of the measuring terminals is presented.

2.1. Test Circuit

To perform the test shown in Figure 1, capacitive couplers must be installed parallel to the stator
winding and, by means of a measuring impedance, it is possible to capture the partial discharge signal,
through the contact terminals and coaxial cables, and it is computationally treated so that there is
fidelity and clarity in the data obtained.

In this way, PD signals are measured through capacitive couplers, so 80 pF capacitors are used in
the Hydro Power Plant (HPP) machines in Tucuruí. The number of couplers to be installed depends on
the type of installation chosen, machine model, and history of incidents. In the generator under study,
24 sensors were used (12 pairs), but it is recommended to use one pair of couplers per phase when
performing the differential installation, which implies noise rejection achieved based on the time of
arrival of pulses from the two couplers. This method is described in the IEEE 1434-2000 standard [21,25].
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The coupler’s location along the stator windings is shown in Figure 2, which is an image taken
from the Eletronorte Eletrobras Electric Generation Utility installation manual, together with the
differential installation model presented in the IEEE 1434-2014 standard. However, although the type
of installation already had noise removal, it was still necessary to perform other computational filtering
to obtain the signal as established by the standards, as described in Section 2.2.
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1434-2014 standard [21,25].

2.2. Digital Partial Discharge Measurement System

A digital measurement system (shown in Figure 3) for partial discharges receives two input
signals: a partial discharge signal and a voltage corresponding to the test voltage applied to the object,
in this case the voltage to which the generator is subjected.
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Figure 3. Basic diagram of a digital measurement system [26].

This data acquisition system records for each pulse its amplitude, phase angle, and applied
voltage. The PD signal, after going through an analog circuit designed to match impedances, will be
digitized together with the applied voltage signal.

In the digital signal processing step, signal filtering operations are performed according to the
selected measurement band and detection of the PD signal peak amplitude, in which the pulse and
pulse screening algorithms’ [20,26] waveform is processed and created. This step is crucial for the
noise suppression performance.

High processing speed is essential to establish accuracy and this is established using FPGA (field
programmable gate array) devices, in which the functionalities are defined by the user.
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The digital signal processing used by IMA-DP, a PD acquisition system developed by CEPEL [26],
can be described in seven distinct steps in order to remove noise and obtain a partial discharge signal
as accurately as possible, reproducing the electric machine operating condition, according to [26,27].
In these steps, two processes are established: the digital signal conditioning through filters and the
measurement completion provided to the user, shown in Figure 4.

1. Harmonic filtering to eliminate harmonic noise from the electric network-applied voltage.
2. Signals’ high pass filtering at 1 MHz.
3. Filtering of direct spectrum noise.
4. Broadband noise filtering.
5. Peak identification and detection of individual PD pulses.
6. Pulses’ classification.
7. Representing information on the PRPD map.
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3. Data Mining

The effectiveness of machine-learning algorithms depends primarily on the database and the type
of metric used to assess the distance or similarity measure between vectors in the input space. [17–19].
The proposed process here of identifying patterns is known as data mining [28], a strategy for finding
useful information embedded in large volumes of data. DM is an integral part of a larger process,
known as knowledge discovery in databases (KDD), which, in turn, consists of a series of steps [29].
Basically, DM has two types of tasks. Predictive tasks predict the value of a given attribute based on the
values of its characteristics. Supervised classification is an example of predictive tasks. Descriptive tasks
establish correlations, trends, anomalies, and even groupings within large volumes of data. Clustering
is a typical descriptive task example.

In this article, a hybrid approach was used between predictive and descriptive tasks, as it performs
clustering for grouping patterns and decision trees, known as random forest, for prediction purposes.

3.1. Clustering

Clustering is intended to group similar records by creating new classes. It is an extremely useful
mining task, given that people instinctively visualize segmented data in discrete groups, such as types
of cars or motorcycles. Clustering provides unsupervised classification of patterns into groups called
clusters. Clusters are established by data with similar characteristics, from the relationships that
measure the distance between a pair of patterns in a space of characteristics and can be measured by
the Euclidean distance. In this work the technique used was K-MEANS, where the following steps
are made [28–30]:
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1. Choose k points, within the characteristic space, representing the k clusters’ centers in which it is
desired to divide the dataset.

2. Assign each pattern to the nearest center based on the similarity function.
3. Recalculate cluster centers using the member data for each cluster.
4. Repeat the algorithm from item two until the stop criterion is reached.

The K-Means technique has variations, which were used in this article, in order to find the best
performance for partial discharges’ classification.

• Bregman divergences for K-means using the square Euclidean distance: Bregman divergence is a
set of loss or distortion functions. It uses the same K-means method, being the Bregman divergence
or distance, having similarities to the metric, but does not satisfy triangular inequality or symmetry,
but has the property of minimizing the distance between the test point and the mean. One of the
applicable forms used is the square Euclidean distance. As an example, for a single dimension the
equation would reduce to the squared difference between points x and y, the function ϕ(x) = hx,
x is convex, differentiable in Rd, such as in Equation (1) [17–19].

d(x, y) =
∣∣∣∣∣∣x− y

∣∣∣∣∣∣2 (1)

• Numerical measurements using Euclidean distance: In this method, the K-means’ algorithm is
followed as described previously, but uses for the calculation the Euclidean distance, which seeks
the direct distance between the metrics and, by definition, is the sum of the square root of the
difference between x and y in their respective dimensions. This is a general method without
restriction [31]. Equation (2) presents this distance.

d(x, y) =

√√ n∑
i=1

∣∣∣xi2 − x j2
∣∣∣2 (2)

• Numerical measurements using dynamic time distortion distance (DTW): This method applies
in the calculations of k-means’ distances the DTW that is used to find the optimal nonlinear
alignment between two sequences of numerical values. In this way, it is possible to find patterns
between measurements of events with different sequences and different lengths. So, DTW can
align any type of data that conform temporal order [32], given by Equation (3):

D(A, B) =

∑k
s=1 d(ps).ws∑k

s=1 ws

 (3)

• Numerical measurements using Euclidean kernel distance: Kernel mapping is used. It computes
the distance of Mahalanobis parameterized in the space of characteristics, known as feature space.
The essential idea encompassed by the algorithm is to explore data nonlinearity, defining the
clusters’ formation in the space of characteristics. The distance of the points in the characteristic
space must be expressed in terms of a kernel function and, thus, it is possible to evaluate the
distance of each vector x to a given center c [17–19].

• Numerical measurements using cosine similarity: In this type of metric similarity analysis,
the angular distance between two vectors from the origin is evaluated in an established
two-dimensional or multidimensional space. The smaller the angle between these points, the greater
the cosine value obtained and, consequently, the greater the similarity between them [33].
Equation (4) presents this distance.

cos(θ) =
∑n

i=1 xi.yi√∑n
i=1 x2i

√∑n
i=1 y2i

(4)
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• Numerical measurements using Manhattan distance: In this metric, the absolute distance between
two coordinate points in the system is established. This method can offer a performance superior
to the Euclidean distance when it comes to high-dimension data, since they can result in the
improvement of the results of distance-based algorithms, such as clustering [34]. Equation (5)
presents this distance.

d(i, j) =
∑∣∣∣xi − yi

∣∣∣ (5)

• Numerical measurements using Chebyshev distance: In this type of metric evaluated, the distance
between two vectors is determined within a bi- or multidimensional space, which is the biggest of
the differences between their coordinate dimensions, that is, the maximum value of the modules
of the differences in points [34], as presented in Equation (6).

d(x, y) = max
(∣∣∣xi − x j

∣∣∣, ∣∣∣yi − y j
∣∣∣) (6)

• Numerical measurements using correlation similarity: In this metric there is a linear correlation
between the attribute of two vectors, and it is recommended for the grouping between variables.
It establishes the reading of data that are statistically corresponding or incompatible between them,
causing the level of similarity between them to be provided [35]. Equation (7) shows this distance.

d(x, y) =

∑m
r=1(xi,r − xi)

(
x j,r − x j

)
√∑m

r=1(xi,r − xi)
2 ∑m

r=1

(
x j,r − x j

)2
(7)

3.2. Random Forest

Random forest is a method that combines Breiman’s bagging sampling approach and the random
selection of features to create an ensemble learning. Usually, RF is applied to classification and
regression problems [36]. In this method, a collection of decision trees is constructed based on database
replacement sampling. Further, randomization is used to reduce the correlation between the decision
trees and, consequently, reduce the variance of the predictions (i.e., the average of decision trees).
Due to the ensemble creation of several DTs, it is necessary to elect the result by majority voting to
classify each instance. Since each tree acts as a unique classifier, the classification result will be that one
class label more voted among all DTs [37,38]. Figure 5 summarizes the RF workflow.
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Advantages of both RF and DTs are good accuracy and they can be faster than bagging or boosting
approaches. They are simple and easily parallelized. In addition, RF can be used for both classification
tasks and regression purposes and can provide interpretability according to RF size [28–31,39].
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4. Data-Mining Application in Partial Discharge on Hydro Generator

Currently, PDs’ monitoring is carried out through measurement campaigns, in which their
results are analyzed and discussed by engineers and maintainers. However, the trend of continuous
measurement processes is a premise for maintenance based on the equipment condition. The large
amount of data to visualize from PRDPs’ maps or PHAs in this measurement process continues to
become a massive task and can often make it inaccurate.

To improve this task, this article is proposing a methodology that consists of developing a procedure
to aid in the analysis of partial discharges’ data in hydro generators. This proposal is based on a
chain of data-mining tasks to provide standards and classify them among those defined by standards
automatically. Thus, it is possible to gain agility in the process of identification, monitoring, and analysis
of the problems encountered. In the following sections will be described the steps to carry out the
proposed methodology.

4.1. Preprocessing and Database Creation

The partial discharges’ data acquisition is performed by the measurement system (IMA-DP) [40].
The acquired data can be viewed as static maps in the IMA-DP’s own interface. However, PRPDs are
complex for analysis and patterns’ extraction. Therefore, these PDs’ signals are transformed to
the PHA form of partial discharges. PHAs are built according to IEC 60270, IEC 60034-27-2,
and IEEE 1434, grouping 17 points of magnitudes on the horizontal axis for the positive phase
and, consequently, the same division is performed for the negative phase. The grouping of magnitudes
is done on a logarithmic scale. In this way, it is possible to establish information about the intensity
and type of occurrence. Each point of the horizontal axis displays an average of the amount of pulses
at a given axis magnitude. With this information, the curve to determine standards required for the
analysis is formed. The PHAs created in the data acquisition and preprocessing step have no labeling,
that is, no identification of what type of discharge is occurring, a usual way is to visually identify
patterns and then label. This task is massive and requires time and experience from engineers.

4.1.1. Labeling Dataset—Descriptive Task

The descriptive data-mining tasks characterize the general properties of data. Using cluster,
it is possible for referring to a group of similar kinds of objects. Cluster analysis refers to forming groups
of objects that are remarkably like each other but are highly different from the objects in other clusters.
As a data-mining function, clustering analysis serves as a tool to gain insight into the data distribution
to observe characteristics of each cluster. This information can be used for labeling databases, since each
cluster formed is named according to a standard known to the analyst engineer [28–30].

The partitioning methods described in Section 3.1 were used to evaluate how they can be used to
describe PDs’ problems with good accuracy. For this, it was necessary to define how many clusters are
in the dataset. Many times, some specific techniques are used for these definitions, normally when
there is not confidence information about the patterns. However, in this case, the number of patterns
was well known and could be defined by engineers.

4.1.2. Random Forest Training—Predictive Task

The clustering process applied in Section 4.1.1 provides a multi-labeling database organized with
34 attributes and one label for each database line. With this database it was possible to train a RF
for evaluating the new PDs’ measurements along the time. These new measurements were classified
according to the RF model. K-fold cross-validation was used in training and testing steps of RF
models [37,38]. Also, the diagnostic measure for the RF model was the confusion matrix. A confusion
matrix is a way to express how many of a classifier prediction were correct and how many were
incorrect. Three metrics are provided by the confusion matrix, they are:
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(1) Accuracy. This score measures how many labels the model correctly identified out of the total
number of predictions. This is expressed as the percent of predictions that were correct.

(2) Precision is the number of correctly identified members of a class divided by all the times the
model predicted that class.

(3) Recall is the number of members of a class that the classifier identified correctly divided by the
total number of members in that class.

RF generates several decisions tree models, and the response is defined by vote. After the RFs’
models have good accuracy, these models can be used for monitoring PDs online. The RF and clustering
models were trained and tested using the software package RAPIDMINER [41]. Figure 6 shows
schematically the step-by-step methodology of partial discharges’ identification.
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4.2. Trend Analyses and Database Update

Updates of classifying models have been discussed in several applications. In the case of PDs’
monitoring, it is especially important to follow the discharge trend since this phenomenon is natural in
electrical equipment. Here, a method based on R2 is proposed to assist both trend monitoring and
updating the database.

Traditionally, when referring to the determination coefficient it is soon associated with the metric
of how much the prediction error is eliminated when using least squares regression, being commonly
associated with the evaluation of linear regression models [28–30]. Its value varies between 0 and 1
and the closer to these limit values, the better the regression model. The closer to 0, the worse
the representation of the regression model. However, inherent characteristics of R2 in statistical
analyses can be used as a parameter to evaluate the evolution of PHAs and the quality of the database,
besides evaluating the need to update this database.

As it is expected that the PHAs’ behavior changes over time, evaluating this change trend
and the database quality is critical. This can be accomplished by tracking the R2 value, since the
clustering and RF training databases with real data present a predefined characteristic, preferably
being constructed with characteristics of noncorrelation. The low R2 value tends to represent a good
characterization of discharges with time, creating a search space in the database that represents the
nature of discharges’ intensity and frequency in the sampled period. It is not interesting to order data in
an increasing-intensity way because this ordering suppresses the importance of time in characterizing
the problem.

All measured values after the RF model creation must be accumulated according to their sampling
on the training database. From time to time, the R2 of this accumulated base should be calculated,
its increase or decrease trend analyzed, and, from this point on, to make a new database cutout,
again applying clustering and RF creation procedures for creating evaluation models.

5. Results and Discussion

The IMA-DP Software [40] was used to capture signals from couplers and create statistical maps
that present magnitudes by phase. A total of 1724 measurements were collected, according to both
Sections 2.1 and 2.2, representing information from the eight couplers in phase A, of a 350 MW
hydro generator from the Tucuruí Hydro Power Plant. This collection of 1724 measurements passed
by preprocessing, discussed in Section 4.1, where PD measurements were transformed into PHAs.
Thus, database composition comprised 34 rows and 1724 columns. The Tucuruí Hydroelectric Power
Plant has installed power of 8535 MW distributed by 25 hydrogenators (two generators of 22. 5 MW,
12 generators of 350 MW, and 11 generators of 390 MW). It is in the state of Pará–Brazil, and belongs to
Eletrobras Eletronorte (Tucuruí, BrazilCity, Country), electric generation and transmission company.

With these collected data, the preprocessing step was performed for the creation of HPAs on
a logarithmic basis for patterns classification. However, these data did not have labels, that is,
they required an individual assessment to identify the discharge type presented. To make this not
necessary, the descriptive, cluster-based, data-mining task, as proposed in this article, was used.

5.1. Clustering: Tests and Analysis

Continuous clustering models were initially executed to identify how many clusters would be
identified. However, based on the history knowledge of the generator studied, six discharge groups
were chosen, representing five discharge patterns defined by norm and one for low levels of partial
discharge, which did not present a defined pattern.

Eight different clustering techniques were applied in the database collected to find which of these
techniques presents viable results for using in the database label-creation stage. For a better follow-up,
each technique was named according to the description as follows:

• Model01—Bregman Divergence–Squared Euclidian Distance
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• Model02—Euclidian Distance
• Model03—Chebchev Distance
• Model04—Correlation Similarity
• Model05—Cosine Similarity
• Model06—Dynamic Time Warping
• Model07—Kernel Euclidean Distance
• Model08—Manhattan Distance

The evaluation of patterns found by each model was accomplished quantitatively and qualitatively.
Ideal clustering was characterized by minimal intra-cluster distance and maximal inter-cluster distance.
In this work, we used two metrics. The first metric was average cluster distance, which computes
the average between all examples of a cluster and the centroid. Another metric was Davies–Bouldin
Index, in which we searched to minimize the intra-cluster distance and increase inter-cluster distance.
Davies–Bouldin index indicated that clusters with less dispersed and good distance between other
clusters had scores close to zero [28–35,41,42]. Table 1 shows the index values for each model.

Table 1. Clustering measurements.

Evaluation of Clustering Model01 Model02 Model03 Model04 Model05 Model06 Model07 Model08

Average Cluster Distance 0.811 0.811 1.006 1.546 0.814 1.218 0.991 0.816
Davies-Bouldin Index 0.687 0.687 0.720 1.225 0.687 0.865 0.798 0.676

Based on data of Table 1, it is possible to verify that model01, model02, model05, and model08
show better numerical results than model03, model04, model06, and model07, although there was no
threshold value that defined whether a set of centroids by the algorithm would be better or worse.
The evaluation is usually carried out by comparing the indexes of each model. Therefore, it is possible
to state that four models had good clustering characteristics.

To better assess whether the centroids of model01, model02, model05, and model08 were good,
graphic analyses of centroids were performed. Figure 7 presents the analysis of model02 centroids
(with good metrics) and model04 (with bad metrics).
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Figure 7. Partial discharges’ centroids.

Comparing patterns shown in Figure 5 with standards (IEC 60270, IEC 60034-27-2, and IEEE 1434),
it is noted that the centroids (each centroid represents a discharge pattern) found by model02
satisfactorily represented the patterns of each PD that were recurrent in phase “A” of the studied hydro
generator, while for model04 the centroid formed did not achieve satisfactory performance. The pattern
of type Undefined-Slow Discharges, not found by model02, possibly must have been grouped with that
of Internal Discharges, while the External PD-Corona standard was created twice. Another highlight
feature is the pattern formed for Gap Discharges, which was not completely adherent to the standard.



Energies 2020, 13, 5992 13 of 18

Comparing the Gap Discharges’ standards of model02 and model04, it was noted that there was a
sensible difference in the centroids formed in both cases.

Model01, model05, model07, and model08 exhibited centroids’ patterns very similar to model02.
The remaining models had certain inconsistencies in the formed patterns when compared with
standards (IEC 60270, IEC 60034-27-2, and IEEE 1434), like what is presented by model02. Model03
and model06 did not identify the Gap pattern. However, all these models were used for labeling the
database and training and testing an RF-based automatic classifier model.

5.2. Random Forest for Automatic Classification

With labels created by the clustering models, it was possible to train a partial discharges’ classifier
through a random forest. Each database was associated with the label generated by the clustering
model. Thus, eight RFs were trained and tested from a database of 1724 samples. RFs were trained
using 100 random trees with Gini Index criterion for splitting. Validation was done by the K-fold
cross-validation method, assuming K = 10.

Figure 8 shows the results of the eight trained RFs, also presenting the RFs’ models hit percentages
in the test-training stage. It was possible to note that the RFs that were trained with labels generated
by the models that presented better results in the indexes for clustering evaluation also presented hit
percentages higher than 99%, while the hit percentages of RFs that resulted from labels in which the
clustering stage presented lower results also presented lower hit percentages (as, for example, model06
with a hit percentage of 94.28%). One case to be analyzed more carefully is model07. This model
presented initially poor clustering-related indexes. However, in the patterns’ graphical analysis
generated by model07 all patterns of PDs were present.
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Figure 8. Hit results of RFs’ models with labels created by the eight clustering models.

Table 2 presents the results of Precision and Recall for each RF, considering the patterns generated,
being highlighted the worst results in the model identification. This implies the low quality of centroids
generated in model03, model04, and model06. It is important to make it clear that these models did
not feature centroids that characterize gap discharges. Therefore, all cases that were, in fact, of gap
type were classified as any other type of PD. This reduced the RF efficiency classification.
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Table 2. Results of the confusion matrices generated for each case.

External
PD-Corona

Undefined
Low Discharges

Internal
Discharges

Surface
Tracking

Slot
Discharges

Gap
Discharges

Model01
Precision 100.00% 98.49% 100.00% 100.00% 100.00% 100.00%

Recall 91.41% 100.00% 100.00% 100.00% 100.00% 100.00%

Model02
Precision 99.17% 98.76% 100.00% 100.00% 100.00% 100.00%

Recall 92.97% 99.86% 100.00% 100.00% 100.00% 100.00%

Model03
Precision 96.10% 98.36% 98.89% 90.23% 100.00% 100.00%

Recall 98.01% 85.71% 100.00% 98.76% 98.91% 100.00%

Model04
Precision 99.04% 97.75% 96.67% 84.81% 100.00% 96.34%

Recall 94.79% 99.64% 87.88% 98.53% 99.27% 78.22%

Model05
Precision 98.33% 98.34% 100.00% 99.62% 100.00% 100.00%

Recall 92.19% 99.86% 100.00% 98.48% 100.00% 100.00%

Model06
Precision 90.08% 96.77% 91.25% 93.38% 100.00% 100.00%

Recall 90.77% 88.82% 99.79% 93.59% 92.49% 100.00%

Model07
Precision 96.85% 98.63% 100.00% 98.74% 100.00% 100.00%

Recall 97.62% 98.63% 100.00% 98.54% 100.00% 100.00%

Model08
Precision 96.52% 98.63% 100.00% 100.00% 100.00% 100.00%

Recall 92.50% 99.45% 100.00% 99.62% 100.00% 100.00%

5.3. Trend Analysis With R2

For trend analysis, two synthetic databases were created from the original database. The first
synthetic database was created with the characteristic of increase of 5%, 10%, and 15%, emulating a
linear growth for partial discharges’ intensity.

The other database was synthesized to represent a random decrease behavior. This was done
with a random variation increase of 5%. That is, for each database value, a random variation of up to
5% was applied. Similarly, variations of 10% and 15% were performed.

Figure 9 shows the results of the R2 analysis when analyzing the first PHA variable for model02,
for an External-Corona PD. The low value characteristic of R2 = 0.0713 is remarkable. This characteristic
comes from the nature of the data collected for the database creation. Analyzing the R2 characteristics
of the other variables for the corona pattern, the low value of R2 is noted. However, when adding the
characteristic of increased PD intensity, it is possible to notice the growth in the R2 value. With linear
increase, the R2 increases significantly when compared to R2 in the initial database. It is also remarkable
that the case R2 = 0.1314 with random variation is notably higher, with an increase rate of approximately
46% compared to R2 of the original database.
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The traditional method of analyzing PDs is to analyze the partial discharges’ pattern and intensity.
The clustering-random forest-based method automatically evaluates the PD type with a high degree of
accuracy. The intensity is evaluated indirectly since the confidence of the model results are strongly
linked to the database. When the hit rate begins to reduce it is important to update the database
because, for the problem of partial discharges, there is a tendency to vary the intensities of PDs.
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Based on this premise, the R2 analysis captures trends in a numerical index of simple understanding.
Therefore, it is possible to set an optimal time for updating the database.

Figure 10 shows the online use of the proposed method. The monitoring system is divided into
two zones. The Data Acquisition Zone is responsible for the steps for acquiring PD measurements.
In this zone, the steps presented in Sections 2.1 and 2.2 are performed. It is important to note that there
are two stages of noise suppression in the data acquisition area. The first is due to the way in which
the couplers are installed and the second is based on digital filters.
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The Automatic Monitoring Zone was made up of the RF trained in Section 5.2 to classify each
discharge that occurs in the monitored generator, indicating automatically the type of discharge that
occurred. Consequently, the trend evaluation based on R2 provided not only a view of the machine
conditions regarding partial discharges, but it was also used as a trigger to update the database and
RF training.

6. Conclusions

Failures in the electrical insulation of hydro generators’ stator windings are very common
and, due to this factor, there was an increase in the periodicity of partial discharge measurements.
Therefore, there is a need to improve diagnoses established through these machine tests. In this way,
an intelligent tool was developed that will allow the identification of partial discharges’ types
as presented in the standards. This will facilitate a diagnosis by investigating the PD severity.
A methodology based on the determination coefficient was also presented to evaluate the need to
update the database and monitor the trend of partial discharges over time because, according to the
literature, monitoring the equipment history is crucial to establish the health of its electrical insulation.

Using the pulse height analysis plots, which are simpler and facilitate the pattern recognition,
data-mining techniques were applied. This choice of representation in positive and negative curves
was also made because of the large amount of data that would be originally used in the system training.

The use of real data was crucial to ensure the applicability of the method because, in the analyses
performed, all patterns were present, except for the delamination pattern. Eight clustering algorithms
combined with random forest were tested. The clustering models of the type Bregman Divergence,
Distance Euclidian, Cosine Similarity, Kernel Euclidean Distance, and Manhattan Distance obtained
results with hit rates higher than 99% and with analysis of the patterns generated with high similarity
to the standards used. Therefore, these five mentioned methods can be used in combination with RF to
evaluate and monitor partial discharges in hydro generators.

The models based on Chebyshev distance, Correlation Similarity, and Dynamic time warping for
clustering did not have good performance. The hit rates were lower than 97% and discharge patterns
were not all recognized. Therefore, these clustering algorithms are not good options for this type of
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application. R2 analysis proved to be efficient to evaluate the patterns trends, since a 15% increase in
the amplitude of discharges resulted in a 46% increase in the R2 value.

The results presented indicate that the proposed methodology can be applied in monitoring
partial discharges in hydro generators. Clustering algorithms combined with RF allowed us to identify
partial discharge patterns in a very fast manner. It is important to highlight that each generator had
particular characteristics; that is, for each generator one must train its own evaluation models.
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