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Abstract: An accurate lithium-ion battery state of health (SOH) estimate is a key factor in guaranteeing
the reliability of electronic equipment. This paper proposes a new method that is based on an indirect
enhanced health indicator (HI) and uses support vector regression (SVR) to estimate SOH values. First,
three original features that can describe the dynamic changes of the battery charging and discharging
processes are extracted. Considering the coupling relationship between pairs of the original health
indicators, we use the differential evolution (DE) algorithm to optimize their corresponding feature
parameters and combine them to form an enhanced health indicator. Second, this paper modifies the
kernel function of the SVR model to describe the trend of SOH as the number of cycles increases,
with simultaneous hyperparameters optimization via DE algorithm. Third, the proposed model
and other published methods are compared in terms of accuracy on the same NASA datasets.
We also evaluated the generalization performance of the model in dynamic discharging experiments.
The simulation results demonstrate that the proposed method can provide more accurate SOH
estimation values.

Keywords: lithium-ion battery; state of health; estimation; improved support vector regression;
differential evolution

1. Introduction

Lithium-ion batteries are widely applied in many fields, which range from automobiles to ships
and even satellites due to their high energy density, long lifespan, and other excellent characteristics [1,2].
The safety and reliability of lithium-ion batteries have always been of concern in their applications.
The main risks are follows. Improper application can cause the battery temperature to rise or the
battery to catch fire or even explode. Overcharge and overdischarge can cause changes in the material
properties of the battery that result in irreversible capacity loss, reduced performance, and shortened
lifetime. As the charging and discharging processes proceed, the performance between single cells
in the battery pack gradually becomes unbalanced, which will shorten the lifetime of the battery
pack [3,4]. Battery failures can result in failure of the electronic equipment.

As a discipline that is designed to assess battery life and thus to ensure the proper functioning of
electronic devices or electronic systems, battery prognostic and health management (PHM) has recently
been widely applied due to the prominence it has demonstrated in terms of various performance
indicators [5]. Considering the influences of the ambient temperature and the load conditions on
battery performance, it is important to accurately assess the battery state of health (SOH), which, as a
critical indicator of battery aging levels that is based on battery characterization parameters, can be
used as a key indicator of the remaining useful life (RUL) of a battery and facilitates the accurate
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evaluation of the entire system [6]. Nevertheless, due to the complex electrochemical reaction that
occurs inside the battery, the SOH is not directly available.

In the past few years, various SOH estimation methods have been proposed. First, experimental
data, such as the voltage, current, and impedance, can be extracted from the battery cycle processes.
In addition, lithium batteries may differ in terms of their discharge methods according to their
applications. However, the charging processes tend to be consistent. Therefore, we can utilize the
charging processes of lithium batteries and various algorithms or models to realize SOH estimation.
Therefore, considering various algorithms and models, the SOH estimation methods for lithium
batteries can be roughly classified into three categories: empirical or semi-empirical methods, methods
that are based on electrochemical/physical models, and data-driven methods [7–11].

Various empirical or semi-empirical methods have been proposed: Zhong W et al. [12] used the
Thevenin model with battery polarization to simulate internal changes in the battery, but their simple
model has substantial limitations; in [13] the authors utilized a second-order equivalent circuit model
(ECM) for estimation; in [14] a standard equivalent circuit model was used, and then a genetic algorithm
was employed to obtain its internal resistance. While the empirical models are easy to implement,
the accuracy of methods of this type is limited by the robustness of the circuit models. The long-term
trend prediction of the autoregressive synthesis (ARI) model was used as the capacity observation true
value for the prediction stage of the SRCKF (square root cubature Kalman filter) algorithm to model
the nonlinear degradation process of a lithium battery in [10]. Electrochemical-based methods can
accurately simulate the electrochemical reactions that occur inside the batteries, and researchers will
use mathematical methods to simplify them. These methods mainly use electrochemical impedance
spectroscopy during battery cycling to conduct SOH estimation [15,16]. These models can also lead to
an increase in the computational costs while yielding accurate results. Therefore, they are not suitable
for SOH estimation processes.

The data-driven methods rely mainly on the intrinsic analysis of historical data, where an in-depth
understanding of the principles of electrochemistry is not required [17]. These models typically use
the extracted or processed features as inputs and output a battery capacity degradation curve. In the
data-driven methods, many methods that are based on adaptive state estimation have been utilized for
SOH prediction processes, such as the Kalman filter (KF) algorithm [7,8]; in [9] the authors proposed
an improved PF algorithm, which was used to map the capacity degradation to the SOH estimate,
and proved the effectiveness of the method by using multiple testing results. However, these methods
also have limitations: over time, particle degradation will occur. To improve the prediction accuracy of
the model, it is necessary to modify the model and to process or enhance the experimental data. Among
the data-driven methods, health indicators such as the capacity have been widely extracted and utilized
for battery SOH or RUL prediction: Maitane et al. [18] designed a new differential voltage curve for
SOH prediction; Wu et al. [19] employed a polynomial neural network (NN) which can be regarded
as a black-box with parameters; the authors of [20] utilized the fusion part incremental capacity and
Gaussian process regression (GPR) to estimate the SOH; in [21] the authors applied Dempster–Shafer
theory and the Bayesian Monte Carlo method to develop a new method for SOH estimation; In [22]
relevance vector machine (RVM) and particle filtering were used to describe nonlinear relationships
in dataset. Zheng C et al. [23] used the long short-term memory network to estimate the SOH for
electric vehicles.

However, most feature-based data-driven methods simply use signal processing methods to
process single health indicators without considering the possible coupling relationships between the
various health indicators. In addition, modification of the model affects the accuracy of the prediction.
Moreover, most available optimization programs often fall into locally optimal solutions due to the
prevailing difficulty of adjusting the hyperparameters in a data-driven method. Hence, a differential
evolution (DE) algorithm is used here for parameter optimization and a hybrid model for SOH
estimation is proposed that is based on the DE algorithm and an improved support vector regression
(SVR) algorithm. The main contributions of this paper are as follows:
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(1) Dynamic health indicators are extracted from the charging curves. The SOH prediction accuracy
is regarded as the fitness of the evolution algorithm. Differential evolution algorithms are used to
obtain the weights of the health indicators, and health indicators and their weights are combined
to form an enhanced health indicator for the estimation of battery SOH.

(2) A DE algorithm is used to form an enhanced health indicator (HI) and hyperparameters in an
improved SVR method. The article also analyzes the improvement in the prediction accuracy of
the enhanced health indicator compared to the original health indicators.

The remainder of this article is organized as follows: Section 2 presents the background information;
Section 3 extracts the health indicators from charging and discharging curves; Section 4 presents the hybrid
model framework, the improved SVR method, and the SOH estimation process; Section 5 compares
estimation performances of various methods; and the final section presents the conclusions of this study.

2. Related Works

Compared with neural network, the SVR is a more effective machine learning approach in which
the decision function is highly simple to establish. The computational complexity of the iterative
solution relies on the number of support vectors, rather than the dimension of the sample space, in
contrast to other machine learning methods. Therefore, it avoids the “disaster of dimensionality” and
enhances the robustness of the model. Hence, it is popular with researchers in this field. For example,
in [24], a non-iterative estimation model and a multistep estimation model are proposed, which use
the energy efficiency as a model input; Liao et al. [25] utilized the particle swarm optimization (PSO)
algorithm to optimize the hyperparameters of SVR; Wei et al. [26] regarded the capacity as the state
variable in a simulation of the battery aging mechanism and effectively utilized PF to predict the
battery SOH; and in [27] the authors proposed a novel method for SOH estimation that integrates
classification and regression attributes of the support vector.

2.1. Description of the SVR Model

Since SVR excels in describing the nonlinear relationship between inputs and outputs, it is
perfectly suitable for SOH estimation [28,29]. Suppose we have a battery dataset,

{
(x1, y1), . . . ,

{
xi, yi

}}
,

where xi ∈ Rn is a feature vector and yi is the target output. An SVR function is defined as:

f (xi) = wTφ(xi) + b (1)

where f (xi) denotes the output values, φ(xi) is a nonlinear mapping function, and w and b are the
parameters to be determined. The objective of the regression is to make the output of the model as
close as possible to yi. After a series of formula transformations, the standard form of support vector
regression is derived:

min
1
2

wTw + C
n∑

i=1

(ξi + ξ∗i ) (2)

with the constraints: 
wT f (xi) + b− yi ≤ ε+ ξi
yi −wT f (xi) − b ≤ ε+ ξ∗i
ξi, ξ∗i ≥ 0, i = 1, 2, . . . , n

(3)

where C denotes a penalty parameter, ε denotes a soft margin that is specified by the user, ξi denotes the
training error below ε and ξ∗i denotes the training error above ε. Then the original SVR function becomes:

f (xi) =
1
2

n∑
i=1, j=1

(βi − β
∗

i ) ·K(xi, x j) + b (4)
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where βi and β∗i are Lagrange multipliers and K(xi, x j) = exp(−
∣∣∣∣∣∣xi − x j

∣∣∣∣∣∣2) is the Gaussian radial basis
function kernel.

2.2. Description of the DE Algorithm

Differential evolution is a parallel optimization algorithm that relies on swarm intelligence, which
guides the optimization search by mimicking the heuristic group intelligence that is generated by
cooperation and competition among individuals in the biological group [30].

The process of the DE algorithm is as follows: first, M individuals are randomly generated, each of which
consists of n features and is used as the 0th generation population. In the iterative process, the differential
strategy is used to realize individual mutation. The common differential strategy is as follows:

M(g + 1) = Xr1(g) + F · [Xr2(g) −Xr3(g)] (5)

where M(g + 1) is the g + 1 generation of individuals who results from the new mutation,
Xr1(g), Xr2(g), Xr3(g) represent individuals in the randomly selected gth-generation population,
and F is the mutation factor, which is between 0 and 1. Then, a number that is between 0 and 1 is
randomly selected for the crossing operation:

f (xi) =
1
2

n∑
i=1, j=1

(βi − β
∗

i ) ·K(xi, x j) + b (6)

where cr is a cross indicator. Next, the greedy algorithm is used to select individuals to enter the next
generation:

X(g + 1) =
{

U(g + 1) if f (U(g + 1)) ≤ f (X(g))
X(g) otherwise

(7)

where f (x) is a fitness function; in this paper, the fitness function is the mean square error of the SVR
prediction results.

3. New Health Indicator for SOH Estimation

In this section, the internal electrochemical reaction of the lithium battery is analyzed so that
effective and suitable health indicators can be selected for the accurate modeling of the degradation
phenomenon of batteries, and the accessibility of the selected features in tests will be considered. Three
datasets were obtained from the NASA database for research, based on which the following four
subsections will focus on the introduction of SOH, experimental data analysis, feature extraction from
the charging curves, and feature analysis that is based on grey correlation analysis (GCA).

3.1. Definition of SOH

SOH, which is an indicator that quantitatively describes the battery state of health, characterizes
the ratio of a performance parameter to a nominal parameter after a period of use of the battery.
However, no uniform definition has been proposed except for indicators and concepts that were
established in [30] for describing it. In this paper, the ratio of the current capacity to the nominal
capacity is used to represent SOH, as expressed in Equation (8).

SOHi =
Ci
C0
× 100% (8)

where SOHi represents the SOH value at the ith cycle, Ci represents the capacity at the ith cycle, and C0

represents the initial capacity. As charging and discharging progress, the capacity curves show an
overall degradation trend.
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3.2. Experiment Data Analysis

To observe the declining trend of SOH under various conditions, it is critical to conduct cyclic
charge-discharge experiments. The dataset was provided by the Prognostics Center of Excellence at
NASA Ames [31]. The three 18,650 LIBs numbered 05, 06, and 07 were produced by Idaho National
Laboratory. The rated capacity and voltage of each battery are 2.2 Ah and 3.7 V [32], respectively.
Three batteries were run through three operations (charging, discharging, and measuring impedance)
at 24 ◦C: first, the batteries were charged at a constant current of 1.5 A until the voltage reached 4.2 V.
Then, they were charged at a constant voltage until the current dropped to 20 mA. Next, the batteries
were discharged at a constant current of 2 A until the voltage reached the discharge cut-off voltage.
The conditions are enumerated in the Table 1, and their discharge cut-off voltages are inconsistent.
Figure 1 shows the capacity aging curves of these three batteries.
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Figure 1. Battery capacity degradation curves as functions of the number of cycles.

The byproduct may dissipate after the battery completes a charge-discharge cycle. Therefore,
the capacity curves fluctuate in some cycles. Continuous switching between charging and discharging
cycles may cause a momentary increase in battery capacity [33]. Hence, the battery capacity will
increase in the next cycle compared with that in the previous cycle. This phenomenon is called capacity
regeneration [34]. It will affect the precision and accuracy of SOH estimation [22]. To solve the problem
and reduce the estimation error, we set one parameter of the kernel function to represent the capacity
regeneration in Section 4.2.

Table 1. Experimental conditions of batteries 05, 06, and 07.

Battery
Number

Conditions

Charge Cutoff
Voltage (V)

Discharge Cutoff
Voltage (V)

Charging
Current (A)

Discharge
Current (A)

Temperature
(◦C)

05 4.2 2.7 1.5 2 24
06 4.2 2.5 1.5 2 24
07 4.2 2.2 1.5 2 24

3.3. Electrochemical Reaction Analysis and Features Extraction

Electrochemical reaction analysis shows that lithium ions, while charging, are forced by the
external current to move from the cathode to the anode, thereby resulting in a negative concentration
gradient in both electrodes, which increases in the direction of the current, peaks in the final stage of
the constant current (CC) mode, and subsequently decreases to a minimum with a current drop at the
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constant voltage (CV) stage. As the battery ages, the charge quantity that is available on the cathode
material will gradually decrease. Moreover, the growth of the solid electrolyte interface (SEI) layer will
cause the internal resistance to continue to increase as the battery ages, thus, will reduce the duration
of the CC charge mode. This analysis also shows that when discharging, lithium ions naturally move,
in reverse, from the anode to the cathode to generate current, and the reduction of the voltage platform
is mainly affected by ohmic resistance and polarization resistance. Therefore, battery aging leads to the
increase of the polarization phenomenon and the decrease of the discharge time of the battery, where a
relationship can be identified between the discharge time and the number of cycles.

Consider battery No. 06 as an example. Due to the inconsistency of the discharging modes under
practical operating conditions, we focused on extracting features from the charging curves that reflect
the battery degradation. In a later subsection of this article, the higher effectiveness of this approach
compared to using the numbers of cycles as model inputs is discussed. According to Figure 2, during
the charging phase, the time that the battery spends in CC mode decreases as the number of cycles
increase, and the curve becomes steep.
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charging curves.

According to the above analysis, the internal electrochemical reactions of a lithium battery are
closely associated with the battery charging mode. Therefore, to improve the accuracy of SOH
estimation, three features (the constant current charging time (CCCT), the constant voltage charging
time (CVCT), and the time duration of the fixed segment (FST) that reflect these dynamic changes are
extracted as follows:

(1) CCCT: This is the time duration of the CC mode, namely, the amount of time for which the battery
is polarized. According to the charging curves of batteries, the CCCT decreases as the cycle
life increases.

(2) CVCT: CV mode plays a role in eliminating polarization during the battery charging process.
According to Figure 3b, the jitter of the CVCT curve of battery 06 is severe. According to the
experimental results, its root means square error (RMSE) is indeed larger than those of the other
two batteries, but it is smaller than those of the other compared methods.

(3) FST: This is the time that it takes for a battery to experience a fixed voltage interval during charging
process. We focus on the constant current charging process. According to the experimental
results, if only the slope of a point on the curve is considered and used as the input of the model,
the obtained results will be affected by various factors (current fluctuations, ambient temperature,
testing errors, etc.). The selection of this point such that high accuracy of the model is realized
will be difficult. In the constant current charging process, the energy that was charged into the
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battery is proportional to FST. Previous research indicated that FST showed a downward trend as
the battery was ageing.

Graphical representations of the selected features over many battery cycles are shown in Figure 3.
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3.4. Feature Analysis Based on GCA and Proposal of the Enhanced Health Indicator

To evaluate the performance of the extracted health indicators, it is necessary to determine the
correlations between the original health indicators and the battery SOH. Therefore, this paper used the
grey correlation analysis (GCA) method [35] to assess the relational grades. The detailed procedure of
the GCA algorithm is as follows:

For a specified dataset, first, set the reference sequence as Y =
{
y(k)

∣∣∣k = 1, 2, . . . , n
}
. Then,

determine comparative sequences Xi =
{
xi(k)

}
, where i represents the sequence number and y(k) =

SOH(k). In this case, Y denotes the SOH sequence, and Xi represents the extracted features sequence.
Then, calculate the relational coefficients:

ξi(k) =
min

i
max

k

∣∣∣∣∣y(k) − xi(k)
∣∣∣∣∣+ρ ·min

i
max

k

∣∣∣∣∣y(k) − xi(k)
∣∣∣∣∣∣∣∣∣∣y(k) − xi(k)

∣∣∣∣∣+ρ ·min
i

max
k

∣∣∣∣∣y(k) − xi(k)
∣∣∣∣∣ (9)

where ρ denotes the identification coefficient. To make the final result accord with people’s habits,
namely, to make the length of distribution interval of ξi(k) not less than 0.5, ρ should be between 0 and
1. In this paper, we chose ρ = 0.5. After that, we calculated the relational grades ξi(k).
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According to the above GCA calculation, as presented in Table 2, a high relational grade is
observed among the three features, whereas strong inconsistency of the relational grades is observed
between the characteristics of the same battery and SOH. By comparison, as presented in Table 2,
the degree of correlation between the cycle numbers and SOH is the lowest among these features. It is
inferred that more accurate SOH estimation results will be obtained if the extracted features are used
as model inputs.

Table 2. Grey correlational grades between features and battery state of health (SOH).

Features
Battery No.

05 06 07

CCCTN and SOH 0.7940 0.7862 0.8209
CVCTN and SOH 0.8091 0.7534 0.8274
FSTN and SOH 0.8543 0.7911 0.9037

Cycle number and SOH 0.5009 0.5015 0.5008

In addition, we calculated the relational grades between each two of the three features, which we
used to describe the coupling relationships of the three features.

According to Table 3, relational grade between any two features exceeds 0.6, and most of them
exceed 0.7, thereby indicating that there are indeed coupling relationships of the three features.
Therefore, to take advantage of this trait, the new concept of an enhanced health indicator is proposed,
as expressed in Equation (10).

Enhanced HI = a ·CCCTN + b · (1−CVCTN) + c · FSTN (10)

where a, b, and c are the corresponding features parameters, which will be optimized together with the
parameters of the kernel function. Subscript N indicates that the variable is normalized. The CVCT
curve exhibits an upward trend. To increase the accuracy, we subtract 1 from the normalized CVCT so
that the processed feature curve shows a similar downward trend to the other feature curves. In several
references [34–36], HIs were used directly to estimate SOH. Tests are conducted in Section 5 on which
the estimated values that were obtained using original HIs and the enhanced HI are compared in terms
of accuracy.

Table 3. Relational grades between features.

Features
Battery No.

05 06 07

CCCTN and CVCTN 0.6818 0.6441 0.7101
CCCTN and FSTN 0.7868 0.8687 0.7490
CVCTN and FSTN 0.8169 0.6955 0.9219

4. Proposed SOH Estimation Algorithm

This part discusses the proposed SOH estimation algorithm. The framework of the algorithm
is described in Section 1, the adjustments to the proposed model are presented in Section 2, and the
procedure of SOH estimation method is introduced in Section 3. Since the hyperparameters of the
model and the features coefficients are difficult to determine, a hybrid differential evolution support
vector regression algorithm (DE-SVR) is proposed for obtaining accurate SOH estimation results.

4.1. Framework of the Proposed Method

First, the sequence x = [x1, x2, . . . , xn] is represented as a time series. In [37] and [11], the number
of cycles is taken as input. As discussed previously, the relational grade between the number of
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cycles and battery SOH is lower than that between the features that are selected in this paper and the
battery SOH. The enhanced HI is selected as the model input, namely, the input can be expressed
as x = [x1, x2, . . . , xn] = [HI1, HI2, . . . , HIn]. The input sequence will be input into the trained model,
and an error analysis will be conducted on the estimation results to evaluate the accuracy and robustness
of the method.

4.2. Adjustments to the SVR Model

The actual SOH curve reflects the capacity regeneration phenomenon that occurs during battery
cycling. To make the SOH prediction curve as close as possible to the actual curve, we must minimize
the difference between the predicted output and the actual output. The kernel function largely
determines the characteristics of the output curve. It is necessary to reasonably modify the form of the
Gaussian kernel function to adapt to the volatility of the SOH curve. Therefore, this section aims at
modifying the kernel function of the SVR, which is presented as Equation (11). The first term in the
equation is used to represent the overall degradation trend of the battery SOH. The second term is
used to simulate small fluctuations.

K(xi, x j) = β1 · exp(−g1·
∣∣∣∣∣∣xi, x j

∣∣∣∣∣∣2) + β2 · exp(−g2·
∣∣∣∣∣∣xi, x j

∣∣∣∣∣∣2) (11)

where g1 and g2 are the parameters that must be optimized.

4.3. SOH Estimation Procedure

The SOH prediction procedure is illustrated in Figure 4: first, multiple individuals are generated
by a DE algorithm and each contains seven parameters, four of which are hyperparameters and three
are feature coefficients. As described in the background section, mutations and other operations are
performed on the individuals. Second, in calculating the individual fitness, we regard the estimation
error as the fitness of the individual: once the experimental data have been collected, they will be
divided into three parts for training, validation, and testing. Using this generation of individuals,
we can build the enhanced HI according to Section 3.4 and input it into the model for training. Then,
the validation set is used to improve the accuracy, and its error is regarded as the fitness of the
individual. Third, after the iteration is terminated, we use the trained model and the evaluate set to
test the generalization performance and robustness of the model. In this paper, the root mean square
error (RMSE), as expressed in Equation (12), is used as the evaluation criterion.

RMSE =

√√√√√ n∑
i=1

(yi −
∧
yi)

2

n
(12)

The population was initialized by selecting NP = 20, F = 0.6, and CR = 0.8. Repeat the calculation
of the fitness until the algorithm terminates (maximum number of iterations = 500). The optimal
individual that is obtained at this time is used to define the optimal parameters of the model.
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Figure 4. The SOH estimation procedure.

5. Simulation Analysis

The RMSE (see Equation (12)) and mean absolute percentage error (MAPE) (see Equation (13))
were used in this paper for error analysis. On this basis, the estimation results of SOH will be displayed
and analyzed in this section, with batteries 05, 06, and 07 considered as examples.

5.1. SOH Estimation Results

First, to ensure satisfactory prediction accuracy, we chose the first 90 cycles as the training set,
the 91st–120th cycles as the verification set, and the remaining cycles as the test set. Figure 5 presents
the SOH estimation values and the estimation errors for batteries No. 05, 06, and 07; Figure 5a,c,e
correspond to battery SOH prediction processes for the three tested batteries.

According to Figure 5a,c,e, even in the presence of battery capacity regeneration (the enlarged
area in the figure), an accurate SOH estimate can still be obtained via the proposed method. In light of
the relatively consistent trend between the prediction curves and the actual curves, it can be proved
that the improved model realizes satisfactory performance in fitting the battery capacity degradation
curves. Although the initial capacities of these three batteries differ, the initial SOH values are 100%.
According to Figure 5b,d,f, all the errors are less than 0.02, which prove the high accuracy of the
proposed model for battery SOH estimation. Finally, Table 4 presents the RMSEs and MAPEs of SOH
prediction values of the dataset in the testing phase for four tests.

Table 4. Root means square errors (RMSEs) and mean absolute percentage errors (MAPEs) of the SOH
estimation errors for batteries 05, 06, and 07.

Battery No. 05 06 07

Criterion MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE

Proposed
method

0.45 0.0036 0.47 0.0057 0.38 0.0039
0.23 0.0024 0.98 0.0077 0.40 0.0041
0.40 0.0033 1.29 0.0092 0.13 0.0029
0.22 0.0023 1.19 0.0087 0.27 0.0033
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5.2. Increased Accuracy with the Enhanced Health Indicator

As discussed in Section 3.4, we used battery No.06 as an example to demonstrate the advantages
of using enhanced HI. We utilized the same improved hybrid model for testing, with the only difference
being that the inputs to the model were the three original features and the enhanced health indicator.
Figure 6a presents the SOH estimation process with the original HIs used as model inputs. It is
observed that the obtained curve in terms of the fitting trend, is not as accurate as that obtained via the
proposed method. By contrast, higher accuracy is observed when the enhanced HI used, according
to the SOH estimation errors that are plotted in Figure 6b when two HIs are used as model inputs.
Therefore, the use of enhanced HI can yield more accurate SOH estimated values.
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5.3. Comparison with Other Models

We now compare the proposed method with other methods. For example, in [36] the authors
proposed an algorithm that is based on PSO and SVR for estimating battery SOH, in which the battery
capacity is selected as the feature and the data of NASA are used as well. Therefore, in this section,
algorithms that are based on PSO and SVR are used in experiments to reproduce the prediction process.
Each method is tested 50 times on each of the three batteries, and a box diagram is obtained as shown
in Figure 7, according to which the method in [36] is outperformed by the method that is proposed in
this paper in terms of accuracy, even though the difficulty of accurately measuring the battery capacity
during the test is not considered. For battery No. 06, both methods have unsatisfactory robustness.
This can be attributed to a feature of battery No. 06, namely, the TD feature of the battery fluctuates
violently in the first 60 cycles. Additionally, the method that is proposed in this paper exhibits fewer
overfitting phenomena, and the robustness of DE-SVR is higher than that of PSO-SVR.
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We compared the prediction accuracy of the proposed model, in terms of RMSE and MAPE,
with those of nine other published models (see Table 5). These methods all used the same NASA
data set. All these methods are based on Gaussian process regression and modify the covariance
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function to estimate SOH. Table 5 presents the estimation performances for lithium-ion battery No. 06
of 10 methods.

MAPE =
1
N

N∑
i=1

∣∣∣∣∣∣∣ yi −
∧
yi

yi

∣∣∣∣∣∣∣×100% (13)

Table 5. Estimation performances of 10 methods for battery No. 06.

Methods
05 06 07

MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE

GPR 12.1 0.1303 27 0.2251 19.2 0.2070
LGPFR 23 0.0171 10.3 0.069 1.9 0.0159
QGPFR 1.9 0.015 7.7 0.0512 5.4 0.0552

CLGPFR 1.6 0.0136 10.2 0.0686 1.7 0.0173
CQGPFR 2.1 0.018 29 0.2044 2.6 0.0269
SMK-GPR 1.65 0.0138 10.6 0.0708 1.91 0.0188
P-MGPR 1.55 0.0136 2.96 0.0212 1.09 0.0114

SE-MGPR 1.38 0.012 2.93 0.0211 1.02 0.0107
RTPF 0.76 0.0068 1.25 0.0093 0.43 0.0044

Proposed method 0.23 0.0024 0.15 0.0055 0.13 0.0029

According to Table 5, the RMSEs of batteries No. 05, 06, and 07 that were obtained using the
DE-SVR model are lower than those using other published methods. For example, the smallest
estimation MAPE and RMSE of the published methods on battery No. 05 are 0.76% and 0.0068,
while those of the proposed method are 0.23% and 0.0024. The smallest MAPE and RMSE of the
DE-SVR model are only 0.13% and 0.0024, respectively.

5.4. Model Validation under Dynamic Working Conditions

The NASA data set is built on the premise of a constant current discharging process. This condition
may be difficult to satisfy in practical application scenarios. Therefore, this paper used an 18650
lithium-ion battery that is labeled as NCR18650PF and manufactured by Panasonic. The battery has a
rated capacity of 2.7 Ah. The nominal voltage is 3.6 V, and the highest and lowest cut-off voltages are 4.2
and 2.5 V, respectively. Figure 8a shows the equipment that was used for the battery test experiments.
It includes a Kikusui PWX1500MH power supply, and a PLZ-4WH programmable electronic load for
controlling the discharging current, a Yokogawa paperless recorder for data monitoring and storage,
and a thermal chamber. Figure 8b shows the dynamic discharging current sequence. The current
ranges from 0.75 to 2.25A and each time segment is 5 min. In addition, the sequence is randomized
in order to simulate the actual working conditions. It is worth mentioning that we adopted NASA
dynamic operating conditions [38], to ensure that the battery can perform the complete discharging
process each time before it reaches the end of life (EOL).

The charging process is as follows: the battery conducts constant current charging with a current of
2 A until the voltage reaches 4.2 V. Then, it conducts constant voltage charging until the charging current
drops below 20 mA. The complete discharging process is as follows: the battery is discharged at the set
current sequence. If the cut-off voltage has not been reached when the current sequence is completely
performed, the battery will continue to be discharged at 0.75 A until the cut-off voltage is reached.

After experiments and calculations, Figure 9 shows the SOH estimation results that were obtained
under dynamic discharging conditions. First, compared with the estimation error during constant
current discharging, the error that is obtained via dynamic current discharging is larger, but it is still
less than 4%. Therefore, the estimation results that are obtained in this case are still highly reliable;
hence, the model that is proposed in this paper exhibits satisfactory generalization performance on
various data sets. This phenomenon may occur because the quality of the data set is poor due to errors
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that are caused by the wire, which causes the jitter of the curve to be more severe, and the prediction
results to be not as accurate as those shown in Figure 5.
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6. Conclusions

This paper proposes an improved SVR algorithm for estimating SOH and its highlights mainly
include the following: (1) it extracts features that reflect dynamic changes during battery charging
processes, which, in combination, serve as inputs for SOH estimation; (2) it uses the GCA method to
analyze the correlations of these features with the battery capacity and proposes the enhanced HI for
improving the accuracy of the model; (3) it uses the DE method to optimize the hyperparameters of the
improved SVR and the parameters of the enhanced HI; (4) the model that it presents has been validated
on NASA’s battery data; (5) the SOH estimation results demonstrate low error and strong robustness in
cyclic aging tests and accordingly, demonstrate that DE-SVR that is based on the enhanced HI realizes
higher accuracy than that based on the original HIs. For other models, such as Gaussian regression
models and the particle method, the proposed method can realize higher estimation precision; and (6)
to evaluate the generalization performance of the model on other datasets, the SOH estimation results
under dynamic current discharge conditions are also calculated in this paper. According to the above,
the proposed hybrid model can accurately estimate battery SOH values. We will continue to optimize
the model to lower its computational cost.
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Abbreviations

SOH Battery State of Health
HIs Health Indicators
SVR Support Vector Regression
SOC Battery State of Charge
RUL Battery Remaining Useful Life
LIB Lithium-Ion Battery
CC Battery Constant Current Charging Mode
CV Battery Constant Voltage Charging Mode
FST Time Duration of a Fixed Segment
GPR Gaussian Process Regression
LGPFR Linear Gaussian Process Functional Regression
QGPFR Quadratic Polynomial Gaussian Process Functional Regression
CLGPRF Combination Linear Gaussian Process Functional Regression
CQGPRF Combination Quadratic Polynomial Gaussian Process Functional Regression
SMK-GPR Spectral Mixture Kernel Gaussian Process Regression
MGPR Multiscale Gaussian Process Regression
RTPF Real Time Particle Filter
EOL End of Life
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