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Abstract: In most demand response (DR) based residential load management systems, shifting a
considerable amount of load in low price intervals reduces end user cost, however, it may create
rebound peaks and user dissatisfaction. To overcome these problems, this work presents a novel
approach to optimizing load demand and storage management in response to dynamic pricing using
machine learning and optimization algorithms. Unlike traditional load scheduling mechanisms,
the proposed algorithm is based on finding suggested low tariff area using artificial neural network
(ANN). Where the historical load demand individualized power consumption profiles of all users
and real time pricing (RTP) signal are used as input parameters for a forecasting module for training
and validating the network. In a response, the ANN module provides a suggested low tariff area to
all users such that the electricity tariff below the low tariff area is market based. While the users are
charged high prices on the basis of a proposed load based pricing policy (LBPP) if they violate low
tariff area, which is based on RTP and inclining block rate (IBR). However, we first developed the
mathematical models of load, pricing and energy storage systems (ESS), which are an integral part
of the optimization problem. Then, based on suggested low tariff area, the problem is formulated
as a linear programming (LP) optimization problem and is solved by using both deterministic and
heuristic algorithms. The proposed mechanism is validated via extensive simulations and results
show the effectiveness in terms of minimizing the electricity bill as well as intercepting the creation
of minimal-price peaks. Therefore, the proposed energy management scheme is beneficial to both
end user and utility company.

Keywords: demand side management; mixed integer linear programming; artificial neural network;
Inclining block rate; rebound peaks

1. Introduction and Motivation

The demand of electricity continues to rise due to a rapid increase in consumption trends.
The future predictions with the current demand of electricity are very alarming because of the
immense increase in the power demand. It is therefore observed that current energy resources seem
insufficient to fulfill the sustainable energy goals with reduced CO2 emissions. According to the
report of the International Energy Agency (IEA), the power demand rises by 1.3% per year to 2040 [1].
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Furthermore, it is also observed that by 2050, the world’s power demand is expected to increase
50% [2,3]. In the meantime, due to the large depletion of conventional energy resources and existence
of older control technologies, it is difficult to manage distributed and variable energy resources
(VERs). Thus, it is desirable to utilize and implement energy management and control technologies to
efficiently manage residential load with the integration of VER to alleviate burden on conventional
energy resources. On the other hand, to protect the environment and climate change from heavy
CO2 emissions due to massive utilization of conventional energy resources, it is required to either
optimize the energy consumption trends or to integrate VER or the combination of both [4]. Because,
studies show that it is more beneficial to develop hybrid energy management solutions [5]. In doing so,
the load management problem can also be solved at the micro-grid level by investigating the energy
consumption of individual residential consumers rather than aggregated demand.

A new electricity grid called Smart Grid (SG) has introduced market based DR programs to
facilitate a home energy management system, with the help of two way communication between
utility and consumer [6]. Electricity generation companies as well as the regulatory agencies in a
day-ahead market in an interconnected fashion are constantly making investments in developing
smart electricity structures that will decrease power consumption with flattening of the demand
peaks [7]. Flattening of demand, which is also known as peak shaving, implies the reducing or
shifting of the load during on-peak to off-peak hours [8]. For this purpose, different DR programs
including price (i.e., real time pricing, day-ahead pricing, time of user pricing, critical peak pricing) and
incentive based are being adopted by numerous researchers to help in managing the power demand
by taking into consideration user welfare objective. In literature, different types of dynamic pricing
mechanisms have been discussed, for example, References [9–13]. In Reference [11], an incentive-based
pricing algorithm is proposed to motivate consumers to shift their demand from on-peak to off-peak
hours with the objective of cost reduction. Another work reported in Reference [13] used a history
based pricing algorithm that takes optimal pricing decision by learning the user demand behaviors.
Other works [14–18] discussed different game-theoretic algorithms for demand side management
in smart grids. By taking data sets of moderate sizes, the effectiveness of proposed works have
discussed. Recently, several pricing models based on a user’s optimal demand as a function of price
are also discussed in References [19–21]. In some previous studies, several control techniques have
been discussed to schedule the power demand for peak reduction in the distribution system [12].
These include RTP based on a simulated annealing algorithm [12], load shaping using energy storage
system [10] and multi-unit auction algorithm [22], and so forth. Other researchers have worked
on the peak shaving without providing any pricing incentives to the customers [23–26]. Another
work provides a solution to load management problem [25,26] using an incentives based threshold
policy. Furthermore, some pricing algorithms [27,28] focus on revenue maximization rather than peak
shaving. In conclusion, the most of the literature [2–28] discussed the load management problems
using optimization based control mechanisms by taking into consideration user and utility objectives.
Some works focused on the consumer side through providing various incentives to encourage them to
participate in DR programs. Others focused on the utility side to flatten the high peaks through the
involvement of end users. However, due to dynamic power consumption trends and lack of motivation
to adopt on-site solar powered energy sources, the residential load management problem still needs to
be considered in such a way to facilitate both utility and end users. Furthermore, ANNs have been
large-scale implemented in power system [29]. Many works have been reviewed on advantages and
drawbacks of using of ANNs applications in power system in contrast with the other conventional
methods. Major aspects of the ANN is of planning, expansion, development and load forecasting of
the power system. ANNs are very fast and capable of direct coupling with electrical system to data
acquisition without time constraints. A recent study shows that short-term load forecasting makes up a
greater percentage (62%) of the research work. Another problem related to lack of participation of end
users in DR, which is identified from the literature, is the homogeneous electricity tariff. Because the
customers who receive services from single distributed system operators are assumed to receive a
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specific price signal rather than different for each user. Technically, it is also impossible to provide a
separate electricity price signal to each individual user, depending on consumption level. In a response,
the end users maintaining a balanced load consumption profile would be effected. In the contract,
the other users would be charged unfairly without considering other objectives. So, there needs
to be a mechanism to provide fair electricity pricing tariffs to all participating customers without
disturbing the objectives of other customers. Thus, by keeping in view the aforementioned problems
and limitations, we have developed a novel load management and pricing mechanism to facilitate
utility and end users, particularly. The proposed work is based on a DSM mechanism to manage the
residential energy demand with the twofold objective; providing a customized price to each residential
user and to flatten the peaks in the overall system. This objective is carried out by making use of
“demand awareness" as acquired from smart metering. The deterministic and heuristic algorithms to
optimally devise the electricity price signal are used and their performance is analysed. The key
contributions of this work are as follows:

1. A household user flexibility model based on utility and user objectives is presented. Then based
on this model, a mathematical framework for calculating LBPP is provided for scheduling.
The LBPP works on the basis of a historical load demand profile (suggested load profile) which is
calculated by ANN using historical data of load. The suggested load profile acts as a low tariff
area beyond which the load will be charged high prices and vice versa. We also proposed a load
predictor which calculates the mean absolute percentage error for the controller’s suggested low
tariff area for a particular user (comfort).

2. However, before using LBPP to calculate energy consumption and prices, a combination of RTP
and IBR is used to schedule the load with respect to the time and demand of all users.

3. To manage the load demand for customized electricity tariff, energy storage system of capacity Q
is formulated and used in such a way to incentivise user and to reduced the rebound peaks.

4. The final optimization problem is formulated and solved by using different optimization
algorithms (heuristic and deterministic). The results are compared in order to analyse the
performance in terms of cost and PAR reduction. As the proposed model is based on the user’s
flexibility, depending upon which, each user gets a different price signal; therefore, the cost and
rebound peaks are significantly reduced.

2. Background Literature

Many researchers have considered the application of energy storage to make demand patterns
smooth [30], considering the impact of storage and solar photovoltaic (PV) systems. The limitation of
survey study has been observed [2–28]—that the storage was used to increase individual-consumption,
instead of focusing on rebound peak shaving. In other contributions, peak is shaved with some
control algorithms including incentivised mechanism. In Reference [31], the authors used a Con
Edison demand tariff for the energy dispatch for peak reduction in residential consumers’ demand.
Customers are charged according to the maximum demand during a period of one month with
some building-based energy storage system. This study also discussed different storage techniques
regarding economic point of view. The storage system used to limit the peak demand under a threshold
policy can help minimize the electricity bill of end users. The work reported in Reference [32] gives
a detailed overview of optimal sizing the energy storage system for the distribution system peak
shaving. The results show that 5 kWh/2.6 kW for low consumption houses, and 22 kWh/5.2 kW
for high power consumer are adopted. The authors also found that few cycles are needed for peak
flattening. Furthermore, the system has a small life time due to limited battery backup. For the
distribution system, energy storage is also considered within transmission network [33], in which
control algorithms were used to optimize the size and placement of storage batteries for the electrical
system enhancement. This required a new design of transmission system and storage system for the
whole network. The result shows how the deferral of construction of new transmission line is suitable
in a market-driven environment if storage systems are connected to certain nodes. In References [34,35],
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the authors examined the response of residential consumers against the time of use pricing scheme and
results show that a considerable amount of consumers could be shifted from peak to off-peak hours if
some incentives (i.e., reduction in bill) are applied. For this purpose, coordinating DSM actions from
highly distributed electricity users are required. The work reported in References [36,37] incorporates
ANNs fixed by genetic algorithm to implement a DSM controller for residential users. A distributed
home automation system in which the controller comprises of scheduler and neural network system
that coordinates with the utility and local PV generation having a storage system to maximize the
local energy performance. In this system, individual appliances equipped with a neural controller,
that is, ANN and local generation in a distributed manner, and are free to self-organize their output
on the basis of preference and predicted generation. The authors of Reference [38] uses the ANNs
to facilitate the implementation of DSM programs. The classification feature of the ANN is used in
an intelligent environment to classify the load curves of each user from pool of load data generated
by dynamic networks. With the prior greater knowledge of consumer habits, the optimization of the
electrical system is carried out with the classified load data and by implementing DSM policies to each
class to make it more sustainable and efficient. ANN is used to assist service providers to discover
the future rates to purchase energy from its customers to balance energy fluctuations in the power
system. To cope with the future uncertainties in a power system due to its inherent nature, a supervised
learning in deep neural networks (DNNs) is used to predict the real time unknown load demand and
wholesale market prices instead of day-ahead to incentivize the active subscribed consumer [39].

The work reported in Reference [40] discussed the individualized demand aware price policy,
using MILP to incentivise the consumer to follow the suggested power profile with a storage system of
particular capacity. Here, each user receives a different price signal in order to reduce high and rebound
peaks in the electrical distribution system where demand awareness is exploited with advance metering
infrastructure. Using the case study of residential power consumer along with ESS, the individualized
approach is shown the advantage that load factor of the system is improved, even some users with
the same price policy are present. The mentioned price policy has more efficient results over the
global price schemes with some advantages including improved voltage and reduced network losses.
There exist DSM approaches which use a direct load control (DLC) technique, which is basically the
user privacy invasion schemes. In that program, market operator directly actuates the industrial as well
as residential loads based on network state [33,34]. This type of control required a heavy investment for
the communication and control technologies for each user. The work in References [41,42], suggested
another decentralized game theoretic approach to minimize the PAR and cost of consumer, and through
blockchain energy trading is made transparent with smart contracts to overcome the stress on overall
system. The PV system with storage elements is incorporated in the proposed model to facilitate a
DSM program, so that the consumers can schedule their demands with a higher degree of freedom
to maximize their comfort. Unlike other approaches, Reference [43] presented a hopping DR scheme
which is actually a heuristic optimization technique that has low time complexity and improved
consumer’s privacy by notably reducing communication between loads and grid. The proposed
scheme significantly reduces the average PAR, energy prices and required frequency bandwidth for
communication purposes as compared with DLC approach. The authors of Reference [44] showed
the effectiveness of the proposed Markov decision (MDP) process based profit maximizing DR
approach in which power supply demand imbalance is tackled in each hour by rescheduling the
energy demand. High time complexity of the algorithm due to continuous state, is improved by
transforming MDP problem into LP problem. The proposed algorithm significantly maximizes the
energy profit compromising performance compared to the greedy algorithm without taking PAR
into consideration. A DAP based DR methodology minimizes the cost of large residential users.
A load aggregator for scheduling is proposed which classifies each demand block of specific operation
time, expected delay and required consumption level by aggregating the residential appliances.
The proposed scheme comprises multi-class queuing system in which consumers have to experience
some waiting time [45]. Many previous studies include the peak shaving algorithms, which took more
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processing time like deterministic methods and LP. Here we investigate the different solvers with their
default and user defined algorithms to compare the cost reduction, PAR and the processing time of the
controller. This study used a meta-heuristic technique, that is, a genetic algorithm in consideration
for the comparison as mentioned earlier. Short-term load forecasting by the neural network is also
done to describe the user’s comfort which was previously compromised. In the proposed work, we do
not include the appliance categorization and optimal sizing of the storage system, which has been
previously investigated by others, for example, in References [46,47].

3. System Model

We consider a hybrid energy management system model with U users, such that users are
powered by a power grid and energy storage system (Figure 1). We assume that the entire operation
is carried in discrete and finite time slots with 0 ≤ t ≤ T, ∀t ∈ Z+. Furthermore, all operations are
supposed to be completed in t slots. It is also understood that communication technologies play a
vital role in transmitting and receiving messages in a secured way. Thus, it is assumed that all the
messages are securely and timely exchanged between end users and utility premises. Regarding load
management, home energy management controllers are normally used to schedule the appliances in
such a way to reduce the cost and PAR. For the better results in optimization of the power demand of
respective loads, the considered appliances are categorized mainly into shiftable and non-shiftable
classes. In this way, the operational time of some loads can be shifted from on-peak hours to off-peak
hours. While, some loads can not be interrupted during their operation time due to their critical nature.
The further details of appliances are discussed in Section 5. However, prior to discussing the inputs
and outputs control parameters, we first define the user flexibility as follow:

Smart Grid

Smart 

Metering

Smart 

Scheduling

Load 

Aggregator

ESS

Communication Link

Power Link

Figure 1. Architecture of Smart Home.

3.1. Household User Flexibility Model

This section discusses the user flexibility model based on proposed load based pricing policy
(LBPP). Because the suggested individualized power profile (defined as the baseline power of each
user beyond which the power consumption cost would be charged on the basis of RTP+IBR policy [40])
from LBPP is applied to all users with a periodicity (every day). Such a pricing policy is comprised
on individualized electrical power profiles, confined by region (Pu,l , Pu,h), which are also referred
to as low tariff areas. The resulted electricity tariff for a user u, which is basically an LBPP pricing
policy, is obtained based on lower bl and higher bh price factors, respectively. In a response, if any user
u consumes power by strictly following LBPP whose suggested output in time-slot t is Pu, then that
particular user will pay a lower price bl for Pu ∈[Pu,l (t), Pu,h (t)]. Otherwise, that user will be charged
a higher price bh. It is worth noting here that the proposed tariff is based on the combination of
two prices; IBR—which depends on used power—and ToU—which varies with time—defined as a
low tariff area for each user participating in the DSM program, such that Pu,l (t), Pu,h (t) where the
individualized price (i.e., the upper bound of the low tariff varies with the consumption limit). Figure 2
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shows the suggested upper bound of the low tariff area Pu,h (t) for a user u in contrast with the actual
demand of the user du(t) and the historical power d∼u (t), in the reference scenario that we will use in
our experimental evaluation. As depicted in Figure 2, during the time-slot t1 from 1 a.m. to 2 a.m.,
the consumer’s demand is inside the low tariff area (Pu,h (t) > du(t)) so the low price will be applied.
In contrast, during time-slot t2 from 5 a.m. to 6 a.m., when the user’s demand violates the upper bound
of the low tariff area. Thus, the high price will be charged to that particular user. To be remain in low
tariff area even in time t2, the user should be flexible in order to get low price, that is, user must be
capable of moving at least 1 kW of the power demand (du(t) − Pu,h (t)), from t2 to t1 (flexibility).
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2 4 6 8 10 12 14 16 18 20 22 24
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Figure 2. Historical power demand compared to power profile output by MILP solver for a single
dwelling on a given day.

Now, we model the user flexibility in order to have all users inside their low tariff area by following
the suggested pricing policy. For this purpose, the user flexibility can be model in conjunction with
ESS which is actually a “physical” load shifting capability of user u [12]. Let a pair (Qu,Ru) describes
the user flexibility, in which Qu defines the storage capacity (in kWh) of the ESS and Ru defines the
power rate (in kW), that is the maximum power which can be delivered or stored to ESS in a particular
time t. In Figure 2, to satisfy the user demand in t2 without shifting load to t1, it is required to have
Qu = 1 kWh and Ru = 1 kW. If user u desires to remain in low tariff area just for the first 5 h of the
day, then Qu = 2 kWh with Ru = 1 kW will be required. During the time-slot of 2 a.m. to 3 a.m.,
where the low tariff area is more than the user’s demand, the surplus energy can be stored in ESS.
This energy can be used to compensate for the exceeding demand, which is outside the low tariff area
(collaborated power). In this situation, a charging and discharging value αu of a user will be Qu and
Ru over the given time slot. In this way, there will be states for αu, for example, for αt

u ≤ 0, the ESS
will be charged by αt

u kW (in Figure 2 during time-slot t1), and for αt
u ≥ 0, discharged by αt

u kW from
ESS. Thus the αu(t) ∈ [−Ru,Ru] denotes the limits for t ∈ T. And for αt

u = 0, there will be no load
shifting needed (e.g., from 11 a.m. to 12 p.m.). In the next sections, we discuss the respective input and
expected output parameters of the proposed system model.

3.2. Inputs

This work has certain input parameters, based on which the desired output(s) are obtained.
These parameters are discussed as follows:
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3.2.1. Aggregated Power

We assume that each user u has different power demand requirements of respective loads,
which arrive over the time interval t with temporal variability. Each load has specific power demand
Pt for a given duration Ψ. We also assume 0 ≤ φ ≤ T, ∀t ∈ Z+. Let τt be the scheduling delay
experienced by load `t, with the τt, the upper bound of waiting time then;

1 ≤ τt ≤ τt, ∀t ∈ T. (1)

Thus, [t, t+ τt] and [t+ τt, t+ τt + τt] are the earliest and latest serving time of all loads. We define;

τt =

{
τt ≥ τt ≥ 1; I f ` ≥ 0
0; I f ` = 0.

(2)

Similarly, the average delay τavg of `t ≥ 0 can be written as;

τavg =
1
T
{

T

∑
t=1

τt}. (3)

We use the aggregated power Pi,t as an input in our model which ensures the base load
requirements for each appliance’s length of operation Ψi. The daily load profile of a user is computed
on the historical basis considering the upper bound of the power in a certain period of time for all
appliances using an aggregator.

Pi,t = Eg, ∀t ∈ T, i ∈ N. (4)

3.2.2. Peak Power

For each user u over the time-slot t, the Pi,t must be below the upper bound of power Lg set by
the utility/scheduler, and may be different for each user depending on the flexibility shown by users.
This constraint ensures the smoothness of power throughout the day and avoid rebound peaks in
the system.

Pi,t ≤ Lg, ∀t ∈ T, i ∈ N (5)

3.2.3. Upper and Lower Bounds

It is required for scheduler to have lower and upper bounds on each decision variable, i.e., power
must be non-negative and must be in pre-defined power limit L and must have at least dmin kWh on
whole time T. The power rate and storage capacity of ESS is also the part of this section by keeping the
state of charge, which must be equal to 1/Q of total capacity.

0 ≤ (Pi) ≤ L (6)

0 ≤ (Pi) ≤ dmin (7)

Q ≤ Q ≤ bu

2
, (8)

where (6) denotes the limit of maximum per hour load consumption of any user, (7) depicts minimum
power required to fulfill the ongoing scheduling task, and (8) elucidates that the energy stored in
backup storage units must maintain 50% of total capacity to meet the demand in a certain time period
when a user violates the suggested low tariff area, respectively.

3.2.4. Electricity Tariff

We assume that if aggregated power demand du of user u is below the power threshold Pth,
then the market price bl is applied. Otherwise, a higher electricity price bh is applied when demand
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exceeds this threshold. This cost factor is also known as a penalty to prevent the scheduler from
shifting most power demand to least electricity price intervals. The modified tariff u used in the
proposed work is written as;

u =

{
bl ; i f → du ≤ Pth
bh; i f → du ≥ Pth.

(9)

The proposed work introduces a penalty function φu for user u, which will force the user to stay
under prescribed threshold of power to minimize the exceeding demand ∆t = du − Pth, i.e.,

φt =

{
[du − Pth],u

}
. (10)

Therefore, the cost minimization objective function subject to load balancing for user u can
written as:

P1 = min
{ N

∑
i=1

24

∑
t=1

[Pi,t, fs] + φt
}

,

subject to: (1)− (10).

(11)

The parameter φt is designed to encourage customers to consume energy within the suggested low
tariff area, so as to minimize the total cost and, as a consequence, the overall power system stability in
terms of rebound peaks is improved. To further improve the comfort level of a user in terms of cost
reduction, a back-up energy storage management system is used, which supports the utility as well as
the user in achieving their aforementioned goals.

3.2.5. ESS Parameters

We compute the capacity Q of ESS for a user u from historical demand data such that the power
variation between consecutive time-slots on average basis over all time T. On the behalf of historical
demand data d∼u , the capacity Q and power rate R of ESS for user u is defined as follows:

(Qu, Ru) = (τ(avg)|d∼u,t − d∼u,t−1|, 2), (12)

where the expression (d∼u,t − d∼u,t−1) in (12) shows the historical load demand of a user in two
consecutive hours, in order to take information about variation in demand, Ru depicts the hourly
rate of power charge of a battery unit, τ is the charging rate, and the expression Qu, Ru gives the
user flexibility in terms of load shifting capability of a particular user u. The (12) ensures the user
has a suggested low tariff, so that the RTP signal remains unchanged in that time slot for the user.
The collaborated power, as a result of ESS in that time slot by applying charge/discharge schedule αt

u to
the input, forecasted electrical demand du(t) for all T, satisfying respective constraints. Now, the next
expression (13) denotes that the exceeding power would be fulfilled through a battery storage system.

cu(t) = dt
u + αt

u (13)

subject to:
ct

u ≤ Pt
th, (14)

where (14) represents that user demand must be within threshold limit Pt
th, provided by the utility in

order to avoid peaks or rebound peaks. Generally, users do not bound to consume power over the
given time. Finally, the welfare function of a user for αt

u > 0, can be written as:

P2 = min
{ N

∑
i=1

24

∑
t=1

[Pi,t, fs] + [∆t − αt
u] + τavg

}
subject to: (1)− (10), (12), (13), (14).

(15)
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where (15) denotes the final objective function minimizing the power consumption by encouraging
customers to stay in the low tariff area. In doing so, the participating customers would be charged a
low price using (9), while the customers violating the low tariff area would be penalized using (10)
and (11). The expression Pi,t, fs in (15) gives the actual energy consumption prices using the market
clearing price and the expression ∆t − αt

u gives the exceeding demand compensation function for
those customers who consumed more power, and τavg provides the average load delay during the
scheduling process, respectively. For the case when αt

u < 0, the storage unit is charged to its capacity
Q by satisfying (8). Assume that user u has the opportunity to violate the Pu for the hourly demand
of u. Then we fix the power rate Ru of ESS, that is, for 2 kW, in order to meet the demand capacity
without purchasing costlier power from the grid source. This parameter ensures that the user’s power
demand remains within the upper boundary of the low tariff area. Eventually, the market price signal
remains unchanged over specific time slot for that particular user.

3.3. Modeling Methodology

The proposed scheme works on the basis of two actions, which play a key role in minimizing
the daily electricity cost of u. In the meantime, the proposed mechanism facilitates distribution
system operator (DSO) in managing the demand and supply without heavily relying on fuel based
back-up generation facilities. The first service is introduced to control the user power demand through
scheduling the load or reducing the demand capacity so that the limitation from retailer can be
fulfilled. The second service is the integration of the ESS system, which would provide the load
shifting capability (flexibility) to the users. The estimation of ESS system capacity is done on the basis
of a user’s historical power profile. It, therefore, causes the greater upper bound of a suggested low
tariff power profile of a user. Therefore, the output of this algorithm is in the form of individualized
power profile p (i.e., different user may receive separate power profile), if they follow their suggested
power over a given time. Then the operational constraints imposed or suggested by the power
system are fulfilled. Furthermore, the LBPP scheme avoids the rebound peaks generated due to load
shifting in traditional schemes. This is done by following the suggested load profiles which is the
major contribution of this work. It is understood that load consumption trends are dynamic and
difficult to predict, accurately. Therefore, finding a low tariff area for all or individualized users on
the basis of historical demand data may be applicable for a specific time duration. Moreover, it is also
noticed that some users can violate this constraint and their power demand may increase causing
serious concerns from the users who have maintained a balanced load profile by participating in DR
programs. To handle this situation, we use ANN to predict the suggested load profile in order to have
users scheduling their load, accordingly. Meanwhile, they also provided the information beyond the
suggested low tariff area; they will be charged a high tariff.

4. Proposed LBPP Algorithm

In the literature, different load optimization and scheduling algorithms have been proposed by
numerous researchers and are being widely used [13]. Some are based on electricity cost reduction,
thus facilitating the end users. Others focused on utility in providing the balanced load profile for
power system stability and optimized control. There are also some works that considered both end
user and utility at the same time. However, there might be trade-offs in managing the resources of
both sides. In Reference [14], heuristic techniques, for example, particle swarm optimization (PSO) and
genetic algorithm (GA) have been used. Although the obtained results are optimal, these algorithms
took more processing time due to complexity in terms of population size and tuning parameters.
This is the basic reason for selecting a mathematical programming approach in solving the proposed
model, because in LP the piecewise linear nature of objective function and constrains exist in our
model. On the other hand, an MILP approach can also be used in contrast with the heuristic and
hybrid algorithm to make the solution more robust [13,14]. However, it is a relatively complex task to
handle the variables in MILP approaches. The results presented in Section 5.1 revealed that there is
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not a significant change and variations in cost and other parameters, except for computational time
and constraint handling mechanism. A detailed comparison among the used solver and algorithms is
presented in Table 1. The optimal solution for our problem may be obtained by using a deterministic
method, that is, a MILP based MATLAB solver—that is, intlinprog—which is actually a solver based
approach used to optimize the results. MILP is basically an LP-based solver with branch-and-bound
algorithm. The optimal solution for the main problem is obtained by dividing the master optimization
problem in sub-problems and evaluated by using divide and conquer approach which is in the form of
a subtree. Bounds on each nodes are evaluated linearly and are selected to maximize/minimize our
function and the remaining are ignored. The robustness and improved performance of the proposed
algorithm are shown in Table 1. The flowchart in Figure 3 gives a detailed mechanism of the proposed
algorithm, while the general mechanism works based on the following steps:

1. Set the optimization problem as a multi-objective LP problem, minimizing high power
consumption and scheduling delay subject to respective constraints

2. Get solution from LP solver (MILP e.g., Intlinprog using Matlab software)
3. Take out the the desired output from the solution of LP and analyze the cost results.

Low tari� on the basis

Time Ini�aliza�on

Aggregated du 

i + 1

du>Pth        

Op�mal low tari�

P with and P w/o
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YES NO

Finding average
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d~ 

 with and w/o 
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Finding (Cu) by
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from Q

Figure 3. Flow-chart of the proposed system.
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Table 1. Training Data Composition.

Parameter Configuration

x1,x2,...,x24 Load profile of 24 h

y1,y2,...,y24n past n pricing data

a1,a2,...,a24 24 h load forecast

Based on the proposed algorithm, the following outputs are obtained:

• For each residential user u and time t, the Pt
u is the upper bound limit for low tariff area where F

is a set of prices for each user, considered as a decision variable (in kW and $/kW, respectively).
• For each residential user u and time t, the αt

u denotes the charge of a battery. For example, if αt
u > 0,

the storage unit is charging, otherwise, it would be in discharging mode where the variable bt
u

denotes the state of charge or discharge.
• For each residential user u and time t, ht is a decision variable, which calculates the aggregated

load demand for those customers who violate the upper bound of low tariff area (in kW).

The complete working detail of the proposed algorithm is explained (Algorithm 1) by assuming
that the available power from the storage having capacity Qu is αu at time t for a particular user u where
Pth and du(t) are the thresholds of power and user demand, respectively. We have the following cases:

Case 1. When du(t) = Pth, then in this time slot, all appliances are scheduled:
Theorem: In this case, it is expected that load demand of a particular or all users u is within (Pu,l ,Pu,h ),
such that the condition {0 ≤ dt

u ≤ Pu,l , Pu,h } is fulfilled. It is hence proved from Figure 2 that historical
demand is insufficient to obtain an actual low tariff area for all users as demand trends are dynamic in
nature. So, we have used ANN to predict actual low tariff area and obtained output is compared with Pu.
Otherwise, if {dt

u ≥ Pu,l , Pu,h }, then φt price would be charged to u.
Case 2. If du(t) > Pth:
Theorem: Then scheduling of appliances are done by drawing required power (i.e., du(t) – ESS ) from the
storage system. Otherwise by modifying pricing signal in that time slot, rescheduling is done for battery
SOC 6=Q/2.
Case 3. If du(t) < Pth:
Theorem: In this condition, the surplus power is stored in ESS at the cost of ζ as given in (16), which later
on can be used when {dt

u ≥ Pu,l , Pu,h }. In this case, the fs will be given to that particular user.

ζ =
Θ(t− 1)− θ(t− 1)

αu(t)
, (16)

where Θ(t− 1) is the cost of charging ESS in slot (t− 1) and the cost of remaining energy in ESS after
discharging is represented by θ(t− 1) in (t− 1) time duration.
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Algorithm 1 Proposed (LBPP) Algorithm

Require: Price signal, LOT’ and power ratings of appliances, capacity of storage system
for i← 1 to Na do

Schedule load using LOTs and using (1)
for k← 1 to Nb do

if ∑24
t=1 Pi,t ≤ Pth then

find Pt
u & ht=∑24

t=1(Pi,t-Pth)
if bt=Qu then

bt+1=bt
else

bt+1=bt
end if
if bt≥Qu/2 then

ht=∑24
t=1 Pi,t-Pth

if ht≥0 then

compensate the exceeding power
Update state of charge

else

Update bt
end if
Modify RTEP signal in (6)
Reschedule the load for Pt

u
end if

end if
end for

end for

4.1. Outputs

The output of the proposed algorithms is the power profile pu for all respective users u, which
actually defines the low tariff area. The upper bound of the low tariff area depends on the amount of
flexibility in terms of power usage by the user. This will eventually lead to different power profiles of
every user, which is different over the given time t. Then based on pu, the retailer decides whether
the electricity price is low or high, irrespective to market price signal only. As a consequence, each
user gets different price signal depending on (Qu,Ru) as illustrated in Figure 4. For each user, the
charge/discharge plan αu will be the output of the algorithm, which defines the flexibility (Qu,Ru)
for that user. It is therefore sufficient for each user to schedule their load once the suggested power
demand profile is obtained. Thus, the collaborated power, that is, du(t) + αu(t) is returned to that
particular user, who strives to remain in low tariff area Pu,l (t) ≤ Pu(t) + αu(t) ≤ Pu,h (t) based on
collaborative power profile, as shown in Figure 5.
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Figure 4. Pricing signal for each individualized user obtained by LBPP.
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Figure 5. Collaborated power after discharge action of ESS.

4.2. Time Complexity

We also analyze the time complexity of our proposed problem, as discussed in Section 3.
The affirmation of problem can be done in polynomial time for all cases.

Case 4. Considering shiftable appliances in scheduling problem P2, time complexity will be O(nc),
where n and c are the number of tasks and variants, respectively. Furthermore, by reduction from the 0-1
knapsack problem, we can argue that with reduction in polynomial, the problem P2 is NP− hard.
Case 5. In P2, for non-shiftable appliances, the scheduling problem has polynomial time O(n) and for
power threshold Pth, will be {O(Pth), |P ⊆ NP}. We have previously discussed that objective function P2
can also be solved by using deterministic algorithms. Hence, the problem with MILP is NP− complete
with the complexity O(n.Pth).
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4.3. Training and Forecasting Using ANN

Due to its adaptive nature, ANN is used when a mathematical system model is unavailable
for predictive results. Furthermore, ANN is also widely used for problems which are related to
data classification and clustering due to its high robustness and fault tolerant nature. It has high
stability inside the face of a big quantity of records and is also recommended for sorting, mathematical
modeling, analyzing, and interpolating information [48]. Regarding classification, an output pattern
can be obtained by providing the input data which is first split into training and test modules. In order
to reduce the mean absolute error for high accuracy, W are multiplied in each layer, which are adjusted
dynamically during training process. The algorithm works based on the considered model (Figure 6)
until the best fit results are achieved or the algorithm converges with minimum squared error as shown
in Figure 6b and Equation (18). The complete steps of ANN working are shown in Algorithm 2.
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Figure 6. The considered architecture of the artificial neural network (ANN) and its performance in
terms of error and convergence.

In this work, we aim at finding the low tariff area based on power profiles of each user,
consumption preferences and market prices. An input matrix is multiplied by the weight matrix
W, which has n ∈ n element containing weights corresponding to inputs. Furthermore, a bias matrix
b is sent to summer function. The output obtained from the summer function (forecasted demand)
goes to the activation function f, which produces the output matrix a. The activation function f can
be a linear or non-linear function, which depends on spatial frequency of the input/output relations.
We have used the Tan-hyperbolic and Purelin activation functions for the fast training speed and
convergence and the results are shown in Figure 6b. For simulation, Mathworks Matlab ANN toolbox
is used to analyse the performance of different algorithms. It is observed that conjugate gradient
with Polak-ribiere function considering (20-38-1) hidden layers performs better in given scenario.
This algorithm converged to a mean squared error of at steps as shown in Figure 6b. Results show
a better performance as compared to the other algorithms used in the literature. Figure 7 shows the
validation of test results using test data. The error between forecasted and suggested power is basically
the comfort of user in terms of electricity cost reduction.

Figure 7 gives the output of the LBPP algorithm using ANN. The actual power is the total amount
of required power that a particular user is using without any load shifting. Where, the suggested power
defines the power profile obtained based on a historical power demand data, and the forecasted power
profile is obtained from ANN. After testing and validating the network, high error in hours is due to
the low diversity in training data, and average error is also calculated which is 3.763. We proposed that
the error is basically the user compromised comfort in terms of reduction in electricity cost. The (17) is
a general form of ANN training and forecasting procedure (Algorithm 2).

a = wTx + b, (17)
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Figure 7. 24-h load forecast in comparison with output by LBPP.

The relative error between forecasted and actual low tariff area for a user is computed by mean
squared error (MSE) as follows:

MSE =
1
N

n

∑
i=1

(Poweractual − Power f orecasted)
2 (18)

Algorithm 2 Steps Involved in Predicting Low Tariff Area using ANN

Require: Monthly measurement of Price signal, previous hours od days, load data i.e., y1,x1n,x1
for i← 1 to Na do

Format network input and output
Pre-process the data
Division of data into 3-steps
Select ANN Architecture
Calculate the error e using (18)
Apply the first load pattern and train the network
for k← 1 to Nb do

if Pattern == last then

if e < p then

Obtained and save the output
else

(e = 0) by updating W
end if

else

Measure error and update e
end if

end for
end for
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5. Simulation Setup

In this section, we present the results and discuss the performance of the proposed model in
terms of cost reduction, peak shaving through a balanced supply-demand profile. We evaluate a smart
grid system with two different types of users, that is, with and without the ESS system. Each user
is equipped with time shiftable and non-shiftable appliances, that is, refrigerator, microwave oven,
heater and dishwasher and washing machine, respectively. Then depending on the daily power usage
pattern, an aggregated demand is used in encourage the user to consume power in suggested low
tariff area, in order to reduce energy consumption cost. In this work, the daily energy consumption
pattern of shiftable appliances is considered as: dishwashers-80 kWh; washing machines-40 kWh;
and nonshiftable appliances such as refrigerator-96 kWh; lighting-1 kWh. It is working noting here
that these values are assumed in order to test the applicability of the proposed LBPP algorithms.
However, any value can be used on the basis of user requirements. Based on the actual data, the energy
consumption pattern is managed in such a way that the dishwasher must finish working before meal
time. It is also assumed that each user has a battery backup with some initial level such that its capacity
must not be below half of the rated capacity.

5.1. Results and Discussion

In Figure 8, the aggregated power profile of two users for the 24 h time duration is shown with
different schemes: (i) user equipped with ESS system and (ii) user without ESS. For the first scenario,
the output profile of a user with ESS is generated based on the proposed model. In situations when
ESS is unavailable, peak demand occurs during 16:00 to 17:00, while minimum power demand is
reported during 09:00 to 10:00. For the case when load scheduling is performed in accordance with
ESS, it is observed that the overall shape of the load curve has improved to flatten the demand as
shown in Figure 8. Moreover, it is also observed that when a consumer is equipped with ESS, it is
likely to obtain a more flattened load curve leading to a reduced consumption cost and system stability
(Figure 9). Also, the SOC of local storage for that particular user in conjunction with the RTP signal is
shown in Figure 10c. The storage system is mostly charged during the off-peak intervals, when the
electricity price is low and discharge at peak hours. The cost profile of the users has been shown in
Figure 9. The proposed algorithm has the ability to reduce the cost over the given time of 24 h. As with
the aforementioned scenarios, with and without the energy management system, the comparison
of electricity cost is provided. Figure 10b reveals that with consideration of ESS, the total electricity
cost of the user-1 is 109.20 $, where the cost reduction is done due to load shifting which can also be
considered as physical load shifting. When the optimal solution is obtained without incorporating ESS,
the overall cost is obtained 154.25 $, which is approximately 30% more than other case when ESS is
integrated). LBPP algorithm also incorporates the demand of user-2 that is willing to to participate in
DSM program without local storage system. Figure 10a,b illustrates the ability of different LP-solvers
for the same objective function. Results obtained from these deterministic techniques lead to more
similarities where typical peak demand occurs from 4:00 a.m. to 6:00 a.m. All algorithms have almost
the same results in comparison with cost and PAR, although the efficiency in terms of processing time
is required where the size of the system increases, also shown in Table 2. Figure 10d shows the overall
results obtained from the LBPP scheme. The total cost and aggregated PAR for the two aforementioned
scenarios, that is, a user with and without ESS is shown, and we see that the proposed algorithm leads
to a lower cost and PAR even in cases where the user is not equipped with the ESS.
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Table 2. Solvers Performance for single dwelling.

Solver Algorithm Processing Time (s) Cost ($) PAR

Intlinprog Branch and Bound 1.32 119.430 1.776
linprog interior-point 1.425 119.650 1.766
linprog active-set 1.930 119.430 1.767
linprog simplex 1.653 119.100 1.777
linprog dual-simplex 1.777 119.100 1.77
fmincon Default 1.80 119.100 1.778
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Figure 8. Aggregated power with and without ESS of user1 and user2 respectively.
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Figure 9. Aggregated cost with and without ESS of user1 and user2 respectively.
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Figure 10. Comparison with power demand output by MILP solver for a single home on a day
(a) Power analysis with different solvers (b) Cost analysis (c) State of charge output by LBPP (d) Overall
Cost and PAR .

The proposed algorithm is basically an encouragement policy for the users to participate in
demand management program. As shown in the Figure 4, the users with ESS have been offered a
minimum electricity tariff. Similarly, each user would be provided the price signal in accordance
with their consumption level and the conditions whether they are below or above low tariff area.
On the other hand, for the worse case scenario, if a particular user does not want to participate in
DSM program. Then that particular user will utilize the power in such that it violates the suggested
power profile over the give time. As a consequence, that customer will be provided the modified price
signal, showing increased tariff rate. Eventually, this may warn the customer that resultant electricity
cost would be more in case if suggested low tariff area is violated. Because, the proposed mechanism
is based on a combined tariff system using RTP with IBR tariff to facilitate the customers through
attractive tariffs and benefits. Table 3 shows the PAR results of the base scenario reflecting the benefits
of LBPP mechanism. When a user consumes power without ESS, the average PAR is 0.0242. While the
PAR is reduced to 0.0242 when combined IBR without ESS is used, and the proposed algorithms
achieved the 0.0150 which is 41% less as compared to other cases. it can also be observed that if ESS has
more capacity, the user can consume less power from grid source and eventually contribute towards
reduction in rebound peaks. A comparison is made with MILP solver without ESS with different
algorithms of LP solver as shown in followings.
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Table 3. PAR comparison.

Using RTEP IBR without ESS LBPP

PAR 0.0310 0.0242 0.0150

5.2. Performance Based Analysis

In this section, we investigate the important performance parameter of the optimization
algorithms, i.e., processing time in terms of optimal energy consumption cost and PAR of a single
home. The results are compared against various solvers, available in MATLAB software.

5.2.1. Deterministic Techniques

Initially, deterministic optimization methods have been used and results are compared in terms
of processing time, electricity cost and PAR, as shown in Tables 2 and 3. Furthermore, these results are
also provided in a graphical form (Figure 10a,b). While the power and cost profiles obtained by using
heuristic and deterministic algorithms have been shown in Figure 11.
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Figure 11. Comparison with power demand output by MILP solver for a single home on a day
(a) genetic algorithm and pattern search (b) Cost output by MILP solver for a single home on a day (b)
genetic algorithm and pattern search.

5.2.2. Meta-Heuristic Techniques

We also solve the proposed model using a heuristic based GA with an initial population of 150.
The roulette wheel selection criteria is applied to the same problem and an analytical comparison is
made with the counterpart techniques. Furthermore, the other control parameters of GA are selected.
The results are shown in Table 4 and in Figure 10a.

Table 4. Solvers performance for a single dwelling.

Solver Algorithm Processing Time (s) Cost ($) PAR

GA Default 370 119.299 1.765

Pattern Search Default 3.2 119.401 1.54

6. Conclusions

This work has provided a novel load scheduling and pricing mechanism on the basis of
individualized energy consumption profiles, historical load demand, market price signal and suggested
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load profile, where the suggested energy consumption profile is initially obtained from historical
demand data, which later on is validated by an ANN based low tariff area. The low tariff area and
RTP are then provided to each user as an input parameter, based on which the potential user can
reschedule their consumption patterns with the objective of cost and rebound peak minimization.
Firstly, the mathematical models of all loads and ESS have been presented along with a two step pricing
mechanism, which is based on RTP and CPP. Secondly, the optimization problem is formulated as a
constraint optimization problem which is solved by using the proposed LBPP algorithm. Furthermore,
heuristic and deterministic algorithms have also been used to solve the problem in order to analyse the
performance in terms of rebound peak minimization, cost reduction and time complexity assessment.
It is also observed that the multi-objective optimization problem is NP-hard. Based on the suggested
low tariff area, obtained from ANN, the users have been provided the flexibility to utilize their loads.
Then the market price signal, which is fixed for given time interval changes according to user load
consumption trend. As a result, each respective user gets a different price signal which helps to
normalize the high peaks in the distribution system. This approach is also compared with some
traditional algorithms discussed earlier. The investigation of this paper shows the benefits of proposed
algorithm through simulations. The actual behavior of the customers in response to the proposed
pricing policy is very difficult and unpredictable. So, the results presented by extensive simulations
for the proposed scenario, are very useful to illustrate the issues, that is, rebound, in previous DSM
techniques, and signify that the proposed algorithm is able to resolve that issues and incentivise the
users. It is also assessed in this paper that, in the current scenario, users are encouraged to enhance
their flexibility to install more capacity of ESS for economic compensation, this also clearly provides
operational benefits to the utility to limit network cost (PAR reduction). With the help of ANN,
the effects on user comfort are measured along with cost reduction. It can be seen in the simulation
results that the effectiveness of the proposed solution is different, unlike the other counterpart
techniques, which were designed to reduce cost as a primary objective. Finally, a comparison regarding
processing time is also provided to check the robustness of selected algorithms.
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Abbreviations

ANN Artificial Neural Networks LP Linear Programming
DSO Distribution System Operator LBPP Load Based Pricing Policy
DSM Demand Side Management MILP mixed integer linear programming
DR Demand Response MSE Mean Squared Error
DLC Direct Load Control PAR Peak to Average Ratio
ESS Energy Storage System RTP Real Time Pricing
GA Genetic Algorithm SOC State of Charge
HEM Home Energy Management SG Smart Grid
IBR Inclining Block Rate VER Variable Energy Resources
IEA International Energy Agency
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Nomenclature

Symbols Description Symbols Description
∆t Exceeding demand from threshold f Indices of pricing signals
Eg Total energy consumption bl Lower price for energy consumption
bh Higher price for energy consumption du Actual demand of residential user
Du Forecasted demand of residential user u L Upper bound on residential power u
dmin Minimum load demand d∼u Historical demand of residential user u
Qu Total capacity of storage system for u Ru Rate of power in storage system for user u
αt

u charging/discharge plan for u in t bt
u Charging state of storage for user u in t

cu User power after storage discharging Ψi Length of operation time of appliance i
u Inclining block rate tariff ζ Cost for charging ESS
fs RTP signal from utility company Pth Threshold power for u
T Set of time slots φ Penalty function for user u
Pu Upper bound of suggested low tariff U Set of residential users
u Indices of residential users U t Indexes of time slot T
F Set of residential users pricing signal Pi,t Power demand of ith user over t
`t Load over time t τt Scheduling delay experienced over t
τt Maximum scheduling delay over t Q Total power capacity
e Total forecasting error p Final target error
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