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Abstract: In this study, three-dimensional transient numerical simulations of the flow around a cross
flow water turbine of the type H-Darrieus are performed. The hydrodynamic characteristics and
performance of the turbine are investigated by means of a time-accurate unsteady Reynolds-averaged
Navier–Stokes (URANS) commercial solver (ANSYS-Fluent v. 19) where the time dependent
rotor-stator interaction is described by the sliding mesh approach. The transition shear stress
transport turbulence model has been employed to represent the turbulent dynamics of the underlying
flow. Computations are validated versus previous experimental work in terms of the turbine
efficiency curve showing good agreement between numerical and experimental values. The behavior
of the power and force coefficients as a function of turbine angular speed is analyzed. Moreover,
visualizations and analyses of the instantaneous vorticity iso-surfaces developing at different blade
rotational velocities are presented including a few movies as additional material. Finally, the fluid
variables fields are averaged along a turbine revolution and are compared with the steady predictions
of simplified steady approaches based on the blade element momentum theory and the double
multiple streamtube method (BEM-DMS).

Keywords: CFD numerical simulation; unsteady analysis; cross flow water turbine; transition
turbulence model

1. Introduction

The ever-increasing energy demand, the depletion of fossil fuels, the environmental issues derived
from global ecosystems degradation, and the political turmoil of the main oil producing regions
constitute a serious concern about world energy sustainability. Therefore, the quest for renewable
energy sources has gained a prominent role in modern society. In this respect, the kinetic energy
contained in the flowing water of rivers and oceans is a nearly unexploited source that has a huge
potential for being converted in electrical energy. Such energy can be harnessed using water turbines
which can be of two types, distinguished by the direction of the rotation axis with respect to the
main flow: horizontal (parallel to the stream) and vertical (perpendicular to the stream). Vertical
turbines also are known as cross flow water turbines (CFWT) and as an advantage they do not need
an orientation mechanism; however, their disadvantage is that their efficiency is lower than that of
horizontal axis turbines.

Horizontal axis turbine performance has been extensively analyzed by established potential
methods such as the blade element momentum (BEM) approach with a reasonable degree of success.
The situation with CFWTs is different as the flow becomes strongly unsteady and is characterized
by vortices detachment at certain blade angular positions and the interaction of such vortices with
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downstream blades or even with the same blade. Therefore, the previous simplified methods only
achieved limited success, particularly in the case of turbines with high solidity where an overprediction
of the extracted power usually occurs [1–3]. Computational fluid dynamics (CFD) methods arise in this
configuration as an appropriate alternative to potential approaches being able to describe the behavior
of the flow around such turbines and providing accurate estimations of their performance. Of course,
such improvement is attained at the expense of increasing considerably the computational load and
time. However, the speed and RAM memory capacity of nowadays computers allow obtaining CFD
solutions in affordable times; for such reason CFD tools have been adopted widely in academic and
industrial sectors [4–8]. Reference [9] presents a review of the different CFD approaches employed to
simulate the behavior of vertical axis water turbines.

Historically, the first attempts to simulate the flow around vertical turbines considered
two-dimensional (2D) configurations of straight blade Darrieus turbine (also known as giromill),
because of its geometrical simplicity. The usual approach to describe the unsteady behavior of
the flow in the CFWT is the use of the sliding mesh technique, frequently available in commercial
software. However, these 2D approaches have been demonstrated to be insufficient as the simplified
geometry usually implies an overprediction of the turbine efficiency. Such a result is generally
attributed to the absence of the detached tip vortices in the 2D computations, which render the flow
three-dimensional. Therefore, three-dimensional (3D) CFD simulations become necessary to accurately
predict the efficiency curve of vertical axis turbines. In consequence, some studies dealing with
three-dimensional unsteady CFD simulations of vertical wind and water turbines are reviewed in
the following.

Ferreira [10] performed an extensive study comparing different 2D and 3D CFD simulations of a
vertical wind turbine versus own experimental measurements of the flow field based on particle image
velocimetry (PIV). In the simulations several turbulence models were tested including URANS, large
eddy simulations (LES), and detached eddy simulations (DES). The URANS tested models were unable
to predict the aerodynamic efficiency of the turbine due to its inability of simulating the detached
flow, but LES and DES provided results closer to the measurements. Howell et al. [11] developed a
numerical and experimental study of a small aspect ratio Giromill wind turbine. Thereby, 2D and 3D
unsteady computations were performed and compared with the measurements. CFD simulations were
based on URANS approach in combination with the k-ε RNG (Renormalization group) turbulence
model; the employed software was the commercial module of ANSYS, Fluent. In this early study,
rather coarse grids were employed for the 3D computation, which made necessary the use of wall
functions. Hence, the boundary layer development around the blades was not described but modelled.
As a result, the estimated two-dimensional turbine power coefficient was considerably higher than
the experimental and three-dimensional values, which was justified by the authors due to absence of
the tip vortices in 2D simulations. However, although the 3D results for the power coefficient were
relatively close to the experiments, the differences between them increased for growing tip speed
ratios (TSRs). The self-starting process of a three-blade Durhan type wind turbine [12] was studied
by Untaroiu et al. [13] using the software ANSYS-CFX, obtaining an overprediction of the turbine
acceleration which was attributed to a poor resolution of the boundary layer close to the blades.
Reference [14] dealt with the effect of inclination angle of a helical blade on the power generated by the
Darrieus turbine. Also, the influence of turbulence model on the results was addressed; although no
comparison with experimental data was provided, the k-ε realizable and k-ω SST turbulence models
provided similar results for the torque and both higher than that obtained by the Spalart–Allmaras
one-equation turbulence model. The influence of the geometrical model on CFD results on a vertical
wind machine was approached by Siddiqui et al. [15]. They considered from 2D models to full 3D grids
including the shaft and the supporting arms of the blades, using coarse grids. The authors conclude
that the power coefficient was over-predicted in the 2D simulation regarding the full 3D approximation
for more than 30% and that the inclusion of the support structure reduced such coefficient by 11%.
A comprehensive review of the performance of different turbulence models in the CFD simulation
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of vertical axis wind turbines was carried out by Ghasemian et al. [16]. In the URANS approach, the
transitional k-ω SST turbulence model provided the more accurate comparison versus experimental
measurements, as this kind of model is able to describe the transition from laminar to turbulent
boundary layer and, to a certain extent, predict the flow separation occurring in vertical turbines. Also,
LES and hybrid RANS-LES are able to improve the flow field prediction but they are computationally
much more costly.

The case of water turbines has also attracted attention from the engineering community. The 2D
CFD simulations, e.g., [17–19], have allowed establishing the basic grid and numerical settings
(boundary layer resolution, angular time step, domain dimensions . . . ) that should be fulfilled by
well-designed unsteady CFD simulations of CFWT. However, such criteria are not so easy to be
satisfied using 3D simulations because they imply the use of very powerful computers and long
simulation times. Nevertheless, several works dealing with the three-dimensional transient CFD
simulation of vertical axis water turbines are found in the literature and a few of them will be reviewed
in the following.

Amet [20] performed 3D unsteady simulations of the LEGI water turbine for a single tip speed
ratio corresponding to the best efficiency point, obtaining an average power coefficient very close to
the experimental measurement. In that case the grid comprised around 8 × 106 cells and the estimated
performance loss due to the detached tip vortices was close to 22%. A four blades helical CFWT
was considered in [21]. Here, the turbulence of the flow was described by the k-ω SST turbulence
model [22]. Overall, a good quantitative comparison with measured values was obtained and the
discrepancies found for the lower tip speed ratios were attributed to the RANS limitations to predict
the flow separation. Pellone et al. [23] performed 3D simulations on a complete geometrical model
(i.e., including the shaft and support structure) of the LEGI turbine using a grid of around 5 million cells.
The average power coefficient for a TSR = 2 was very close to the measured value but the instantaneous
values of such coefficient along a revolution showed quantitative differences with the experimental
curve. The effect of blade helicity on the generated power by a CFWT was numerically studied in [24].
As a main conclusion, the authors found that the straight blades perform better than helical blades (i.e.,
provide higher power) but the latter are able to damp the torque oscillation and reduce the mounting
forces. Three-dimensional URANS simulations of a vertical tidal turbine with different turbulence
models were carried out in [25] with the ANSYS-CFX commercial software. The best comparison
versus experimental data of power coefficient was obtained by the k-ω SST transition model due to
its ability of predict the flow separation at small tip speed ratios. As a conclusion the authors of [25]
discourage the use of wall functions either with k-ε type models or Reynolds Stress Models. However,
the transitional version of the k-ω SST turbulence model increases substantially the computational cost
(up to five times) regarding the corresponding standard version. López et al. [26] performed URANS
and hybrid RANS-LES CFD simulations of the LEGI CFWT for three different tip speed ratios. In this
study, the supporting structure of the turbine was not considered. As a result, the predicted power
coefficient by both turbulence modelling approaches was quite similar in this turbine and also close
to the experiments. However, due to the grid refinement behind the turbine, the hybrid approaches
allow a proper identification of the main vortical structures present in the turbine wake that are not
resolved by the URANS approach. The study of [27] was aimed to numerically evaluate the influence
of winglets as tip devices in the performance of a CFWT. 3D URANS-type computations were carried
out with ANSYS-Fluent software with different turbulence models, including the transitional k-ω SST.
As a main result, the presence of winglets predicted in all considered cases an improvement in turbine
efficiency which was estimated in around 20% for a symmetric hybrid fence-raked winglet regarding
the straight blade case. Mannion et al. [28] implemented 3D CFD simulations of a tidal turbine using
ANSYS Fluent v17 and the SST turbulence model in both versions, standard and transitional. Meshes
of up to 22 million elements where used reporting satisfactory grid convergence. For validation,
the experimental study of [29] was used. Even though a visualization of the vortical structures is
shown, the analysis was only focused on the vortices that are shed from the shaft and its influence
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on the performance of the turbine. Numerical results showed that the size of the rotating domain
has an influence in the predicted torque coefficient, so that the recommendation is that the diameter
of the rotating domain should be at least two times the diameter of the turbine. The authors also
concluded that using URANS models provide enough accuracy with moderate computational cost.
Authors in [30] numerically investigated the influence of the solidity in the performance of helical
cross-flow hydrokinetic turbines with CFD. 3D RANS simulations were performed using ANSYS
Fluent as solver with meshes of approximately 1.5 million elements. A helical turbine with a twist
angle of 120◦ was tested for four different solidities and numerical results were compared with the
experimental measurements of [31]. It was found that the turbines with lower solidities (0.15 and 0.2)
showed the best performance. Guillaud et al. [32] performed a LES of a vertical axis hydrokinetic
turbine in order to analyze the influence of the solidity in the turbine efficiency. Two models were
generated: a real model that included all the geometrical details of the turbine such as: shaft, arms
and all the connectors; and an ideal model in which only the blades (of infinite span) were considered.
Numerical simulations were performed with the YALES2 solver using meshes that range from 16
up to 106 million elements. It was found that convergence in the power coefficient was achieved
for meshes of about 50 million elements. Numerical results were validated against experimental
data at a tip speed ratio (TSR) of 1, showing an excellent agreement. The behavior of the vortical
structures was not deeply discussed but evidence of the tip vortices was shown. Regarding the
influence of the solidity, it was found that the lower solidity turbine showed the best performance,
but this observation was not corroborated in the real turbine since the influence of the tip losses and
arms was very significant. In a very recent work [33], simulated two counter rotating vertical axis
hydrokinetic turbines using the arbitrary Lagrangian–Eulerian variational multi-scale (ALE-VMS)
formulation on moving domains. The geometric model of the three-bladed turbine included the shaft
and the connecting arms. A convergence study was performed using meshes from 800 K up to 4.5 M
number of elements. Validation was performed just for one turbine versus experimental data provided
by New Energy Corporation Inc. A visualization of the vorticity field showed a very complex wake
structure with multiple vortices generated by the different elements of the turbine. The authors pointed
out the visualization of the tip vortex which was convected downstream as it interacts with the turbine
shaft. In order to include the second turbine, first the multi-domain method (MDM) is used and then a
full domain simulation (including two turbines) was performed. Numerical results show that if the
second turbine is located at a distance of two diameters (2D) the performance of the second turbine is
reduced by 25% approximately, but if the second turbine is located at a distance of 4D the reduction of
the performance is only 9%.

Other CFD simulations around CFWTs are those devoted to study the wake structure behind the
turbine. For that purpose, the CFD technique is coupled with an actuator line or disk approach, which
considers the rotor as a momentum source. In this sense, a LES approach in combination with an
actuator line model or actuator-swept surface model has been applied in some recent works [34–36] to
simulate the mid and far wake development behind vertical tidal turbines, obtaining a good comparison
versus measured data. Therefore, such techniques are appropriate to evaluate the design of turbine
arrays in water farms.

On the other hand, it has been proposed to use the mean flow fields obtained by CFD to
evaluate some of the main parameters of the simplified BEM theory such as the interference factors.
This task was accomplished by [37], in the case of a horizontal axis marine current turbine, where the
axial and tangential flow induction factors were computed, although no comparison with the same
factors obtained by BEM was performed. In the context of vertical axis wind turbines, with two
and three blades, [38] used the instantaneous 2D and 3D CFD flow fields to improve the double
multiple streamtube method (DMS) predictions on an H-Darrieus turbine including effects such as
flow decambering, dynamic stall, and stream tube expansion.

The structure of the rest of the paper is as follows. Section 2 introduces the turbine configuration
of the considered experiments [1,2] and numerical setup, including boundary conditions, discretization
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schemes, and verification analysis. Section 3 presents firstly the results of the validation of the numerical
computations and then the behavior of power and force coefficients is analyzed for the different turbine
rotational speeds considered. Additionally, the 3D vorticity iso-surfaces developing in the flow field
around the CFWT are illustrated and analyzed depending on the tip speed ratio. Section 4 examines
the average flow field along a turbine revolution for the rotational speed of 60 rpm, corresponding to
the best efficiency point; such results allow, for instance, the estimation of the fluid velocity at each
blade position which is compared with the predictions of simplified potential methods based on blade
element momentum theory and the double multiple streamtube method (BEM-DMS). Finally, the last
section presents the conclusions obtained in the present study.

2. Turbine Configuration and Simulation Set-Up

The cross flow water turbine configuration selected in this work has been that presented in Dai
and Lam [1] and Dai et al. [2]. The experimental rig consisted of a straight-bladed Darrieus turbine
with a diameter D = 0.9 m. Blades were designed based on the symmetric NACA0025 airfoil with a
span H = 0.7 m. Such model was tested in a water flume 2 m deep and 4 m wide. In the experiments
several chord lengths and two or three blades were considered; however, in the present paper the three
blades case with a chord c = 0.13275 m was considered because the turbine performance curve was
readily available in [2].

The present contribution is focused on the study of the blades hydrodynamic efficiency at different
tip speed ratios (TSR) defined as ΩR/V∞ (see Equation (1) below). Here, Ω is the blade rotational
speed, R the turbine radius and V∞ the incoming fluid velocity. In this study, the three-dimensional
CFD simulations do not include the supporting structure or the shaft as in [1,27]. Moreover, in order to
maintain affordable computational time only half of the blades span has been simulated, employing
a symmetry boundary condition. Figure 1 illustrates the employed computational domain: the left
plot shows the complete considered rectangular domain while the right part displays the rotating
sub-domain comprising the blades. The size of the entire computational region has a length of 40 R
(x-axis), a width of 26 R (z-axis) and a height of 7 R (y-axis); such dimensions imply a blocking ratio
lower than 1%, meaning essentially a free stream arrangement [3].Energies 2020, 13, x FOR PEER REVIEW  6 of 28 
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In this article, the transient flow around the turbine has been approached by the sliding mesh
technique by which the relative motion between the rotor (moving domain) and their surroundings
(steady region) can be properly described. Both domains are coupled by an interface, which allows
a conservative interchange of fluxes between them. The rotor mesh rotates a certain angle with
respect to the steady domain and their relative positions are dynamically updated so that at each time
step the solution can be computed [3,39,40]. In this paper, the rotating region enclosing the blades
has a ring-type geometry (Figure 1 right) with an outer radius of 1.4 R and inner radius of 0.55 R.
Therefore, two steady domains appear: that outside the ring (outer domain) and that inside the ring
(inner domain).

Figure 1 also shows the employed boundary conditions. Flow enters the domain along the x-axis
through a velocity inlet boundary and exits it through a pressure outlet (specified as 0 Pa). Lateral
and upper boundaries are set as moving walls, with the same velocity as the inlet. Lower boundary
is specified as symmetry condition, as already commented. Blade surfaces are modelled as non-slip
walls and the interfaces between the moving and steady domains are specified as sliding mesh type.

At the inlet, the uniform incoming velocity was fixed at the experimental value of 1.62 m/s for all
computed TSRs, while a maximum of turbulent viscosity ratio of 10 was specified. This choice results
in a turbulence intensity of less than 2% in the flow approaching the turbine [27].

A non-structured grid was built using the software ANSYS ICEM-CFD. With the objective of
adequately describing the boundary layer development along the blades, this region was meshed with
prism-like cells comprising 25 layers [18]. Beyond such a zone, tetrahedral cells were employed to
build the grid, of a similar size to prisms, guaranteeing a smooth transition among both cell types.
More details about the grid construction and its quality can be found in [27].

The turbulent features of the flow are modelled by the transition shear stress transport model
(transition SST) of Menter [41,42] which includes the effects of laminar to turbulent transition of the
boundary layer on the turbine performance. This model has been employed previously in the simulation
of the flow around vertical turbines [25,27,40,43] showing good comparison with experiments. Further
details about the advantages of using this turbulence model on the CFWT configuration can be found
in [3,27].

Regarding the employed numerical schemes, all transport equations are discretized in space
by second order schemes, while a second order implicit scheme is used for the time discretization.
Pressure-velocity coupling is described by the transient SIMPLE (semi-implicit method for pressure
linked equations) algorithm. The chosen time step for all the TSR computations was 1 ms, which
corresponds in the most unfavorable case (i.e., that with the highest rotational velocity) to 0.42 degrees
of blade rotation, which guarantees an appropriate time discretization [19]. Moreover, a maximum
number of 100 iterations per time step was specified, with a residual convergence threshold of 10−4.
The computational approach for obtaining a converged solution of the solution has been that described
in [3], so it will not be repeated here. We, nevertheless, mention that the adopted convergence criterion
is that the difference of the averaged torque (along a turn) between two consecutive turbine revolutions
must be lower than the 0.1%.

The grid convergence study was performed at TSR = 1.75 (close to maximum efficiency point)
considering five meshes with increased degree of refinement. As it can be readily seen from Figure 2,
the power coefficient Cp (defined in Equation (1) below) shows a monotonically increasing trend
eventually converging for a mesh with 11 million elements. The differences between the Cp’s of the
two finest grids are below 2%, indicating that the mesh with around five million elements would
represent a good compromise between precision and computational time. However, in the present
study, computations have been performed in the finest grid, comprising 11 million elements, because
in this case an adequate resolution of the boundary layer is achieved for all the considered tip speed
ratios (average y+ = 0.5 in the worst case, the highest rotational speed).
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3. Results and Discussion

3.1. Experimental Validation of Present Computations

Unsteady three-dimensional numerical simulations of the aforementioned CFWT have been
performed for several tip speed ratios aiming to build the turbine efficiency curve Cp (λ). Here, λ
represents the tip speed ratio and Cp the power coefficient, which are defined as:

Cp = P
1
2ρDHV3

∞

λ = ΩR
V∞

(1)

where ρ is the fluid density, P represents the power transferred from the fluid to the blades, and D = 2R
is the turbine diameter.

In the present computations the performance curves Cp (λ) are built keeping fixed the flow
incoming velocity V∞ = 1.62 m/s and varying the turbine rotational speed Ω.

The obtained results are compared in Figure 3 versus the experimental measurements and
computations presented in [2]. The experimental measurements (“Test” points) were corrected to
counterweight certain parasitic friction that “was unaccounted for in the turbine test” (“Test adjusted”
points) [2]. Additional to those curves, also the results obtained with a 2D CFD simulation and with the
double multiple streamtube (DMS) model, both performed by the authors of [1] and [2], are presented
in Figure 3.

From Figure 3, it is clearly seen that neither the 2D CFD approach nor the DMS model are able
to reproduce satisfactorily the measurements. Both simplified techniques predict the maximum of
the curve Cp (λ) at higher TSR than the experiments and also the forecasted maximum is noticeably
higher. Moreover, the curves for both simplified methods, although they are close for low TSR values,
differ significantly for TSRs beyond two. The high values of the Cp in the case of 2D simulations are
a typical result in CFWT [11,18] because three-dimensional effects are absent, in particular blade tip
vortex development. The deficiencies of DMS are attributed to the known problems of such potential
method when dealing with high solidity turbines [36] (here, the turbine solidity σ is defined as σ = Nc/R,
where N is number of blades and c the blade chord length), where its performance is systematically
overpredicted. The present unsteady 3D simulations, on the other hand, approximate very reasonably
both, the position of the Cp (λ) maximum and its magnitude, in spite of considering only the blades.
Also, the shape of the curve for TSR larger than maximum is correctly described. For lower values of
TSR, the simulations point out the expected decreasing trend of the curve. In summary, as it is readily
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noticed from Figure 3, the performed unsteady 3D simulations very much improve the predictions of
the simplified approaches, being also very close to the experimental points.

In the following sections, the behavior of the main global turbine variables (torque and force
coefficients) at different operation points is described. Moreover, visualizations of vorticity iso-surfaces
at such points are also included.Energies 2020, 13, x FOR PEER REVIEW  8 of 28 
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Figure 3. Power coefficient versus tip speed ratio curves for the performed computations versus the
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3.2. Analysis of the Torque and Force Coefficients for Different TSR Values

In [27], the hydrodynamic performance of the considered CFWT was analyzed at the tip speed
ratio λ = 1.75 in comparison with two newly proposed designs which included winglets. Such TSR
was very close to the maximum of the curve Cp (λ), i.e., the best efficiency point (BEP). The aim now is
to extend such analysis to different operation points for higher and lower TSR values than the BEP,
corresponding to a turbine rotational velocity of 60 rpm. Three additional operation points have been
selected: one for a higher TSR of λ = 2.03, corresponding to Ω = 70 rpm, and two points for lower TSR,
λ = 1.46 and 1.17, corresponding to Ω = 50 and 40 rpm respectively. The last one corresponding to the
deep stall regime.

The employed coordinate system is illustrated in Figure 4 where the azimuth angle θ runs from
0o to 360o along a complete turn of the blade. In such a reference frame, the upstream semi-cycle is
represented by angular positions 0o

≤ θ ≤ 180o and the downstream semi-cycle by 180o
≤ θ ≤ 360o.

Figure 5 shows the results obtained along a turbine revolution, for the four TSR considered values,
for the torque coefficient Cm, which is defined as:

Cm =
M

1
4ρD2HV2

∞

(2)

where M is the torque transferred to the turbine by the fluid. The torque and power coefficients are
related by Cp = Cm λ. It is important to realize that, as the normalization of M implies only the fixed
incoming fluid velocity, fluid density and turbine geometrical dimensions, for the different considered
angular velocities the Cm value is also an indication of the total torque. Moreover, due to the definition
of the tip speed ratio, the trend of the TSR values (increasing or decreasing) coincides with that of the
turbine rotational velocity. Therefore, in the following discussion, the independent variable will be
equally taken as λ or Ω.
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Along a turn, the flow attacks the blades with a varying angle which impacts the boundary layer
development. Depending on the TSR and azimuth position θ, it experiences separation resulting
eventually in vortices detachment. The flow crossing the turbine slows down, as a result of the
interaction with the blades, constituting the wake. As a consequence, the transfer of the torque to
the blade happens mainly in the upstream semi-cycle, which can be clearly seen in Figure 5a for all
considered rotational velocities Ω. In the downstream semi-cycle the average transferred torque is very
small or even negative. The behavior of the torque along a single blade revolution can be summarized
as follows. At θ = 0o the torque coefficient is slightly negative; in fact, close to that position Cm

presents its absolute minimum which moves from negative to positive values of θ as Ω increases: −30o

for 40 rpm, 0o for 50 rpm, 10o for 60 rpm and 20o for 70 rpm. As θ increases, Cm grows up to reaching
positive values at an angle which also grows with rotational speed. The torque coefficient augments
with the azimuth angle attaining its absolute maximum at some point in the neighborhood of 90o.
Again, the position of the maximum displaces towards higher θ values as Ω raises (78o for 40 rpm, 85o

for 50 rpm, 93o for 60 rpm and 100o for 70 rpm). As will be demonstrated later, this trend is due to a
bound vortex detachment process from the blade at a position which depends on TSR: the lower λ,
the sooner such detachment happens. Considering the previous paragraph, it can be concluded that
the maximum torque transfer from fluid to an individual blade is achieved for the case of 50 rpm and
the minimum in the 70 rpm case. After that maximum, Cm declines up to reaching a local minimum in
the surroundings of θ = 180o, which is negative for the three higher values of Ω but still positive for
40 rpm. Such decreasing shows a small ripple for the two lowest angular velocities, but it is monotonic
for the two highest TSRs. In the downstream semicircle, the torque coefficient versus θ shows pretty
small absolute values alternating positive and negative values and, in particular, for Ω = 70 rpm the
torque is nearly always lower than zero. The Cm behavior in this part of the blade trajectory is not
monotonous but presents some undulations, characterized by some small local maxima and minima.

The turbine torque coefficient is the sum of the Cm components of the three individual blades
and it is presented in Figure 5b. The corresponding curves for a turn show three maxima and three
minima, each of them corresponding to the passage of one blade. Depending on the rotational velocity
such Cm components interact positively (incrementing the total Cm) or negatively (reducing the total
Cm). It is seen that, for TSR close to the BEP (Ω = 60 rpm), the turbine maximum torque coefficient is
noticeably higher than the respective maximum for an individual blade, but for the deep stall regime
(Ω = 40 rpm) the contrary happens; for the two intermediate TSRs both maximum values (total and
individual) are very similar. Regarding the minima, these are positive except for the 60 rpm conditions,
where they are slightly negative. Moreover, for the two lowest TSRs the minima show some ripples, in
contrast to the two highest TSRs which are as clear as the maxima. The maximum value of the total Cm

peak is obtained for Ω = 60 rpm, while the minimum is achieved for Ω = 70 rpm. It is interesting to
notice that the highest values for the minima are obtained for the two smallest values of Ω and that the
BEP condition presents the lowest minima.

The computed averaged turbine torque coefficient Cm is shown in Table 1, indicating that the
maximum value is obtained for the rotational velocity of 60 rpm.

Table 1. Computed averaged turbine torque coefficient depending on rotational velocity and λ.

Average torque coefficient versus TSR/angular speed

Ω [rpm] 40 50 60 70

λ [−] 1.17 1.46 1.75 2.03

Cm [−] 0.1098 0.1332 0.1559 0.1244

The low average torque coefficient for the two smallest Ω’s is due to the shape of the Cm curve
close to the minima, i.e., the range of azimuth angles close to the minima is remarkably wider than that
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close to the maxima. This fact is of course related to the dynamics of vortices detachment along the
blade trajectory.

Other interesting parameters for the operation of the CFWT are the force coefficients. Here, we
examine the thrust (CD) and the lateral force (CL) coefficients, corresponding to the forces undergone
by the turbine in the direction aligned with the flow (x–axis) and the horizontal direction perpendicular
to it (z-axis, see Figure 4), respectively. They are defined from the thrust D and lateral L forces as:

CD = D
1
2ρDHV2

∞

CL = L
1
2ρDHV2

∞

(3)

The obtained results for the thrust coefficients can be appreciated in Figure 6, for one blade
(subplot a) and three blades (subplot b). Regarding the behavior of CD for a single blade, for all the
TSRs, a maximum is attained for θ ≈ 90o (hydrofoil perpendicular to the incoming free stream), which
increases with growing Ω, as expected because the fluid velocity experienced by the blade is higher for
faster rotational velocity. At the azimuth positions where the chord of the blade is aligned with the
incident fluid velocity (θ ≈ 0o, 180o), CD presents a minimum which can be even barely negative. In
the downstream semi-cycle, the thrust coefficient undergone by the blade is significantly smaller than
that in the upstream semicircle, due to the wake effects. Interestingly, for the highest TSR, CD is the
lowest because the boundary layer remains attached to the blade, except by the tip vortices. In the case
of the three blades (Figure 6b), CD presents three maxima and three minima as for Cm. In this case, the
minima are in all cases well defined and they appear when the three blades are in the azimuth angles
around 30o, 150o and 270o. However, for Ω = 50 rpm, the minimum is more rounded and significantly
higher for the rest of TSRs. On the other hand, the maxima for the two lowest rotational velocities
are wider and not so well defined as for the other two cases; they appear when the blades are in the
azimuth angles around 90o, 210o and 330o. As a result, the average total thrust coefficient increases
with the TSR. However, the values of CD for Ω = 60 and 70 rpm are very close.

Figure 7 presents the results for the lateral force coefficient for one blade (Figure 7a) and three
blades (Figure 7b). In the case of a single blade, all the cases present the absolute minimum at θ ≈ 50o

(of roughly the same magnitude) and the absolute positive maximum in the range 120o
≤ θ ≤ 140o.

Beyond that maximum, CL decreases up to reaching a secondary minimum when the blade moves into
the downstream semi-cycle and then increases again, attaining a positive secondary maximum in the
range 270o

≤ θ ≤ 350o which displaces towards higher azimuth angles with growing TSR. At θ = 0o,
when the chord is aligned with the incoming flow, the two highest Ω present positive values for CL
but interestingly for the two lowest rotational speeds, the values are negative, as a result of the vortex
shedding from the leading edge at this position (see below). The lateral force coefficient of the three
blades shows again three maxima and three minima. The positive maxima are located when the blades
are situated around the azimuth angles of 0o, 120o and 240o, i.e., when the chord of one blade is aligned
with the direction of the unperturbed flow. On the other hand, the negative minima occur when the
blades are positioned around 60o, 180o and 300o, i.e., when the chord of one blade is antiparallel to the
incoming flow. Moreover, for Ω = 40 rpm, they are barely positive and, in general, the absolute value
of the maxima is lower than that of the minima which means that the average lateral force coefficient,
CL, is negative. This implies that the lateral force is biased towards the direction in which the blades
drag the fluid in the upstream semi-cycle. Finally, CL increases with decreasing rotational speed and,
in this case, for Ω = 40 rpm, is double than for Ω = 70 rpm.
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3.3. Visualization of Vorticity Iso-Surfaces for Different TSR Values

The observed behavior of the torque and force coefficients are directly related with the evolution
of the three-dimensional vorticity iso-surfaces for the different tip speed ratios. Figures 8–12 show such
evolution along a turbine revolution for the four considered rotational speeds of 40, 50, 60, and 70 rpm.
To the best of authors’ knowledge, this is the first time that such 3D illustrations have been presented.

Figures 8–12 show the evolution of the vorticity iso-surface
∣∣∣∣→ω∣∣∣∣ = 60 Hz along a blade turn for

the different angular speeds. Only the upper half of the blade is illustrated in such figures. In them,
azimuth change between frames from (a)–(f) is roughly ∆θ = 20o. The incoming flow is directed along
the negative x-axis. Therefore, blade 1 (B1 in blue) position at (a) is θ = 0o and at (f) is θ = 100o,
consequently, at (a) blade 2 (B2 in red) position is θ = 120o and at (f) θ = 220o; finally, at (a) blade 3 (B3
in green) position is θ = 240o and at (f) θ = 340o. In this way, it is possible to follow the evolution of
the vorticity iso-surface along the complete circumference. An interesting feature of such iso-surfaces
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is that in them a rough, corrugated pattern can be distinguished. This fact was already noticed in [27]
which showed just one illustration of it. In such study, it was found that the iso-surface wrinkled
pattern followed the skin friction lines reflecting the presence of counter-rotating quasi-stream vortices
developing in the near wall region of the flow along the blade surface.
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Figure 8 presents the results for Ω = 70 rpm which corresponds to an operation point characterized
by attached flow as the angles of attack are kept below the stall point along the whole blade trajectory.
Then, we say that the blade operates in the attached flow regime. At θ = 0o (B1) it can be appreciated
that the vorticity iso-surface is mainly attached to the blade with the absence of a tip vortex because
the flow is aligned with the blade chord. At θ = 40o, the tip vortex starts to develop, growing in size
up to θ = 100o. At θ = 120o (B2) a noticeable enlargement of the isosurface beyond the trailing
edge can be appreciated and also the tip vortex experiences the convective motion along the flow
direction showing its maximum length. The iso-surface presents a modest growth up to θ = 180o

where the tip vortex is about to detach. From that position vorticity diffusion and dissipation effects are
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dominant over its production with the result that detached vorticity decays rapidly and at θ = 220o

the iso-surface is totally attached to the blade. From θ = 240o to θ = 280o (B3) another smaller
tip vortex develops. However, such a vortex is not visible for θ = 300o and the isosurface remains
attached to the blade up the end of the turn.
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Figure 8. 3D visualization of the evolution of the vorticity iso-surface of 60 Hz for Ω = 70 rpm. Azimuth
angle change at each view from (a–f) corresponds to 20o, approximately.

Figure 9 shows the evolution of the 60 Hz vorticity iso-surface for Ω = 60 rpm, which is the
operation point close to BEP. Its behavior between θ = 0o and 100o (B1) is similar to that observed for
70 rpm: the iso-surface remains attached to the blade except for the development of the tip vortex,
which is longer up to θ = 60o but shorter for larger azimuth angles. At θ = 120o (B2) such tip vortex
has been noticeably reduced regarding that at Ω = 70 rpm. A distinctive feature of the iso-surface is
the bound vortex that is already visible at 140o: the boundary layer at intrados (blade surface pointing
toward the rotation axis) of B2 starts to grow from the leading edge towards the trailing edge. However,
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such growth does not happen along the whole blade span, but starts at some point around one third
of the blade semi-span H from the tip. Its origin is the formation of a node in the friction lines (see
Figure 10). Later, the vorticity iso-surface detaches from the blade intrados in direction towards the
symmetry plane but remains attached in the upper part, forming an arch-like vortex clearly visible
from θ = 160o. Such a vortex, which is called an omega or dynamic stall (DS) vortex in the context of
finite wings [44], displaces towards the trailing edge at the same time that the iso-surface starts to be
detached in the upper region of the trailing edge (θ = 180o). Further, the Omega vortex squeezes as it
crosses the blade trailing edge (θ = 200o); at this position also the tip vortex has detached. As soon as
the vorticity iso-surface is detached, it quickly dissipates and at θ = 220o only some small parts of it
are visible behind blade B2. At θ = 240o (B3) the iso-surface is mainly attached to the blade and a
new tip vortex starts to develop whose length first grow up to θ = 280o and then decreases up to the
end of the blade revolution, θ = 360o.
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Figure 9. 3D visualization of the evolution of the vorticity iso-surface of 60 Hz for Ω = 60 rpm. Azimuth
angle change at each view from (a–f) corresponds to 20o, approximately.
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The appearance of the omega vortex is characteristic of the dynamic stall phenomenon on straight
wings with flat tips [44], which is the geometry of the straight blade Darrieus turbine configuration
considered in this study. Therefore, omega vortices are expected to appear in CFWT operating at
low TSR. Moreover, such omega vortex usually appears in combination with the tip vortex forming a
vortical system [44]. Figure 10 clearly shows such system of vortices in the CFWT where the omega
vortex originates from a focus point (one kind of singular point of the skin friction lines [27]) and
quickly separates from the blade surface. It is possible to see that the areas where both, the omega and
tip vortices, originate have higher values of the skin friction coefficient than the rest of blade intrados.

Figure 11 shows the evolution of the 60 Hz vorticity iso-surface for Ω = 50 rpm. At this rotational
speed, corresponding to a TSR λ = 1.46, the relative flow angle of attack overcomes the static stall angle
of the hydrofoil during an appreciable azimuth range of the blade trajectory; hence, we say that the
blade operates in the stall regime. This fact is already realized at θ = 0o (B1), where the vorticity
isosurface is clearly separated in a portion of the span and even the shedding of a hairpin vortex can
be appreciated. Such a phenomenon is seen up to θ = 20o, where also the tip vortex starts to develop.
From 40o to roughly 100o, the isosurface keeps attached and the tip vortex grows attaining a larger
length than in the two previous rotational velocities. At θ = 120o (B2), the Omega vortex is already
clearly seen (earlier than for 60 rpm). It displaces toward the trailing edge of the blade while it becomes
distorted. At θ = 180o it has reached the end of the chord; the tip vortex has been detached and
greatly dissipated. Also, some other portions of the iso-surface along the extrados of the blade (side
pointing outward the rotation axis) are being separated. From that point on, several elongated vortical
structures form and detach from the blade extrados. Also, the tip vortex develops again. This is true
up to the end of the blade revolution at θ = 360o (B3). An interesting observation is that the dynamics
of formation and shedding of such elongated vortical structures is local and change from blade to
blade; compare for instance the shape of the vorticity iso-surface for B1 in Figure 11a and for B3 in
Figure 11f. Movies are included as additional material [see Supplementary Materials] which illustrate
the dynamic behavior of the 60 Hz vorticity iso-surface for the four rotational speeds considered.
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Figure 11. 3D visualization of the evolution of the vorticity iso-surface of 60 Hz for Ω = 50 rpm.
Azimuth angle change at each view from (a–f) corresponds to 20o, approximately.

Finally, Figure 12 shows the evolution of the 60 Hz vorticity iso-surface for Ω = 40 rpm, also in the
blade stall regime. At θ = 0o (B1) the isosurface is massively detached from the blade extrados along
its whole span, without the presence of a tip vortex. Up to θ = 80o such tip vortex develops, reaching
the maximum length attained in the computed cases; however, the isosurface remains attached to the
blade. At θ = 100o the Omega vortex is already visible; it moves towards the blade trailing edge and
distorts from θ = 120o (B2) but, at the same time interacts in a complex way with other elongated
vortices formed at the blade intrados. At θ = 180o the Omega vortex has nearly disappeared, same as
the tip vortex. At this point, the isosurface at blade extrados presents detachment, first as elongated
structures and finally, near the end of the revolution (B3), massively. As already mentioned, movies
are included as additional material presenting the evolution of the 60 Hz vorticity isosurface along a
complete blade turn [see Supplementary Materials].
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4. Analysis of the Averaged Flow in a Turbine Revolution

In this section, the averaged flow field in a turbine revolution is analyzed. The results of such
analysis can be compared with some of the evaluations performed with the BEM method, specifically
with those based on the double multiple streamtube (DMS) approach. Such comparison will be
performed for the case with TSR = 1.75, i.e., the operation point closest to the BEP.

The DMS method [45] is similar to the BEM approach, but in the first the induction factor is
different in the upstream half than in the downstream half of the blade rotation. The DMS assumes
that the vertical rotor can be represented by a pair of actuator disks in tandem at each level of
the rotor. This generates a sharp change in the induced velocity at the mid-plane of the turbine.
The upstream component of the incoming velocity is lower than the unperturbed velocity. At the
mid-plane between upstream and downstream the velocity reaches an equilibrium value lower than
the upstream component. The velocity in the downstream half is again smaller than the equilibrium
velocity and in the wake the velocity is even lower. The swept volume of the rotor is divided in a series
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of independent streamtubes to which the momentum balance is applied to determine the drag forces
on each of them and their induced velocities. Due to its simplicity and speed the DMS approach is still
the main preferred option, especially in industry.

As the outcomes of the BEM-DMS method are the force and power coefficients expected in a
turbine turn, it is reasonable to evaluate the average flow field along a rotor revolution obtained by
CFD and extract some key parameters which are employed by the simplified models. From them,
the most important is the fluid velocity at the position of the blades because from such variable the
interference and induction factors are derived. Therefore, the first task to be addressed in this section
is the averaging of the instantaneous flow fields along a CFWT revolution and the discussion of its
main features.

In the configuration employed in this work, considering two different reference systems connected
by sliding mesh interfaces, the averaging option of the employed software does not work properly to
build the average flow field in the stationary frame. The reason is that such an average is performed
in the relevant reference frame, i.e., it is not possible to get the averaged flow field in the rotating
frame expressed in the steady frame. Therefore, the available instantaneous fluid field in the stationary
frame is saved at each time step and later a self-made matlab script reads and averages the successive
instantaneous results to produce the final averaged fluid field variables in the steady frame.

Figures 13–15 show the pressure, velocity and turbulent kinetic energy fields in three horizontal
planes. The first plane, y/H = 0.1, is close to the symmetry plane, the second, y/H = 0.5 is just on the
middle of the blade semi-span and the third, and y/H = 1.0, is placed exactly on the blade tip. In such
figures, the flow is from left to right, the dashed black line represents the circular trajectory described
by the blades and the solid white lines delimitate the inner and outer boundaries of the rotating frame.

The average pressure field in the three planes is shown in Figure 13. It can be clearly observed
that the cylindrical lateral surface Σ described by the blade trajectory (see below) behaves as a pressure
discontinuity, due to the blades passage. In the upstream semi-cycle a pressure jump is noticed
(red-green to blue), then the pressure recovers along the inner domain (blue to green) and eventually
there is a second pressure jump (green to blue) across the downstream semi-cycle. Such pressure
discontinuity can also be appreciated in the vertical mid plane (see below). This fact agrees with the
basic hypothesis of the actuator disk. The high-pressure region is noticeably biased toward the upper
semicircle. Inside of surface Σ, the pressure recovery is not symmetric regarding the x axis (notation
of Figure 4) but is slower in the area of negative z values, coinciding with the higher fluid velocity
(Figure 14) and turbulent kinetic energy (Figure 15). Also, in the turbine wake the pressure is slightly
smaller in the upper half than in the lower half.

Figure 14 shows the fluid average velocity magnitude field in the same three planes. A clear low
velocity region is observed upstream of Σ, coinciding with the area of highest pressure. Therefore,
the cylinder inside the blade trajectory behaves a permeable solid which deflects part of the flow but
the rest is able to cross it, being decelerated. Moreover, in the upper semicircle the blades slow down
the fluid but in the lower semicircle they drag it accelerating the water. This fact produces that at
the blades tip (Figure 14c) the fluid is able to surround the porous cylinder faster along the lower
semicircle than in the upper one. As a result, the flow in the turbine wake is far from being symmetric
being slower in the upper half than in the lower half, a fact that has been found experimentally in [29].

Figure 15 presents the averaged water turbulent kinetic energy in the three considered planes.
The maximum values are obtained in the lower half of Σ, where the velocity is larger but also where the
Omega vortex shown in Figure 10 develops eventually detaching from the blade. Moreover, the wake
also presents high values of turbulent kinetic energy especially in the plane aligned with the blades tip.

Figure 16 illustrates the fluid variables averaged fields at the vertical mid plane. In the figure,
where the vertical scale has been enlarged for a better view, the white line shows the position of the Σ
surface which delimitates the porous cylinder. Flow progresses from left to right. The velocity field,
shown in Figure 16a, demonstrates that the porous cylinder deflects part of the flow, surrounding the
blades tip, and decelerates the fluid that crosses through it. Moreover both, the wake as well as the
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fluid acceleration over the turbine, are clearly visible in such figure. Pressure discontinuity along the Σ
surface, generated by the blades passage, is nicely seen in Figure 16b. There is one pressure sudden
drop through the upstream side, a certain pressure recovery along the porous cylinder and a second
jump through the downstream side. In the upper side of Σ, pressure is continuous along the vertical
direction but presents lower values than in the rest of the cylinder, a fact that is connected with the
higher velocities seen in such area. The top surface of Σ is also a zone which presents high values of
turbulent kinetic energy (Figure 16c), which is convected with the wake, a fact connected with the
appearance of a strong shear layer along the blades surface and the detached tip vortices. Therefore,
according to the presented picture, the region close to the blades tip is characterized by relatively
high averaged velocities, low pressures and large values of turbulence intensity, effects that result in a
reduction of the turbine power coefficient and are the origin of the so-called tip losses.
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Figure 13. Average pressure field in three horizontal planes (a) y/H = 0.1, (b) y/H = 0.5, (c) y/H = 1.0.
The dashed black line represents the circle described by the blades chord and the solid white lines
delimitate the inner and outer boundaries of the rotating ring. Flow is from left to right.

Figure 17 presents a 3D view in perspective showing the lateral cylindrical surface Σ, the averaged
velocity field in the horizontal plane located at y/H = 0.5 and samples of streamlines illustrating the
three-dimensional distribution of the averaged flow through the turbine.
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Figure 14. Averaged velocity field in three horizontal planes (a) y/H = 0.1, (b) y/H = 0.5, (c) y/H = 1.0.
The dashed black line represents the circle described by the blades chord and the solid white lines
delimitate the inner and outer boundaries of the rotating ring. Flow is from left to right.

The non-dimensional averaged fluid velocity along the blades trajectory in the three considered
horizontal planes is compared in Figure 18 with that computed by means of the DMS approach
(performed with the public software Qblade [46]) at the same operational point λ = 1.75. It can
be appreciated that both curves behave qualitatively similarly: they present velocities close to the
incoming flow velocity in the upstream semi-cycle and a marked velocity deficit in the downstream
semicircle. However, there are quantitative differences. On the one hand, the DMS assumes that the
fluid velocity seen by the blade at 0o and 180o is the unperturbed one decreasing in the range 0o–90o

and then increasing up to 180o; however, the computed averaged CFD velocity is around 0.8 V∞ at
0o and larger than V∞ at 180o, showing a quasi-monotonic raising behavior. As evidenced by the
contour plots in the horizontal planes, in the lower semicircle the blades drag the fluid accelerating
it reaching its maximum velocity at an azimuth angle around 180o. In the downstream semicircle,
the DMS velocity decreases up to reaching a minimum of 0.65 V∞ at about 290o and increases again
attaining the free stream velocity at 360o. In the CFD case, the velocity decreases very fast beyond the
previous maximum, reaching the incoming fluid velocity at about 210o and a minimum value of about
0.55 V∞ at 300o (y/H = 0.1). After that, the velocity increases rapidly to reach the 80% of the free stream
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velocity at 360o. It is observed that the curves for y/H = 0.1, 0.5 are very close (showing only some
differences in the range 150o < θ < 240o) but for y/H = 1.0 it is remarkably different, where for a wide
azimuth range the velocity is higher than the incoming velocity. This is the result of the deflection of
the average flow by the porous cylinder and illustrates its three-dimensionality.Energies 2020, 13, x FOR PEER REVIEW  22 of 28 
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Figure 15. Average turbulent kinetic energy field in three horizontal planes: (a) y/H = 0.1, (b) y/H = 0.5,
(c) y/H = 1.0. The dashed black line represents the circle described by the blades chord and the solid
white lines delimitate the inner and outer boundaries of the rotating ring. Flow is from left to right.

As can be observed in Figure 18, the nearly symmetric behavior of the velocity computed by DMS
regarding the horizontal x axis is not found in the CFD computations. Such asymmetry has a viscous
origin that the DMS approach, being based on BEM theory, cannot reproduce. Moreover, although the
minimum fluid velocity at the blades trajectory is found about the same position, the values are quite
different, the CFD results being significantly lower than the DMS estimations.
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Figure 16. Averaged fluid variables in the vertical middle plane (z = 0). (a) Velocity, (b) pressure, (c)
turbulent kinetic energy. The white line indicates the projection of Σ surface.
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5. Conclusions

In this contribution, unsteady 3D numerical simulations of the flow around a cross flow water
turbine of the type H-Darrieus have been performed. The computational mesh was refined in order to
allow the resolution of the boundary layer development along the blades. Moreover, the transitional
turbulence model employed (transition SST) was capable to handle the laminar to turbulent transition
of such boundary layer. As a result, the present computations reproduce satisfactorily the efficiency
curve of the considered turbine [2].

The torque is transferred from the fluid to each blade mainly in the upstream semi-cycle being
such transfer very small in the downstream semicircle. For each blade, the maximum torque is
attained around an azimuth angle at about 90o, but the exact value decreases with the rotational
speed. The torque generated by the different blades is added to obtain the total turbine torque, which
presents the highest maximum for the BEP. The range of azimuth angles where the turbine generates
the maximum and minimum torque values is similar for Ω = 70, 60 rpm. However, for the cases of
smaller TSR, corresponding to the stall regime, the range is wider near the minima than in the maxima,
which implies a lower torque for such cases. The maximum thrust and lateral forces experienced by
the turbine increase with the rotational speed and the revolution averaged lateral force is negative,
i.e., the force is biased downwards.

Regarding the behavior of vorticity iso-surfaces, it has been shown that for Ω = 70 rpm the flow
remains essentially attached with the exception of the tip vortex presence; it develops in the upstream
semicircle and detaches in the downstream semicircle. Also, near the azimuth angle of 180o a moderate
boundary layer separation at the blade intrados can be appreciated. As the turbine rotational velocity
decreases, a bound omega vortex starts to develop in the blade intrados; such vortex does not cover all
the blade span but it originates in a focus located around one third from the blade semi-span (from the
blade tip) and appears in combination with the tip vortex. Such omega vortex grows, separates from
the blade, squeezes and finally fragments as shown in Figures 11 and 12. The azimuth angle of the
omega vortex appearance decreases with Ω and, at the same time, the detachment of the boundary
layer becomes more significant, affecting negatively the power extracted from the turbine. Finally, in
the stall regime, the length of the tip vortices increases with decreasing TSR.

The average flow field presented in Figures 13–15 illustrates clearly that the turbine behaves as a
porous cylindrical surface, which deflects part of the flow but the rest crosses it (Figure 17), generating
a pressure discontinuity at the surface swept by the blades. This fact coincides with the hypothesis of
the actuator disk theory. The velocity distribution remains continuous, but the porous cylinder causes
a partial defection of the velocity field, similar to what happens with a solid object. Moreover, due
to the definite blade rotation direction, the wake behind the turbine is not symmetric but the area of
lowest velocity and pressure is biased towards the upper semicircle. This fact cannot be described
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by the BEM-DMS approach, so the fluid velocity at the positions of the blades (Figure 18) differs
quantitatively in both computations.

Supplementary Materials: The following are available online at http://www.mdpi.com/1996-1073/13/5/1137/s1,
Video S1: Movies illustrating the evolution of the 60 Hz vorticity iso-surface along a turn for different turbine
angular speeds.
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