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Abstract: As the world is aware, the trend of generating energy sources has been changing from
conventional fossil fuels to sustainable energy. In order to reduce greenhouse gas emissions, the ratio
of renewable energy sources should be increased, and solar and wind power, typically, are driving
this energy change. However, renewable energy sources highly depend on weather conditions and
have intermittent generation characteristics, thus embedding uncertainty and variability. As a result,
it can cause variability and uncertainty in the power system, and accurate prediction of renewable
energy output is essential to address this. To solve this issue, much research has studied prediction
models, and machine learning is one of the typical methods. In this paper, we used a bagging model
to predict solar energy output. Bagging generally uses a decision tree as a base learner. However,
to improve forecasting accuracy, we proposed a bagging model using an ensemble model as a base
learner and adding past output data as new features. We set base learners as ensemble models,
such as random forest, XGBoost, and LightGBMs. Also, we used past output data as new features.
Results showed that the ensemble learner-based bagging model using past data features performed
more accurately than the bagging model using a single model learner with default features.

Keywords: photovoltaic power forecasting; machine learning; lagged data; ensemble; decision tree;
bagging; random forest; XGBoost; Light GBM

1. Introduction

The 196 countries that signed the Paris Agreement in 2015 agreed to make efforts to reduce their
artificial greenhouse gas emissions to zero in the second half of the 21st century. This agreement
highlighted the need to generate energy through renewable resources and was motivated by research
on how to manage and integrate variable power generation systems, such as solar and wind power,
into the grid [1]. Focusing on solar energy, the proportion of solar energy in the power system has
been growing with the large drop in photovoltaic (PV) prices [2]. Photovoltaic power is now one of the
fastest growing renewable energy technologies, and is ready to play an important role in the future
global electricity generation mix. According to International Energy Agency(IEA)’s Renewable 2018,
solar power plants accounted for more than two-thirds of the world’s net electricity capacity growth in
2017. The world’s total renewable-based power capacity is expected to grow 50 percent between 2019
and 2024, with solar power accounting for 60 percent of the rise [3,4].

The high penetration of PV in the power system provides many economic benefits, but solar
energy with the characteristics of variability and intermittency can bring challenge to the safe operation
and reliability of the power system. Power system operators must ensure an accurate balance between
electricity production and consumption at any time, and effective forecasting techniques have become
important to prepare for the grid integration of renewable energy sources with this instability [5].
The solar power forecasting has following advantages: (1) the effective operation of the power grid [6],
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(2) the optimal management of the energy fluxes occurring into the solar system, (3) estimating the
reserves, (4) scheduling the power system, (5) congestion management, (6) the optimal management of
the storage with the stochastic production, (7) trading the produced power in the electricity market,
and (8) reduction of the costs of solar power generation. Accurate predictions can not only contribute
to the reduction of uncertainty in power generation forecasts, but also add to the stable operation
of the system. In addition, it allows photovoltaic plant operators to avoid penalties that may arise
from differences between forecasted and produced energy, and benefits from cost saving for energy
consumers [7–10].

The forecast of solar power can be performed by several methods and machine learning is the
typical method that we focused on in this study. Many algorithms on photovoltaic power forecasting
have been proposed and remarkable results have been achieved by experts and scholars. The following
is the state-of-the-art of photovoltaic prediction based on machine learning methods. Artificial Neural
Networks (ANNs) are useful in data analysis and prediction, and increasingly used for nonlinear
regression and classification problems [11]. Markov chains are stochastic processes having the Markov
property. In a Markov process, the present state fully captures all the information that could affect
the future evolution of the process [12]. K-Nearest Neighbor (k-NN) is one of the simplest machine
learning algorithms based on pattern recognition. It compares the current state with training sets in
a feature space [13]. Support Vector Machine (SVM) stands out for its ability to deal with nonlinear
problems. SVM has three main parameters that highly affect the performance of the technique and
these regulate the kernel function, used to transform the predictors. SVM has shown great potential in
many studies [14]. Recently, Extreme Gradient Boosting (XGBoost), Light Gradient Boosting Machines
(LightGBMs), and deep neural networks have been used in many studies and these have proved useful
in predicting time series [15–17]. Light GBM and XGBoost have recently gained attention in the Kaggle
platform as having good performance. However, both XGBoost and LightGBM tend to overfit at times,
as they are both based on the decision trees. To improve forecasting accuracy and reduce overfitting at
the same time, we proposed an ensemble learner-based bagging model.

2. Machine Learning

Machine learning is a subfield of computer science and is classified as an artificial intelligence.
It has an advantage that a model can solve problems that are impossible to be represented by explicit
algorithms. [18] Machine learning models the relationships between inputs and outputs, even though
the representation is impossible. There are three main ways of learning methods: supervised learning,
unsupervised learning, and ensemble learning. In supervised learning, the computer is given inputs
and outputs, and the goal is to learn a general rule that maps inputs and outputs [19]. In contrary with
supervised learning, an unsupervised learning model does not need outputs. It is able to find hidden
structure in its inputs [20]. The basic concept of ensemble learning is to train multiple base learners as
ensemble members, and to combine their predictions into a single output. In general, the base learner
of the ensemble model is a decision tree and the ensemble model is known to have better results than
the method of using a single model. In this paper, we propose an ensemble model bagging, and as a
base learner we used an ensemble model, not a decision tree. Thus, we call it an ensemble of ensemble.

2.1. Ensemble Methods

2.1.1. Decision Tree

A decision tree is a representative base learner used in most ensemble models of machine learning.
The goal is to create a model that predicts the value of a target variable by learning simple decision
rules inferred from the data features. At each node in the tree, the tree splits into branches based on its
condition. Depending on the outcome of the condition, either the left or the right sub-branch of the
tree is selected. Eventually, a leaf node is reached where the branch that does not split any further is
the decision. [21–23]. A decision tree has some advantages, it is easy to understand, requires less data
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cleaning, the data type is unconstrained, and it is a nonparametric method. But it causes overfitting.
Overfitting is one of the most practical difficulties for decision tree models.

2.1.2. Bagging

Bagging used in statistical classification and regression is a machine learning ensemble
meta-algorithm designed to improve the stability and accuracy of machine learning algorithms.
The algorithm reduces variance, which affects the performance of the forecasting model and helps to
prevent overfitting. [24]. The bagging model is shown in Figure 1 and algorithm as follows:

(1) Create B bootstrap samples L∗(b) (b = 1, · · · , B), where L = (xi, yi)
n
i=1 are learning sets;

(2) For each bootstrap sample, L∗(b), build a forecasting model f (b)(x);
(3) Aggregate B forecasting model to final model f̂ ;
(4) When it comes to the regression model, final models are the average value of the sum of each

forecasting model, f̂ (x) = argmaxk(
∑B

b=1 I( f (b)(x) = k))/B.
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As to why bagging can improve predictability, it can be explained based on the fact that the
expected loss of the average forecasting model is less than the expected loss of a single forecasting
model. Model f̂ (x), built using given learning sets L, highly depends on the L. In order to highlight
this, it is written as f̂ (x) = f (x,L) and for a given forecasting model, the mean forecasting model is
defined as fA(x) = EL f (x,L). Here, the expected value uses the distribution of the population from
which the training data were obtained, and the theorem below shows that the expected loss of the
average forecasting model is less than the expected loss of a single forecasting model.

Let us say that (X, Y) is a future observation that is independent ofL. For the square loss function,
L(y, a) = (y− a)2, the expected losses of f (x,L) and fA(x), R, and RA are defined as follows:

R = E(X,Y)ELL(Y, f (X,L)), RA = E(X,Y)L(Y, fA(X)) (1)
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As the square function is a convex function, Equation (2) is established by the Jensen inequality:

E(X,Y)EL f 2(X,L) ≥ E(X,Y) fA(X)2 (2)

Then, R is always greater than or equal to RA [25]. The bagging model can be applied not only in
PV forecasting but also in various fields [26–29].

2.1.3. Random Forest

Random forests randomize not only input data but also input variables. By averaging results from
multiple trees, it is able to reduce the variance and the overall performance of the model improves [30].
In particular, when a random forest has a large number of input variables, it often shows better
performance than bagging and boosting. The random forest algorithm follows:

(1) For sets L = (xi, yi)
n
i=1, xi ∈ R, create a bootstrap sample L∗ = {yi

∗, xi
∗
}
n
i=1 using n of data.

(2) In the bootstrap sample L∗, only k of the input variables are randomly selected to create decision
trees. At this time, the decision trees are carried out to the specified level of s.

(3) These generated decision trees are linearly combined to create the final learner.

While bagging is a method of reconstructing data to make the model diverse, random forest
reconstructs variables as well as data, and reduces the variance of the model, resulting in better
performance than general bagging. The variance of the bagging model consists of the variance of the
trees and their covariance, respectively (Equation (3)).

Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y) (3)

Although samples were selected randomly with replacement from the all data sets, as each tree
has a large number of overlapping data, it is hard to say that they are independent. In short, Cov(X, Y)
is not zero and it means that as the tree increases, the variance across the model may increase. A way
to reduce the covariance between each tree is needed, which is accomplished by using random forests.
The studies of using PV forecasting with a random forest can be found in references [31–34].

2.1.4. Boosting

Boosting is an ensemble model using decision trees as weak learners and building the model in a
stagewise manner by optimizing a loss function [35]. It is a method that converts weak learners into
strong learners.

In this paper, we used XGBoost and LightGBM, which are types of gradient boosting. Gradient
boosting is a generalization of boosting to arbitrary differentiable loss functions. Gradient boosting
is an accurate and effective off-the-shelf procedure that can be used for both regression and
classification problems.

Let us say that there is a model h0 that takes an input x and predicts the variable y (Equation (4)):

y = h0(x) + error (4)

If the error is not unpredictable random noise, the most intuitive way to increase the forecasting
performance is to eliminate the error. Removing this error is the basic concept of gradient boosting.
In short, rather than predicting y, as the gradient boost moves to the next step, it predicts error and
lowers the error. The process is shown in Equation (5):
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error = h1(x) + error2

error2 = h2(x) + error3

error3 = h3(x) + error4
...

y = h1(x) + h2(x) + h3(x) + h4(x) + . . .+ small error

(5)

Unlike gradient boosting, however, XGBoost adds a regularization term to the object function,
which prevents the model from overfitting. Through the regularization term, XGBoost imposes
penalties on complex models. The mathematical formula is given in Equation (6):

obj(θ) =
n∑

i=1

l(yi, ŷi) +
t∑

k=1

Ω( fk) (6)

where t is the number of trees, fk is the output value of kth tree, Ω is a regularization that measures the
complexity of the model and avoids overfitting, and l is the distance between yi and ŷi, which is used
to measure the training error [36].

LightGBM is a gradient boosting framework that uses tree-based learning algorithms. It is
designed to be distributed and efficient with the following advantages: faster training speed and
higher efficiency, lower memory usage, better accuracy, support of parallel and GPU learning, and
capable of handling large-scale data. While XGBoost uses levelwise loss, LightGBM uses leafwise loss
to further reduce loss [Figure 2]. It is capable of being more than twice as fast as XGBoost based on
the same parameters and requires a large amount of training data because it is sensitive to overfitting.
XGboost and LightGBM are used in forecasting field and are found in references [37,38].
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2.2. Ensemble Model

In this paper, we used an ensemble model as a base learner of the bagging model instead of
a decision tree, which is widely used as a base learner of the bagging algorithm. In other words,
the ensemble model itself is viewed as a base learner [Figure 3].



Energies 2020, 13, 1438 6 of 16

Energies 2019, 11, x FOR PEER REVIEW  7 of 16 

 

 

Figure 3. Ensemble learner-based bagging model algorithm. 

 

3. Framework of Ensemble of Ensemble 

3.1. Datasets and Preprocessing 

In this study, the prediction model was modeled using one year of data (2016) of a PV plant in 

South Korea, with data consisting of hourly temperatures, humidity, irradiation, and actual output. 

Solar power is an energy source greatly affected by weather conditions. In particular, irradiation is 

the most influential factor in output, and many studies have recognized that it is very important to 

be able to predict the solar irradiation effectively. As for this, some overviews can be found in 

references [39–41]. As the power system in the Republic of Korea is operated one-hour based, the 

data used for forecasting solar power output were one-hour timeslot data. The ratio of training data 

to test data was set to 80:20, and the test data were set at the last three to five days of each month to 

take into account the monthly and seasonal characteristics rather than random extraction. The 

following lists the general characteristics of a PV plant in South Korea [42–46]: 

• PV technology, crystalline silicon; 

• rated power, 340 W; 

• tracking, dual-axis tracking system; 

• solar panel tilt angle, 25°; 

• location, South Korea, 35.9° N latitude and 127.7° E longitude; 

• average daily solar radiation, 2.56–5.48 kWh/m2.  

3.2. Feature Engineering and Selection 

Figure 3. Ensemble learner-based bagging model algorithm.

Basically, using an ensemble model provides better performance than using a single model.
The algorithms of boosting models, such as XGBoost and LightGBM used in this study, tend to be
sensitive to hyperparameters. Forecasting performance changes, depending on how we set up the
hyperparameter. If we use many models, accordingly there would be more hyperparameters created
and it makes the result less susceptible to hyperparameters. It means that regardless of tuning the
hyperparameter, we can expect that good performance can be ensured. It also reduces inefficient time
consumption in hyperparameter tuning. In short, by using an ensemble model as a base learner of the
bagging algorithm, we can expect two outcomes:

(1) better performance than single model by using an ensemble model as a base learner;
(2) good performance regardless of hyperparameter tuning.

3. Framework of Ensemble of Ensemble

3.1. Datasets and Preprocessing

In this study, the prediction model was modeled using one year of data (2016) of a PV plant in
South Korea, with data consisting of hourly temperatures, humidity, irradiation, and actual output.
Solar power is an energy source greatly affected by weather conditions. In particular, irradiation
is the most influential factor in output, and many studies have recognized that it is very important
to be able to predict the solar irradiation effectively. As for this, some overviews can be found in
references [39–41]. As the power system in the Republic of Korea is operated one-hour based, the data
used for forecasting solar power output were one-hour timeslot data. The ratio of training data to test
data was set to 80:20, and the test data were set at the last three to five days of each month to take into
account the monthly and seasonal characteristics rather than random extraction. The following lists
the general characteristics of a PV plant in South Korea [42–46]:
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• PV technology, crystalline silicon;
• rated power, 340 W;
• tracking, dual-axis tracking system;
• solar panel tilt angle, 25◦;
• location, South Korea, 35.9◦ N latitude and 127.7◦ E longitude;
• average daily solar radiation, 2.56–5.48 kWh/m2.

3.2. Feature Engineering and Selection

The data features used were date, time, humidity, temperature, irradiation, and actual output.
The value at time t was greatly affected by the value at time t–1. The past values are known as lags and
in this study two lagged outputs were added as new features.

First, the date, time, humidity, temperature, irradiation, one-day-ahead (D-1) and two-days-ahead
(D-2) output were set as new features, and the output set as a label, i.e., the target. Second, the Pearson
correlation coefficient was calculated to correlate the total variables. It has a value between −1 and 1.
The Pearson correlation coefficient is mainly used to approximate the characteristics of variables by
identifying one-to-one correspondence between continuous variables [47]. As one variable increases
and the other increases, it becomes positive and closer to 1; in the other case, it becomes negative and
closer to −1. If there is no relationship, it is close to zero. The formula for calculating the Pearson
correlation coefficient of two n-dimensional vectors X and Y is given by Equation (7):

rxy =

∑n
i=1 (xi − x)(yi − y)√∑n

i=1 (xi − x)2
√∑n

i=1 (yi − y)2
(7)

where x is the mean of X and y is the mean of Y.
The Pearson coefficient method was used to evaluate the correlation between features and label.

The results are shown in Table 1.

Table 1. The Pearson coefficient between variables and photovoltaic output.

Variables Pearson Coefficient Variables Pearson Coefficient

Hour 0.149857 Irradiation 0.956225

Temperature 0.291227 Lagged output (D-1) 0.925120

Humidity −0.628640 Lagged output (D-2) 0.762727

(D-1: one-day-ahead D-2: two-days-ahead).

From Table 1, the following results were drawn:

• The order of correlation is irradiation, lagged output, humidity, temperature, and time (absolute
valued based).

• There is a positive relationship with all variables except humidity.
• Lagged output has a relationship greater than the weather conditions except for irradiation.

3.3. Modeling and Results

The hyperparameters adjusted in this prediction model were of three types: a learning rate tuning
parameter in an optimization algorithm that determines the step size at each iteration, the number
of samples, and the maximum depth of the tree. The hyperparameters were tuned to 0.1, 100, and 5,
in that order. for all models. To verify the effectiveness of the model and assess its performance,
mean absolute error (MAE) and root mean square error (RMSE) were used as an indicator. MAE shows
the average distance between the measured values and the model predictions. The root mean square
error (RMSE) is more sensitive to big forecast errors, and hence is suitable for applications where
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small errors are more tolerable and larger errors cause disproportionately high costs. It is probably the
reliability factor that is most appreciated and used [23]. The MAE and RMSE are shown in Equations (8)
and (9):

MAE =
1
n

n∑
i=1

∣∣∣yi − ŷi
∣∣∣ (8)

RMSE =

√√
1
n

n∑
i=1

(yi − ŷi)
2 (9)

where n is the number of samples in the test set, ŷi is the forecasted photovoltaic power output, and y
is the real photovoltaic power output. In this study, the major contributions are listed as follows:

• We used lagged output data as a new feature to improve forecast accuracy.
• We used an ensemble model as a base learner in bagging model, which gave better performance

than the base learner using a single model. In this paper, we used a decision tree.

We named two features used in this study as follows:

• Default features—the features that used the given variables, including hour, temperature, humidity,
and irradiation.

• New features—the features of past output data that were added to the default features, including
hour, temperature, humidity, irradiation, D-1 output, and D-2 output.

Figures 4 and 5 show the predicted output by the base learner of the bagging model. First of all,
use of the new features showed better accuracy than the output using the default features. As for the
base learner, bagging with an ensemble base learner generally provided a better result than the one
with a single model.
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From Tables 2 and 3 and Figures 6–9, except for June and October, the error of the other 10 months
decreased for MAE. Similarly, in regard to RMSE, the error of 9 months decreased except for June, July,
and October. In May and August, especially, the error decreased remarkably, as shown. Tables 4 and 5
show how much monthly error decreased when using the new features.

Table 2. Mean absolute error (MAE) and root mean square error (RMSE) comparison in the
default features.

Default Features

Base
Learner

Decision Tree Random Forest XGBoost LightGBM

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Jan 0.19755 0.24290 0.18960 0.23644 0.19321 0.25418 0.19892 0.26533

Feb 0.31988 0.50108 0.29083 0.38489 0.29043 0.43317 0.28835 0.43567

Mar 0.31099 0.40583 0.29232 0.34503 0.28656 0.31936 0.28802 0.30982

Apr 0.22439 0.20006 0.22188 0.18288 0.20093 0.13914 0.20435 0.14659

May 0.36698 0.98405 0.36528 0.98833 0.37329 1.01233 0.37396 1.05930

Jun 0.21572 0.18469 0.21287 0.17216 0.20059 0.16217 0.20760 0.15663

July 0.22677 0.18154 0.22460 0.16996 0.20998 0.14262 0.21544 0.15201

Aug 0.50317 1.17744 0.49694 1.14226 0.50409 1.12412 0.48971 1.10444

Sep 0.16023 0.15951 0.14592 0.13070 0.14519 0.11332 0.14862 0.11784

Oct 0.18628 0.17626 0.18131 0.16307 0.17477 0.13875 0.17512 0.13226

Nov 0.23167 0.29501 0.22490 0.26160 0.22249 0.24148 0.22239 0.24293

Dec 0.37042 0.64288 0.35329 0.57893 0.34518 0.52126 0.33349 0.50318
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Table 3. MAE and RMSE comparison in the new features.

New Features

Base
Learner

Decision Tree Random Forest XGBoost LightGBM

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

Jan 0.18306 0.20791 0.17465 0.20080 0.16943 0.19153 0.16887 0.19261

Feb 0.26577 0.32186 0.23252 0.27144 0.22896 0.27347 0.22881 0.28659

Mar 0.19251 0.19801 0.18846 0.18871 0.19471 0.19648 0.19047 0.19747

Apr 0.13213 0.07050 0.12418 0.06371 0.11922 0.05734 0.12170 0.05746

May 0.25107 0.33340 0.24862 0.34152 0.25912 0.35030 0.26826 0.39825

Jun 0.23083 0.17935 0.21850 0.16174 0.22152 0.16184 0.22509 0.16368

July 0.21527 0.18678 0.20443 0.16226 0.18758 0.14779 0.19421 0.15449

Aug 0.29739 0.36561 0.31298 0.41447 0.30205 0.36531 0.29154 0.35976

Sep 0.14408 0.09420 0.13370 0.08136 0.13084 0.07199 0.13066 0.07343

Oct 0.17426 0.15925 0.17450 0.14947 0.18007 0.16552 0.18061 0.16895

Nov 0.16680 0.12603 0.14749 0.12773 0.18266 0.12687 0.18393 0.13263

Dec 0.27169 0.41678 0.26387 0.36839 0.25871 0.31906 0.24655 0.30048

Table 4. Error reduction rate (%) from the default features to the new features (MAE).

Base Learner Decision Tree Random Forest XGBoost LightGBM

Jan 7.334851936 7.885021097 12.30785156 15.10657551

Feb 16.91571839 20.04951346 21.16516889 20.64851743

Mar 38.09768803 35.52955665 32.05262423 33.86917575

Apr 41.11591426 44.03281053 40.66590355 40.44531441

May 31.58482751 31.93714411 30.58480002 28.26505509

Jun −7.004450213 −2.64480669 −10.43421905 −8.424855491

July 5.071217533 8.980409617 10.66768264 9.854251764

Aug 40.89671483 37.01855355 40.08014442 40.46680689

Sep 10.07926106 8.374451754 9.883600799 12.08451083

Oct 6.452651922 3.755998014 −3.032557075 −3.134993148

Nov 28.00103596 34.41974211 17.90192818 17.29394307

Dec 26.65352843 25.31065131 25.05069819 26.06974722

Table 5. Error reduction rate (%) from the default features to the new features (RMSE).

Base Learner Decision Tree Random Forest XGBoost LightGBM

Jan 14.40510498 15.07359161 24.64788732 27.40847385

Feb 35.76674383 29.47595417 36.86774246 34.21825794

Mar 51.20863416 45.30620526 38.47695391 36.26299141

Apr 64.76057183 65.16294838 58.78970821 60.80223753

May 66.11960774 65.44474012 65.39665919 62.40441801

Jun 2.89133142 6.052509294 0.203490165 −4.501053438

July −2.886416217 4.530477759 −3.625017529 −1.631471614

Aug 68.94873624 63.71491604 67.5025798 67.42602586

Sep 40.94414143 37.75057383 36.47193788 37.68669382

Oct 9.650516283 8.339976697 −19.29369369 −27.74081355

Nov 57.27941426 51.1735474 47.46148749 45.40402585

Dec 35.16986063 36.36709101 38.79062272 40.28379506
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Figure 9. RMSE value comparison by base learner of the bagging model (new features).

Tables 6 and 7 show the average MAE and RMSE rank of the default features and new features,
and all bagging models using ensemble base learner show lower error than the when using the single
model as a base learner.
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Table 6. Rank by average performance metrics from January to December (default features).

MAE RMSE

1 LightGBMs (0.26216) XGBoost (0.38349)

2 XGBoost (0.26623) LightGBMs(0.38550)

3 Random Forest (0.26665) Random Forest (0.39635)

4 Decision Tree (0.27617) Decision Tree (0.42927)

Table 7. Rank by average performance metrics from January to December (new features).

MAE RMSE

1 Random Forest (0.20199) XGBoost (0.20229)

2 LightGBMs (0.20256) LightGBMs(0.20715)

3 XGBoost (0.20291) Random Forest (0.21097)

4 Decision Tree (0.21041) Decision Tree (0.22164)

4. Conclusions

The change in energy mix from conventional to sustainable energy will increase the penetration
of solar energy to the power system. In order to cope with solar penetration, which is highly affected
by weather conditions, and to form a benefit value chain ranging from grid operator to plant operator
and energy consumer, improved forecasting technology is necessary.

In this study, we formed a bagging model for photovoltaic forecasting and in order to improve
forecasting performance, the following two models were proposed. First, we proposed an ensemble
model as a base learner of the bagging algorithm rather than using a decision tree, which is generally
used as a base learner of the bagging model. Second, we proposed using past output data as a new
feature. The proposed model showed better performance than the existing method and details of
simulation conclusions follow:

(1) The overall performance of using an ensemble model as a base learner in the bagging predictor
was better than using a decision tree-based bagging predictor.

(2) The results showed that adding past output as new features instead of just using weather
conditions provided better performance to make predictions and it reduced the error rate by up
to 50% or more.

(3) The ensemble models used as a base learner of the bagging model were random forest, XGBoost,
and LightGBM, and they did not show much difference in performance.

The improvement achieved through the model was demonstrated in the data reported. However,
the problem is that the MAE metric is still quite high. Clearly, the model presented showed good
performance, but needs to be improved to be an accurate model. As mentioned previously, in this
study, in order to compare performance difference between the single model learner-based bagging
model and the ensemble model learner-based bagging model, we did not tune each base learner’s
hyperparameter for optimization. In other words, all the same hyperparameters were used for all
models. The impact of the hyperparameter was reduced by using the ensemble model as the base
learner, but it could certainly be lower than it is now if the optimal hyperparameter were set and the
prediction was made. To improve the model’s accuracy, we plan to do additional studies, such as
optimization of the hyperparameter, data cleaning, and others.
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