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Abstract: Power system steady-state security relates to its robustness under a normal state as well as
to withstanding foreseeable contingencies without interruption to customer service. In this study, a
novel cellular computation network (CCN) and hierarchical cellular rule-based fuzzy system (HCRFS)
based online situation awareness method regarding steady-state security was proposed. A CCN-
based two-layer mechanism was applied for voltage and active power flow prediction. HCRFS block
was applied after the CCN prediction block to generate the security level of the power system. The
security status of the power system was visualized online through a geographic two-dimensional
visualization mechanism for voltage magnitude and load flow. In order to test the performance of
the proposed method, three types of neural networks were embedded in CCN cells successively
to analyze the characteristics of the proposed methodology under white noise simulated small
disturbance and single contingency. Results show that the proposed CCN and HCRFS combined
situation awareness method could predict the system security of the power system with high accuracy
under both small disturbance and contingencies.

Keywords: steady-state security assessment; situation awareness; cellular computational networks;
load flow prediction; contingency; fuzzy system

1. Introduction

With the development of grid interconnection, the structure of modern power systems
is expanding. It is constantly developing in the direction of high voltage, long distance,
and large capacity, and becoming more complex. At the same time, the proliferation
of highly permeable renewable energy sources, such as wind and solar energy, makes
the electricity market impose loads on the grid in a more unpredictable, uncontrollable,
and dynamic way. It is difficult to predict power grid information with an increasingly
large geographic area and more dynamic load. Because of that, it is insurmountable for
controllers to see the full picture of the power grid situation under a fault or contingency.
Therefore, fast, accurate, and predictive estimation of the system security status has become
a major concern for dispatchers.

Power system security estimation problems can be classified in dynamic security
analysis and static security analysis [1]. At present, due to the long sampling time of su-
pervisory control and data acquisition (SCADA) system, online security analysis is mainly
conducted from the perspective of static security analysis, regarding voltage, current, ac-
tive, and reactive power security, etc. However, the extensive deployment of a phasor
measurement unit (PMU) provides a possible solution for fast online security situation
awareness. Since dynamic security analysis is based on a steady-state initial value, a fast
online updated static state can be used as an initial state of dynamic security analysis.
Even static state tracking which is fast enough can be considered as a dynamic security
analysis [2].
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Various research studies have been conducted on steady-state security awareness
using traditional methods. Literatures [3,4] have evaluated the voltage and load flow secu-
rity using the situation awareness method. Xiao et al. [3] proposed a situation awareness
method based on a static voltage security region of a large power system integrated with
wind farms. Netto et al. [4] presented an efficient voltage security region construction
tool using probabilistic reliability evaluation to solve a situational awareness problem.
This probability-based voltage security assessment algorithm provides richer visual in-
formation about the system safety level and has the potential for real-time application.
Sun et al. [5] proposed a steady-state operation situation awareness method based on the
dynamic power flow method of the active distribution network to study the operation
state of the power grid under time changes. The traditional methods can supply a fair
result for the system situation, but most of them require the exact system model and are
highly computational.

Wide applications of artificial intelligence (AI)-based power system security analysis
reveal that AI technology is an effective tool for power systems model building, time saving
during power flow computation, and online situation awareness. Fuzzy logic is an intelli-
gent algorithm with natural rules which is closer to human thought than traditional logic
systems. A particle swarm optimization combined K-means fuzzy algorithm was addressed
in [6] for the power system security assessment. Both static and transient security could be
classified as secure or insecure under given states and outages. The fuzzy logic clustering
technique was adopted in [7] by Matos and so forth to evaluate global multi-contingency
steady-state security. Literatures [8–10] proposed a fuzzy logic-based contingency ranking
method instead of the conventional performance index approach to overcome the mask
problems for power system static security analysis. Marannino et al. [10] proposed a
neuro-fuzzy method for the voltage collapse risk classification. Halilčević et al. [11] used
fuzzy membership functions of power system elements to estimate the system security
level online. Later, Halilčević et al. [12] used the deterministic and fuzzy inference method
to continuously estimate the security, adequacy, and reliability of power system current
operation. Kalyani et al. [13] generated synchronized phasor measurements to construct a
neuro-fuzzy network for online voltage security monitoring. Zhao et al. [14] proposed a
hierarchical model for survival situation awareness using variable fuzzy set technology
to estimate system survivability. Various applications of fuzzy logic-based power system
security analysis reveal that fuzzy technology is a highly promising tool for translating
the operator’s linguistic experience to executable machine language which can make the
operator aware of the security state of power networks. The use of the fuzzy set theory of
variables improves the accuracy and objectivity of the evaluation results.

Besides fuzzy logic, other AI methods have been applied in literatures [15–19] regard-
ing power system security awareness. Fan et al. [15] proposed a data-driven system voltage
prediction model based on the generalized regression neural network to dig in-depth
power system operation big data to enhance system situation awareness. Literature [16]
proposed a real-time safety assessment tool based on PMU and a decision tree to estimate
potential safety hazards after failure: Voltage amplitude fluctuation, temperature limit
violation, voltage stability, and transient stability. Literature [17] formulated post-outage
reactive power flow analysis as a nonlinear constrained optimization problem of a bounded
network to be solved by the genetic algorithm (GA). Literature [18] assessed the static
security of the power system using an enhanced radial basis function (RBF) neural network.
Literature [19] proposed a novel steady-state contingency screening method combining the
feed-forward neural network (FFNN) and the fast Fourier transform (FFT). The effective-
ness of the AI methods has been verified through selected research cases and predetermined
schemes. However, because of the time-consuming problem during online neural network
training, the above AI-based methods are not suitable for online application.

CCN is a distributed scalable neural network architecture composed of a computing
element (neural network or other) in each cell, which is suitable for describing complex
nonlinear network systems whose actual model is not available, and learning its dynamic
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characteristics in time and space [20]. As a distributed dynamic recurrent neural network,
the CCN architecture has the advantage of high scalability, effective nonlinear model-
ing, and easy computation parallelized. The CCN has good performance in solving the
problems of transient stability prediction [21], load flow inferencing [22], state estima-
tion [23], dynamic state prediction [24], wide area measurement (WAM) [25], and situation
awareness (SA) [26] using measurements from PMUs. In the previous research by the
author [27,28], different kinds of neural network-based CCN were applied as an effec-
tive tool for power system state estimation. In literature [27], the multi-layer perceptron
(MLP)-based CCN was applied to bus voltage prediction. MLP is a traditional neural
network which is simple and easy to train. Even though it has not taken advantage of
contextual information, the results are acceptable for voltage prediction. In literature [28],
recurrent neural network (RNN)-based CCN was applied to state estimation. The results
showed that the introduction of the CCN technique to the power system state prediction
made it possible for online security analysis application, as the distribute structure of CCN
could estimate the operation state with less time consumed. This paper proposed an online
situation awareness method considering power system static security using echo state
network (ESN)-based CCN and fuzzy logic. Different from MLP and other RNN neural
networks which are hard to converge during the learning process, ESN is an effective tool
for prediction even based on the simplest line regression training method. To validate the
validity of the proposed ESN-based CCN method, MLP- and RNN-based CCN were also
applied in this publication to compare with the results in literatures [27,28].

This paper is organized as follows. Section 2 introduces the design of the situation
awareness system using the proposed method. The situation awareness was realized
through 4 levels (perception level, comprehension level, projection level, and visualization
level). Section 3 shows the perception and comprehension levels. In the design of the
comprehension level, a two-layer CCN-based state prediction is proposed. Section 4 focuses
on the projection level with the design of a hierarchical cellular rule-based fuzzy system
(HCRFS)-based system security assessment. Section 5 shows system security visualization
utilizing web-based computer language. Section 6 provides the discussion and results
under small disturbance and contingency. Finally, Section 7 presents conclusions and
suggests potentially promising future work in this field.

2. System Architecture

For modern intelligent power system, fast and accurate situational awareness is
particularly important for power system security. When contingency occurs, it can provide
an effective judgment basis for the operator in the control room the first time, and avoid
wrong operation, missed operation, or delayed operation, which may lead to cascade
failures, and even system blackout. The research of the power system situational awareness
technology is still in its infancy. It mainly improves the power grid perception ability
through information integration, overall control strengthening of power grid, system
reliability enhancement, and operator misoperation decrease. Power system situation
awareness is to accurately and effectively grasp power grid security situation through three
levels: Perception, comprehension, and projection. This paper implemented a CCN and
HCRFS combined online situation awareness method regarding power system steady-state
security. The proposed situation awareness architecture is shown in Figure 1.
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Figure 1. The cellular computation network (CCN)- and hierarchical cellular rule-based fuzzy system
(HCRFS)-based power system security situation awareness.

Perception level: 12-bus power system model built in real-time digital simulation sys-
tem (RTDS) benchmark to generate synchronized power system measurements from PMU.

Comprehension level: CCN-based two-layer online state prediction and estimation
using PMU data.

Projection level: A HCRFS-based power system voltage and power security level
assessment using prediction states.

Visualization level: A scheme to dynamically visualize the voltage and load flow situ-
ation in geographic environment is proposed using the forecasting system security levels.

As shown in Figure 1, in the perception process, PMUs were applied on a 12-bus power
system to generate synchronized data. In the comprehension part, the voltage magnitude
and load flow were predicted with a two-layer CCN-based mechanism using PMU data.
In the projection step, the predicted voltage magnitude and active power were used to
assess the power system security level using a HCRFS-based mechanism. Finally, buses
and the system security level were displayed geographically two-dimensionally by the
data visualization tools. The system architecture shown in Figure 1 is illustrated in detail
in Sections 3–5.

3. Perception and Comprehension

The perception and comprehension levels of the proposed situation awareness tech-
nology regarding steady-state power system security are illustrated in this section.



Energies 2021, 14, 148 5 of 17

3.1. PMU Based Data Generation of 12-Bus Benchmark (Perception)

As an early tentative study, a 12-bus power system was applied to test the steady-state
power system security. The 12-bus power system model was built in a real-time digital
simulation system (RTDS) benchmark. PMUs were deployed on each bus to generate
synchronized power system measurements, like voltage magnitude, voltage angle, cur-
rent magnitude, and current angle. Voltage violation and load overflow under contingency
are common static security problems. In order to fully use the PMU data, the bus volt-
age and line current measurements were used to predict the bus voltage violation and
load overflow.

The selected 12-bus power system had different types of generators and loads, and the
network size was suitable for the initial CCN application. The 12-bus platform included
4 generators (Generator G1 was connected to an infinity bus). The generators’ and loads’
active power capacity are shown in Table 1, while other details of the test power system
can be seen in [29]. As shown in Table 2, there were 13 types of component contingencies
in the 12-bus system: 8 transmission line contingencies, 2 transformer outages, and 3
generator trips.

Table 1. The 12-bus power system parameters.

Load/Gen. No. Active Power/MW

Generator G1 (infinity Bus) 289
Generator G2 500
Generator G3 300
Generator G4 400
Load on Bus2 280
Load on Bus3 320
Load on Bus4 320
Load on Bus5 100
Load on Bus6 440

Table 2. The 12-bus power system line information.

Line No. From Bus To Bus Rating/MW

Line1_2 1 2 250
Line1_6 1 6 250
Trans1_7 1 7 1000
Line2_5 2 5 250

Line3_4_1 3 4 250
Line3_4_2 3 4 250
Line4_5 4 5 250
Line4_6 4 6 250
Line7_8 7 8 500
Trans8_3 8 3 1000

G2 10 2 700
G3 11 3 500
G4 9 6 500

3.2. CCN-Based Two-Layer State Prediction (Comprehension)

In the comprehension process of the proposed situation awareness mechanism, a
two-layer CCN-based method was proposed for state prediction. In Figure 1, the voltage
magnitude of each bus is predicted with the top right CCN layer using PMU data, while the
load flow of each transmission line is forecasted based on the top left CCN panel utilizing
PMU data and the prediction from the voltage layer. ESN was applied in each cell of the
two-layer CCN.

From Figure 1, regarding the voltage prediction layer, there were 11 buses that had
been simulated, except the infinity bus of the 12-bus power system. ESN was implemented
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in each cell representing each of the 11 buses. The relationship of each cell in CCN was
a direct mapping of the connections of each bus of the test power system. In each cell,
the one-step-ahead voltage magnitude prediction of the bus is defined as below:∣∣∣V̂i(t + 1)

∣∣∣ = f
{
|Vi(t)|, θi(t),

∣∣∣V̂n(t)
∣∣∣} (1)

where |Vi(t)|, θi(t) are the voltage, magnitude, and angle of bus i at time t.
∣∣∣V̂n(t)

∣∣∣ is the
one step delayed voltage prediction values of the neighbors that are connected to bus i.

In the load flow prediction layer, ESN was implemented in each cell representing
each line. From Table 2, there are 13 lines in the 12-bus power system. The relationship of
each cell in CCN was a direct mapping of the connections of each line of the test power
system. In each cell, the predicted active load flow of line j is P̂j(t + 1) which is shown in
Equation (2).

P̂j(t + 1) = f
{∣∣∣V̂i(t)

∣∣∣, θj(t), Ij(t)
}

(2)

where
∣∣∣V̂i(t)

∣∣∣ is the time-delayed voltage prediction values of bus i generated from Equa-
tion (1). θj(t) is the current angle of line j at time t from PMUs. Ij(t) is the line current
magnitude at time t of line j.

3.3. The Online Learning of the ESN in Each Cell

ESN is one type of recurrent neural network which uses a dynamic reservoir to
simulate the nonlinear relationship between the input and the output.

In an ESN with K inputs, N units in reservoir, and L outputs, the reservoir states are
updated following the equation below:

X(i + 1) = fres

(
WinU(i + 1) + WX(i) + W f bY(i)

)
(3)

where Win is the weight between the input layer and reservoir units, W is the weight in
the reservoir layer and the output layer, while Wfb is the feedback weight. fres is the active
function of the reservoir layer (usually the logistic sigmoid or the tanh function). X(i) is
the reservoir state, U(i) is the K dimension input signal, and Y(i) is the L dimension output
signal. The output is obtained from Equation (4):

Y(i + 1) = fout(Wout(U(i + 1), X(i + 1), Y(i))) (4)

where weights Wout is the readout weight matrix between the reservoir layer and fout is the
output activation function (typically the identity or a sigmoid).

In order to obtain the Wout, Win and W were randomly initialized and Equations (3)
and (4) were activated with input and output signals. After that, the Wout readout weights
matrix could be trained by the line regression method in Equation (5) [30]:

Wout = (pinv(M) ∗ T)Trans (5)

where M is [(U(i + 1), X(i + 1), Y(i)] and pinv(M) is the pseudo-inverse of M. T is the
inverted of the output active function f out−1(Y(i + 1)). Trans is transpose.

The online training of ESN using Equations (3)–(5) in each cell of the CCN is shown in
Figure 2. In Figure 2, there are two modes (training mode and prediction mode) in each cell
of the two-layer CCN model. For example, in the voltage prediction layer, the prediction
mode worked for continuous voltage prediction using updating weights Wout(k + 1).
The training mode, which was a mirror reflection of the ESN structure in the prediction
mode, was activated if the mean square error (MSE) was larger than the expected tolerance.
Each ESN/cell was trained with the line regression method in Equation (5) using a dynamic
database which was updated with prediction data and target value.
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Figure 2. The online training of the echo state network (ESN) in each cell.

In the training mode of Figure 2, the fitness function is the MSE between the prediction
value and real value of all the k training data points. The MSE is an effective measurement
for forecasting the error of a prediction method in statistics.

MSE =
1
k

k

∑
i=1
|Acti − Predi|2 (6)

It is defined as the mean of the square of the error between the actual value and
prediction value. Where Acti is the actual value and Predi is the prediction value, and k is
the number of the data points.

4. Projection

This section shows the projection process which was developed using an HCRFS-
based power system security-level classification. The predicted voltage magnitude and
active power from the comprehension part were used to assess the power system security
level here.

4.1. Voltage Security Assessment

The voltage may violate beyond its limitation under disturbances such as load vari-
ations. A definition of voltage collapse, instability, and security introduced by IEEE [31]
concluding the power system voltage stability may be threatened in the presence of a
variety of single or multiple contingencies. Real-time voltage fluctuation can be performed
using the security index [32] below:

Indexv(t) =
p

∑
i=1

ωi.(∆|Vi(t)|)m (7)

where ∆|Vi(t)| = |Vi(t)| − |Vli|, ∆|Vi(t)| is the voltage magnitude violation at time t. |Vi(t)|
is voltage magnitude of load bus i at time t. |Vli| is the voltage magnitude limit of load bus
i. p is the load bus number. ω is weight factor and m is exponent factor.
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4.2. Active Power Flow Security Assessment

A possible way to express the real-time security level of overload is the power secu-
rity index:

IndexMW(t) =
k

∑
j=1

γj.
(

Rj(t)
)n (8)

where Rj(t) =
(

Pj(t)
)
/Pl j, Rj(t) is the active power overload ratio at time t. Pj(t) is the

branch j load at time t, and Pl j is the overload limit. k is the number of branches. γ is
weight factor and n is exponent factor.

The above Equations (7) and (8) denote that the voltage magnitude violation ∆|Vi (t)|
and active power rating ratio Rj(t) are potential variables to formulize system security
indices. The proposed HCRFS-based security assessment was performed via the predicted
voltage magnitude violation ∆

∣∣∣V̂i(t + 1)
∣∣∣ and active power rating ratio R̂j(t + 1).

4.3. HCRFS Based System Security Assessment

From Figure 1, the voltage security assessment was designed via predicted voltage
magnitude ∆

∣∣∣V̂i(t + 1)
∣∣∣. Meanwhile, load flow security analysis was realized with an active

power rating ratio, R̂j(t + 1). The fuzzy controller transformed the expert knowledge into
an automatic control strategy through fuzzification, inference engine, rule base, and de-
fuzzification structure mode. In each designed HCRFS, there were two layers. The first
layer was a single bus or line security assessment; meanwhile, the second layer was system
level security analysis.

From the HCRFS for voltage security in Figure 1, it is clear that the input was
∆
∣∣∣V̂i(t + 1)

∣∣∣, which was the predicted voltage magnitude violation of 11 buses, and the

output was the system voltage security level V̂Ssys(t + 1). The proposed HCRFS fuzzy
index for voltage security was performed by:

V̂Si(t + 1) = f uzzy
(

∆
∣∣∣V̂i(t + 1)

∣∣∣) (9)

V̂Ssys(t + 1) = f uzzy
(

V̂Si(t + 1)
)

(10)

∆
∣∣∣V̂i(t + 1)

∣∣∣ = |̂V i(t + 1)
∣∣∣−|Vli|(i = 1, 2 . . . .11) (11)

where V̂Si(t + 1) is the voltage security assessment of bus i.
∣∣∣V̂i(t + 1)

∣∣∣ is the first step
ahead predicted voltage magnitude of bus i from CCN which is shown in Equation (1).
|Vli| is the voltage magnitude limit of load bus i.

The proposed HCRFS-based overload security assessment which is shown in the left
bottom panel of Figure 1 can be formulized below:

P̂Sj(t + 1) = f uzzy
(

R̂j(t + 1)
)

(12)

P̂Ssys(t + 1) = f uzzy
(

P̂Sj(t + 1)
)

(13)

R̂j(t + 1) =
P̂j(t + 1)

Pl j
(j = 1, 2 . . . , 13) (14)

where P̂Ssys(t + 1) is the fuzzy index for system load flow security. P̂Sj(t + 1) shows the
load security level of line j. R̂j(t + 1) is the predictive active power rating ratio. P̂j(t + 1) is
the predicted active load flow of line j from CCN which is shown in Equation (2). Pl j is the
active power rating.
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4.4. Cellular Based Rule Base of HCRFS Block

The fuzzy implication of the first layer in the HCRFS was a multi-input–multi-output
(MIMO) system:

Rule i: If a1 is A1i . . . and ar is Ari, then b1 is B1i . . . , and bn is Bni.

where i is the number of rules, r is the input number and n is the output number.
The fuzzy implication of the second layer in the HCRFS follows multi-input–single

-output (MISO) systems:

Rule j: if x1 is A1j . . . , and xr is Arj, then y is Cj.

where i is the number of rules, r is the input number.
In the 12-bus power system, ideally to classify the power system states “Secure”,

“Alert”, or “Emergency”, it requires abundant combinations of input levels. Assume each
of the 11 voltage inputs is classified by five levels (corresponding membership functions are
NB, NM, Normal, PM, PB); this would mean 511 = 48,828,125 voltage level combinations.

In order to overcome the rule explosion, an idea of the cellular-based rule base is
inspired by the CCN structure. CCN is a cellular computational network consisting of
a neural network in each cell that can be used to implement networked power systems.
In the design of the voltage magnitude prediction layer, CCN was applied to implement the
connection of the 11 buses. Each cell/bus of the CCN could be trained and used separately
only considering the information of the nearest neighbors. Similarly, as the status of the
system security had a tight relationship with contingency cases who may lead to voltage
violation or overload, different types of contingencies were considered in developing rules
process for the cellular concept based fuzzy system.

In the design of the cellular-based rule base, only the buses directedly connected to
the contingency were considered. For example, if there was a line contingency between
bus 1 and 2, only 2 primary buses (buses 1 and 2) were considered in the “IF” condition
part, instead of all the inputs.

From Table 2, there are 13 outages. If the cellular-based fuzzy rules were applied for
each outage using only 2 primary buses, the rule cases reduced to 52 = 25 voltage level
combinations for each outage, and 13 outages meant 13 × 25 = 325 rules. Finally, it is more
than 1 − (325 ÷ 48,828,125) = 1 − 0.00066% = 99.99% reduction in the number of rules.

5. Visualization

After the projection process, the buses and system security level were displayed
geographically two-dimensionally using web-based computer language.

5.1. Bus Voltage and Line Load Flow Security Visualization

With the application of computer language, the security level of each element and
the power system could be vividly displayed to the operation staff. As shown in Figure 1,
all the predicted security information from the HCRFS block is displayed geographically
two-dimensionally. The displayed information includes the voltage magnitude security
level of each bus, the load flow security of each line, and the overall power system security
level from the viewpoint of the whole power network.

The power system security states were characterized in three modes from the view of
the power system operators, which were Secure, Alert, and Emergency:

• Secure: All the buses are in normal states, which means there is no alarm being
presented and none of the contingency would cause overload or voltage violations;

• Alert: There is an alarm or contingency which needs the operator to pay attention;
• Emergency: It is indicated that a serious alarm appears, and the system is seriously

insecure, or there is a contingency that may lead to system blackout which needs the
operator to act immediately.
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The voltage magnitude security of each bus was shown geographically above the
position of each bus in the 12-bus power system as in below:
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The positive “+” and negative “−“ showed the voltage magnitude was above or below
1 pu. The diameter of the symbol increased with the rise of the security level to make it
more noticeable.

The overload situation of each line was displayed in a circular arrow manner above
that line using different colors.
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5.2. Power System Security Level Visualization

The prediction of the power system security level from HCRFS was visualized in a
meter to make it easy to read. Secure, Alert, and Emergency were labeled on the pane of
the meter as a reference for the pointer to show the security level.

6. Results and Discussion

From Section 3, the voltage and active power flow prediction was carried out based on
the two-layer CCN model. The power system steady-state security related to its robustness
under the normal state, as well as to withstanding foreseeable contingencies without
interruption to customer service. Thus, the CCN-based power system security analysis
was done from two aspects: 1. Voltage and active power prediction with pseudorandom
binary sequence (PRBS) signals on generators or load to simulate normal disturbance of
the 12-bus power system; 2. voltage and active power prediction under single line outage
to test the power system security in the event of unforeseen contingency. The details of
the simulation cases are shown in Table 3. Case A is a training case with PRBS signals
applied on generators G2, G3, G4 to simulate the small noise and disturbance in the power
system. The 0.5, 1, and 2 Hz PRBS signals were fluctuated positive and negative 15%,
which were simulated voltage magnitude violations under the steady-state. Cases B to E
were test cases.

Table 3. Simulation cases under different disturbances and outages.

Case No. Disturbance Type

Case A PRBS signals on G2, G3, G4 (for batch training)
Case B PRBS signals on loads of Bus2, Bus3, Bus5, and Line5_4 outage
Case C PRBS signals on load of Bus2 and generator G3
Case D PRBS signals on loads of Bus2, Bus3, Bus5, and Line2_5 tripped

In order to see the performance of ESN-based CCN, the MLP- and RNN-based CCN
predictions [27,28] were applied in this paper for comparison. Different from the online
learning of ESN, the weights of MLP/RNN-based CCN were generated from batch training
using dynamic multi-swarm particle swarm optimization (DMSPSO) [33], and later applied
to online prediction. Case A in Table 3 is the batch training data for MLP and RNN. In the
batch training process, PRBS signals were applied on three generators to simulate the
disturbance during actual system operation. The trained weights of MLP and RNN in
each CCN cell were fixed and applied to online prediction in different scenarios. The
parameter settings of the three kinds of neural networks are shown in Table 4. The stop
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iteration numbers for batch training were 3000, but for online training, the stop criteria was
MSE < 1 × 10−2.

Table 4. Parameter settings for different types of neural networks.

Neural
Networks

Type

Training
Type

Training
Method Max Iter. Search

Range
Group
Num.

Particle
Num.

MLP Batch
training DMPSO 3000 [−1.5

1.5] 4 3

RNN Batch
training DMPSO 3000 −[2 2] 5 3

ESN Online
Training

Line
regression MSE < 1 × 10−2 [−2 2] - -

6.1. Voltage Prediction with PRBS Signals on Generators (Case A)

In Figure 3, 1 s ahead voltage prediction results under PRBS signals on generators G2,
G3, and G4 can be seen. The solid blue line indicates PMU measurements from the 12-bus
RTDS model (real data), the green dot-dash line is voltage predictions from MLP, the black
dashed line shows results of RNN, and the red dotted line indicates voltage prediction of
ESN. The panels in Figure 3 include voltage prediction results for three generator buses
(BusG2, BusG3, and BusG4) and three load buses (BusL4, BusL5, BusL6). The oscillations on
the red dotted line within 0 to 200 ms of Figure 3 come from the initiation process of ESN
online training. From comparison, all three kinds of neural networks can follow the voltage
change trend with a slight time shift.
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6.2. Voltage Prediction with PRBS Signals on Load Buses and Line Contingency (Case B)

Besides PRBS signals, transmission line contingency was also applied for several
seconds and restored in this part for testing. Figure 4 shows voltage prediction results
under PRBS signals on load buses (BusL2, BusL3, BusL5) and Line5_4 (which connected
bus4 and bus5) outage. Because Line5_4 tripped, loads on bus4 and bus5 experienced
slightly low voltage. As BusL6 and BusG4 were close to generators, the load on Bus6 and
generator on BusG4 performed better with small oscillation when contingency occurred and
disappeared. From Figure 4, the MLP- or RNN-based voltage prediction had a steady-state
error, while the ESN prediction had the advantage of fast reaction and small overshoot
when contingency occurred and was restored.
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6.3. Load Flow Prediction with PRBS Signals on Generator and Load Buses(Case C)

A scheme with PRBS signals on load Bus3 and generator G2 was proposed here to
see the performance of the active power prediction. In Figure 5, the performances of three
kinds of neural networks were similar except for small differences. The MLP prediction
performed better on peak values, while the online ESN method needed an adjusting
time (simple 200 to simple 300) for initialization. The green dot-dash line in the Line4_3
panel looks like an average line in the horizontal direction. This phenomenon shows the
MLP-based active power prediction cannot converge on Line 4_3.
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6.4. Load Flow Prediction with PRBS Signals on Load Buses and Line Contingency (Case D)

Figure 6 indicates the power flow change under load disturbance and Line7_8 break.
The Line1_2 and Line2_5 undertook half of the loss led by the Line7_8 fault. The 1 s load flow
forecast illustrated that the ESN method had excellent performance in line disconnection
circumstances. From the comparison of all three methods, the online training ESN method
overmatched the fixed weight RNN and MLP method as the online learning mechanism
could update the weights of ESN in each cell timely, according to the situation change such
as load noise of abrupt line off.
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Figure 6. The 1 s ahead active power prediction on load Bus3, Bus4, Bus5, and generator BusG3 under
PRBS signals on generators and Line7-8 outage.

6.5. Performance Evaluation

As the performance of different neural networks was similar in Case A and Case C,
the MSE errors between real values and predictions are shown in Table 5 for performance
evaluation. It is reasonable that MLP/RNN performed better in Case A than ESN as Case
A was a batch training case, while ESN needed initialization time for online training. But in
Case C, ESN had better prediction results as the online training method could change the
neural network weights with the situation change.

6.6. HCRFS based Power System Security Awareness

From Section 4, the two-layer HCRFS block could estimate the whole system security
situation including component (bus and transmission line) security and system security.
In the application of web-based computer visualization technology, the output voltage and
load flow security level of the HCRFS could be vividly displayed to the operation staff in a
visual manner. Figures 7–9 are the visualization results.

Figure 7 is the web-based graphic user interface under a normal operation state.
The left graph is the component visualization (voltage security on each bus and load
flow security on each line). The right meter is the corresponding system security display.
From Figures 7–9, different colors indicate different security states of the system. It is
defined in Equations (15) and (16) that green means the Secure state, orange shows the
Alert state, while red indicates the Emergency state. The pie shapes represent the voltage
security of each bus geographically. The circular arrows illustrate the load flow security
level of each transmission line with various colors. Normally, the system is in the Secure
state (Figure 7). The green pies on the buses and green circles on the lines show that the
bus voltage and line load flow are all fluctuating within a secure range.

The security situation of the power system changes under disturbances, as shown
in Figures 8 and 9. To highlight the main parts, Figures 8 and 9 remove style designs
including title, background, and logo, zooming in on the geographic two-dimensional
based component security and system security meter.

6.6.1. Bus Voltage and Line Load Flow Security Awareness under Small Disturbance

The visualization of each bus and transmission line under PRBS signals are shown
in Figure 8a. Because of the disturbances (PRBS signals) on generators G2, G3, and G4,
there were some Alert states compared with the initial Secure states (Figure 7). In Figure 8,
the yellow negative pies above the buses reveal that Bus3, Bus4, Bus 5, Bus 6, Bus 8, Bus 9,
and Bus11 are slightly below the rated voltage. At the same time, yellow circles above the
transmission line1_6, line 1_7, line7_8, and line 8_3 indicate slight overflow on those lines.
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Table 5. Mean square error (MSE) between real values and predictions of different neural networks.

Neural
Networks Type

Case A Case C

Max. MSE Min. MSE Mean MSE Max. MSE Min. MSE Mean MSE

MLP 9.5594 × 10−4 8.7512 × 10−5 5.2308 × 10−4 0.0067 1.1533 × 10−4 0.0015
RNN 0.0011 4.5032 × 10−5 4.6935 × 10−4 0.0047 1.1528 × 10−4 0.0011
ESN 0.0012 4.7166 × 10−5 5.2835 × 10−4 0.005 8.7193 × 10−5 9.9694 × 10−4
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Both PRBS signal and Line1_2 contingencies are applied in this simulation in Figure 9. 
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and 5 Emergency states (red pie), while the 13 transmission lines have 5 Emergency states. 
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cates that the system security level is Secure, which is consistent with the initial Secure 

Figure 9. Graphic user interface state under PRBS signals and line1_2 contingency. (a) The compo-
nents’ security awareness of the 12-bus power system, (b) The system security state.

6.6.2. Bus Voltage and Line Load Flow Security Awareness under Small Disturbance and
Line Contingency

Both PRBS signal and Line1_2 contingencies are applied in this simulation in Figure 9.
Compared with the entire green in Figure 7, the 11 buses have 1 Alert state (yellow pie)
and 5 Emergency states (red pie), while the 13 transmission lines have 5 Emergency states.
Because Line1_2 is tripped, generator G3 and transmission lines Line1_6, Line1_7, Line8_3,
and Line7_8 are seriously overloaded (red circle). The five red pies show that because of
the disturbance and Line1_2 contingency, the power system is instable, and Area 3 is in a
serious sub-voltage situation.

6.6.3. Power System Security Level Visualization

The system security was defined in a meter considering all the buses’ and transmission
lines’ secure state. The different states in the meters of Figures 7b, 8b and 9b were in
accordance with the bus and line secure state from Figures 7a, 8a and 9a. The pointer in
Figure 7b indicates that the system security level is Secure, which is consistent with the
initial Secure state of the buses and transmission lines. Alert states on 7 buses and 4 lines in
Figure 8a indicate that sub-voltage and overload appeared on the system. That is why the
indicator points to Alert in Figure 8b at that time instant. The system security in Figure 9b
is in Emergency level, corresponding to the 5 serious buses voltage violation and 5 severe
lines’ surcharge in Figure 9b.
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7. Conclusions

This paper has presented how to implement power system security awareness using a
CCN and HCRFS combined methodology. From the results presented, it can be seen that
the ESN-based CCN bus voltage and line load flow prediction could estimate the state
of the power system online better than MLP- and RNN-based CCNs, with a mean MSE
lowered to 9.9694 × 10−4 under new events or contingency. The proposed HCRFS system
reduces the number of rules in the rule-base dramatically by 99.99%. The two-dimensional
visualizations could vividly display the bus voltage security levels, transmission line power
flow security states, and the system security situation synchronously to the control room
operator. The predicted security level could inform the system operator to react in advance
to prevent a cascaded contingency and even a system blackout. Multiple results show
that the proposed CCN and HCRFS combined visualization method could predict the
security of the power system with acceptable accuracy under both small disturbance and
line contingency. Future work includes: Improving the prediction accuracy, the dynamic
security could be considered later, and parallel computing could be applied to improve the
training efficiency. Furthermore, the proposed CCN and HCRFS combined system security
level prediction and visualization technique can be applied to a 68-bus system to study the
scalability of the proposed CCN- and HCRFS-based approach.
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