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Abstract: The intraday continuous electricity market (ICM) is a potential target market for the
Dispatchable Hybrid Renewable solar–wind–battery energy storage system (BESS) power plant
(DHRB). However, the uncertainty of the electricity price jeopardizes economic justification of
BESS operation, an essential component of DHRB. Using the duality theory, this paper proposes a
unilevel mixed-integer linear programming rolling-approach-based robust optimal scheduling tool
for DHRB that keeps BESS operation optimal should the worst price scenario occur. It reflects BESS’s
degradation as penalty factors and also integrates a BESS degradation model in the scheduling tool
for better assessment of the available resources through the BESS’s lifetime. This tool aids the DHRB
operator to decide the power offer to the ICM in such a way that the BESS’s operation remains
optimal. A case study is carried out to demonstrate the application of the proposed tool. Both the
long-term and short-term losses/benefits of utilizing this tool for scheduling DHRB in the ICM are
investigated at various uncertainty levels. It is shown that there will be a risk of loss of income for the
DHRB in the short-term due to increased nondispatchable energy. However, by limiting the use of
BESS to only those settlement periods that are either certainly profitable or unavoidable, the lifetime
of BESS can potentially be extended. Hence, this can result in more income by the DHRB power plant
in the long-term.

Keywords: hybrid; wind energy; solar energy; BESS; robust; optimal; dispatch; energy management
system

1. Introduction

Dispatchability refers to the ability of the power system units (e.g., generator and
demand) to change their power injection/draw within the announced operational limits,
per the request of the system operator. Power system operation is centered around the
key dispatchability feature of conventional generation units. Solar and wind power plants
can potentially vary their output between zero and the maximum available power [1].
However, due to the intermittency of the available power (i.e., variable wind speed and
solar irradiance), they are inherently nondispatchable, meaning there is no guarantee that
the expected amount of power will be available on-demand, for a given period of time.

Power system penetration of renewables and in specific solar and wind generation
has substantially increased worldwide. Realizing 100% renewables-based power systems
is a hot topic under investigation [2]. Dispatchable renewable generation is the holy grail of
100% renewables-based power systems. It enables the participation of renewables in several
electricity markets and potentially reduces the costs of reserve and flexibility associated
with the integration of renewables.

Dispatchable renewable generation entails adequately sized and controlled energy
storage systems (ESSs) to compensate for power deficiency due to the variability of renew-
ables [3]. Nguyen et al. [4] investigated size battery ESS (BESS) capacity and power rating
with the aid of a rule-based dispatch strategy, using mean wind power as the reference
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dispatch power. Abdullah et al. [5] proposed to initially carry out day-ahead scheduling
of wind power using scenario-based stochastic programming to maximize the expected
revenue. In the real-time control, battery storage units are provided with set-points, indi-
vidually, to maintain an even state of charge. The aim was to meet the committed power
as well as prolong BESS’s lifetime. Due to the fast exhausting of BESS, Gholami et al. [6]
proposed dividing it into two sections and controlling them to meet the mean wind power
forecast, as a reference for dispatch. Hence, BESS lifetime can be increased by increasing
the depth of charge/discharge in each section by only allowing charging or discharging
in several consecutive periods. Instead of such a division, the authors of [7,8] considered
hybrid ESS (HESS) in their proposed design. Sequential control of hybrid flywheel-battery
ESS to smooth wind power is presented in [7]. The reference power is optimized for mini-
mum deviation from the forecast wind power. The share of each storage resource in the ESS
is determined such that the cost of operation is minimized. To avoid inefficient use of the
battery requires simultaneous charge/discharge of ESS resources and limiting the battery
power rating with a state-of-charge-based logarithmic function. In [8], a statistical approach
was taken to size a supercapacitor–battery HESS for dispatchable wind power. The study
proposed handling high-frequency variations of wind power with the supercapacitor and
managed the power flow between the storage resources to maintain a safe battery power
ramp rate.

The economic justification of employing BESS to realize dispatchable renewable
generation may be jeopardized due to its fast exhaustion [9]. A solution for partially
alleviating this issue is to exploit the synergy of solar and wind generation. In [10], hourly
dispatch of wind and solar generation was achieved using the average wind and solar
power hourly forecast as set-points for wind and solar generation. Any difference between
the set-points and actual power generation is compensated by power injection/drawing
with BESS. For smoothing the wind and solar power output, in [11] proposed using a
dynamic filtering controller or a dynamic rate limiter. Similar to [5], power set-points were
provided to each battery unit individually.

Scheduling and management of hybrid renewable resources have been addressed at
various time-frames. In [12], the alternating direction method of multipliers (ADMM) was
employed to solve the day-ahead scheduling of Solar PV and BESS equipped prosumers
within a grid-connected local energy community in a distributed fashion. In the proposed
two-stage approach, initially, the problem is decomposed to enable each prosumer to
schedule locally and without compromising its privacy. The Lagrangian multipliers are
updated at each iteration of the first stage until the residual meets the stop criteria. In the
second stage, the internal losses of the energy community are incorporated by calculating
the efficiency of transactions between the prosumers themselves and the grid; the transac-
tions are refined accordingly. The beetle antenna search algorithm, an evolutionary-based
optimization technique, was used in [13] to optimally schedule the distributed resources
within a virtual power plant (wind turbine, solar PV, microturbine, fuel cell, and BESS) for
the day-ahead market. The uncertainty of solar and wind generation are modeled using
the beta and Weibull distributions, respectively. However, the electricity price considered
is deterministic and endangers the profitability of storage unit operation. Being day-ahead
and having an hourly resolution implies that the scheduled power is not dispatchable. The
authors of [14] proposed a framework for collaborative interactions of the distribution
system operator (DSO) and microgrid. This framework is employed for optimal dispatch
of resources (distributed generation and ESS) in a 10–15 min time frame. The full problem,
including the technical and operational constraints, is initially formulated as an integrated
mixed-integer second-order cone programming problem. Benders decomposition is used
to decompose the problem into a master problem, which is solved by the DSO. The sub-
problems that are solved by the microgrids provide the cuts for the master problem. This
approach enables preserving the privacy of microgrids. Since load-following is the aim
of this paper, the scheduled microgrid power is nondispatchable. Moreover, it does not
consider the uncertainty of the electricity price. In [15], the authors proposed a real-time
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energy management system for microgrid resources using the Lyapunov optimization
technique; this methodology is particularly suitable for real-time applications, where the
optimization methods need to be computationally inexpensive. Virtual queues are defined
to satisfy the time-coupled constraints such as BESS state of charge and customer quality of
service. The stability of the virtual queues is balanced against the total operation cost with
the aid of the variable V algorithm. As this paper deals with real-time energy management,
we do not need to consider the uncertainty of generation, demand, and electricity price. It
should be noted that the goal of [15] was to meet the microgrid demand at least cost rather
than injecting dispatchable power. It is noted that none of the following studies [12–15]
considered BESS degradation in their methodology.

One of the target markets for a Dispatchable Hybrid Renewable solar–wind–BESS
power plant (DHRB) is the intraday continuous market (ICM). ICM participants submit
market orders (buy or sell under various categories) to the market operator up to several
settlement periods prior to delivery. For every settlement period, the market operator
matches the orders and determines the final price based on certain criteria, including
submission time and bid value [16]. Accordingly, there is an uncertainty on the market
price for electricity. Several methods have been proposed in the literature for dealing with
uncertain electricity markets [17]. The authors of [18] exploited the arbitrage capability of a
storage unit and modeled its scheduling in the ICM with the aid of the Markov decision
process framework, which defines policies based on price triggers and parameters that
enable adapting triggers to the system conditions, and optimizes the policy functions using
the REINFORCE algorithm. The authors demonstrated that the proposed methodology is
suitable for fast decision making and the results are comparable to those of rolling-based
algorithms. Ansari et al. [19] proposed a dynamic risk-constrained bidding strategy for
power generation companies (GENCOs), in which the bid curves of the other rationale
GENCOs in the market were estimated. The expected profit of the GENCO is maximized
while the variance of its income, as a metric of risk, is minimized with the aid of a weighting
factor. Optimizing the retailer’s revenue (upper level) and demand response aggregators’
bidding (lower level) with a bilevel approach was presented by [20].

Stochastic differential equations are used to model the uncertainty of electricity price
in the day-ahead market. The expected revenue of the retailer is maximized in the upper
level while its conditional value at risk is reduced. The upper- and lower-level problems
are solved iteratively such that the optimality conditions (KKT) of all demand response
aggregators are satisfied. The authors of [21] proposed using the Monte Carlo simulation
technique for generating a large number of scenarios for uncertain electricity price, demand,
renewable generation, and islanding duration of a microgrid from normal probability
distribution functions of the associated errors. Then, they used the K-means algorithm
to draw a representative set of scenarios. These were input to a framework for reliable
day-ahead scheduling of the microgrid resources by incorporating the conditional value at
risk in the objective function and applying network constraints using linearized power flow
equations. It should be noted that BESS was included in the framework proposed by [21].
In [22], the bidding of a hydro power plant was optimized using stochastic mixed-integer
linear programming. The problem was decomposed into market-price-independent and
-dependent stages. A large number of price scenarios produced by ARMA and processed
with Monte Carlo sampling were employed to maximize the expected revenue. A sampling-
based model predictive control was proposed in [23]. The real-time electricity price and
solar generation and demand forecast were used in this process. Using sampling and the
Halton propagation model, all possible states of the system were estimated. The states that
breach constraints were discarded and, among the feasible states, the one with the least cost
of realization was selected. This graph search approach minimizes the overall cost of load-
following. However, it does not consider the degradation of BESS. Chang et al. proposed a
two-stage optimization algorithm for day-ahead hourly generation scheduling [24]. In the
first stage, stochastic programming and the Latin hypercube sampling method were used
to generate uncertain electricity price scenarios based on historic data. This yielded the
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expected electricity price profile, which was then passed to the second stage. In the second
stage, a robust distributed optimization that considers the uncertainty of the wind and solar
generation and demand was used to schedule the power from each resource under the
worst-case scenario. The Lagrangian multipliers in the distributed problems were updated
iteratively until the algorithm converges to the common electricity price, which minimizes
the cost of operation. However, it does not consider the degradation of ESS. The authors
of [25] proposed a two-stage robust stochastic robust programming model to address the
optimal scheduling of commercial microgrids comprising renewables. In the first stage,
the Latin hypercube sampling method was used to generate scenarios for solar and wind
generation and demand. These were input to a robust optimization problem that treats the
electricity price as the uncertain factor and schedules the resources to maximize the profit of
the microgrids in the hourly day-ahead market. In the second stage, the cost of imbalance
was minimized using demand response and storage units. Although BESS degradation
was not modeled, a penalty factor was incorporated to reflect the cost of BESS degradation.
Instead of directly modeling the uncertain values, the authors of [26] used Taguchi’s
orthogonal array testing to generate a representative set of power mismatch scenarios.
These scenarios were employed to robustly optimize the aggregated microgrids’ schedule
in the day-ahead market. Realization of sufficient reserve and ramping capability from
conventional generation, energy storage system, and demand response were considered in
the paper. An iterative algorithm was implemented to update the Langrangian multipliers
of subproblems that schedule the resources within each microgrid. A penalty factor was
used to reflect the cost of degradation of BESS.

In [27], interval forecasting was used to model the uncertainty of wind, demand,
and water inflow in the day-ahead coordinated scheduling of hydro- and wind-power-
generation systems. The provision of sufficient reserve through the hydro unit in the
presence of water inflow uncertainty is particularly interesting. This was achieved by mod-
eling the uncertainties as interval variables and applying the duality concept to transform
the nonlinear constraints defining the lower and upper bound to linear ones. The two-
part price of China was used in the paper; however, it was shown that the price scheme
can significantly affect the scheduling. Reference [28] presented a robust optimization
technique in conjunction with ADMM for scheduling resources of multiple microgrids in
an hourly real-time market. In the proposed algorithm, a local optimization problem is
defined for each microgrid. The uncertainty of electricity price and net demand profiles
are modeled by confidence intervals in the local optimization problems. The scheduling
was accomplished by iteratively updating the Lagrangian multipliers in the local problems.
A penalty factor was used to reflect the cost of degradation of BESS.

The authors of [29] proposed robust optimization for GENCOs day-ahead offering
curve. To manage the computational burden of stochastic programming, maximization of
revenues (first level) under the worst-case electricity price scenario (second level) was for-
mulated as a bilevel problem. This was then turned into a unilevel problem using the dual
of the second problem. In [30], the authors proposed a new market-clearing mechanism for
the interaction of microgrids with distribution systems by separating the electricity price
into locational marginal and uncertainty locational marginal price. Accordingly, instead
of end-users, renewables are penalized by their cost of uncertainty. A bilevel dispatch
model was presented for the coordination of the distribution system and microgrids under
this market mechanism. The upper level finds the locational marginal price and uncer-
tainty locational marginal price based on the power exchange and uncertainty parameters
submitted by the microgrids. The lower level uses these prices to optimize its dispatch.
The column and constraint-generation algorithm was used to solve the problem for each
level. This process was repeated iteratively until convergence.

To the best knowledge of the authors, the previous works do not consider the partici-
pation of a dispatchable hybrid power plant in the ICM. This work builds on the previous
works and proposes a robust optimal scheduling tool for participation of DHRB in the
ICM. Unlike previous works, which only reflect BESS degradation as penalty factors, it
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integrates the BESS degradation model in the scheduling tool for better assessment of
the available resources. This tool aids the DHRB operator to decide the offered power in
the ICM where electricity price is uncertain. It facilitates the provision of dispatchable
renewable generation and ensures that the BESS operation remains optimal in the ICM,
should the worst price scenarios occur; this is achieved by limiting the use of BESS to only
those settlement periods that are either profitable or unavoidable. Many of the previous
works focus on short-term aspects of employing robust optimization. This paper also sheds
light on the long-term losses/benefits of employing robust optimization for DHRB in the
ICM at various uncertainty levels. The contributions are summarized as follows:

• Formulation of the DHRB operation as a unilevel MILP robust optimization problem
which acts as a Maximin problem.

• Investigation of DHRB participation in the ICM with the aid of robust optimization at
various uncertainty levels.

• Exploring the implications of using robust optimization for short-term and long-term
operation of DHRB and BESS lifetime at various uncertainty levels.

The rest of the paper is structured as follows: Section 2 conceptualizes a DHRB.
Section 3 presents the dispatch time horizon and formulates the deterministic optimization
problem and modifies it to yield the robust problem employed for DHRB. Section 4 presents
the study case, DHRB; demonstrates the applicability of the proposed methodology on
the study case; and discusses the findings. Section 5 concludes this paper and provides
grounds for future research.

2. Dispatchable Hybrid Power Plant Framework

An energy management system is a key component for realizing dispatchable power
from a hybrid renewable power plant. Its role is to continuously assess the available
resources to identify the dispatchable power and control the resources to realize the com-
mitted power. Therefore, 4 main units are expected for such an energy management system,
forecasting (to forecast wind speed, solar irradiance, temperature, etc), aggregation (to
estimate the available renewable power at every moment), optimal dispatch, and real-time
control, as seen in Figure 1. The focus of this paper is on the optimal dispatch unit. This unit
finds the optimum set-points for the wind farm, solar photovoltaic (PV) system, and BESS
based on the estimated available renewable power and the state of charge of BESS such
that the equipment (and grid code) constraints are respected. These values shall be used
for participation of the DHRB in the ICM. It is worth mentioning that in this framework,
the output of the forecast and aggregation units [31] is the forecast power corresponding to
the lower confidence limit at a sufficiently high confidence level.
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3. Hybrid Power Plant Dispatch
3.1. Dispatch Time Horizons

GENCOs participating in the ICM are required to submit the volume of electricity
that they can provide as well as the least acceptable price (market order) n−D settlement
periods ahead (e.g., 2 settlement periods in Ireland [32]) of the target settlement period d∗.
To meet technical constraints and grid code requirements, GENCOs may also consider n+

D
post-target settlement periods in their resource assessment. Therefore, at every moment,
from a GENCO’s perspective, the ahead settlement periods (as shown in Figure 2), where
n+

D = n−D = 2, shall be divided into 4 types:

• present operation (d∗ − n−D − 1), which corresponds to the real-time operation of the
DHRB, based on the committed power, and is dealt with by the real-time control unit
(Figure 1).

• past announced (d∗ − n−D to d∗ − 1), for which the DHRB operator has already bid in the
electricity market and should realize the committed power despite the changes that
might have occurred in the available renewable generation forecast to avoid power
shortage penalty.

• target (d∗), which is the nearest (in time) settlement period for which the DHRB
operator shall bid.

• future expected (d∗+ 1 to d∗+ n−D), which provides an indication of the future renewable
generation forecast for efficient resource management.

{ { { { {
Present

Operation Target

Settlement Period

Future Expected

Settlement Periods

Past Announced
Settlement Periods

3

{

Figure 2. Hybrid Power Plant Dispatch Time Horizon.

3.2. Optimal Scheduling Problem

Considering the former 3 types of settlement periods, an optimization problem is
formulated to find the optimal dispatchable power from DHRB. This can be used by
GENCO to participate in the ICM. The constraints and objective function are explained
in detail.

3.2.1. Constraints

Ph,d =
S

∑
s=1

Ps,td +
W

∑
w=1

Pw,td +
B

∑
b=1

Pb,td
∀ td ∈ Td (1)

Pw,td = λw,td P
′
w,td

(2)

Ps,td = λs,td P
′
s,td

(3)

Pb,td
= Pb,dc,td

δb,dc − Pb,c,td
δ−1

b,c (4)

Eb,td
ND NT = (ND NT − δb,e)Eb,td−1

+ Pb,c,td
− Pb,dc,td

(5)

d < d∗ −→ Ph,d = P̄h,d, (6)

where Pb,dc,td
= λb,dc,td

Pmax
b,dc,td

and Pb,c,td
= λb,c,td

Pmax
b,c,td

. S (s ∈ S), W (w ∈ W), B (b ∈ B), D
(d ∈ D), and Td (td ∈ Td) are sets of solar PV system, wind farm, BESS, dispatch interval,
and time steps within d, respectively. The DHRB active power and its announced value to
the market operator are Ph and P̄h, respectively. Pw, Ps, λw, λs, P

′
w, and P

′
s are the wind farm
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and solar PV systems active power set-point, utilization factor of the available power, and
forecast power, respectively. Eb, δb,e Pb, Pb,c, Pb,dc, Pmax

b,c , Pmax
b,dc , λb,c, λb,dc, δb,c, and δb,dc are

the BESS stored energy, hourly self-discharge percentage, active power set-point, charge
and discharge power, maximum rate, utilization factor, and efficiency, respectively.

Equation (1) requires the power output of the hybrid power plant to be constant
during every settlement period d by adjusting the set-points of the wind farm, solar PV
system, and BESS for the time steps within d. The active power output of the wind farm,
solar PV system, and BESS are defined by (2)–(4), respectively. The stored energy in the
BESS at the end of every time step is dependent on the state of charge at the end of the
previous time step as well as the power injected/drawn by the BESS in the current time
step; this is given by (5). Equation (6) requires the output of the hybrid power plant during
the past announced settlement periods to be equal to the submitted values to the system
operator. Further constraints can be found in Appendix A.

3.2.2. Objective Function

Max


d∗+n+

D

∑
d=d∗−n−D

Ph,d

ND
(Ch,d + Cadd

h,d )−
d∗+n+

D

∑
d=d∗−n−D

∑
td∈Td

B

∑
b=1

Cbχb,td

χb,total
(1 + Πb)

Nh,i,d
fh,ρ

, (7)

where
Ch,d = min(C

′
h,d + Cprem

h , Ccap
h )

Nh,i,d =

⌊
8760
Nρ

frac
(

d− 1
8760ND

)⌋
+ 1 + nρ +

⌊
d− 1

8760ND

⌋
fh,ρ,

χb,td
=

Eb,td−1δb,e + λb,c,td
Pmax

b,c + λb,dc,td
Pmax

b,dc

ND NT

χb,total = (λmax
b,e − λmin

b,e )δb,cδb,dcEmax
b (Nb + 1)(EOLb + 1)

and C
′
h,d, Cprem

h , Cadd
h , Ccap

h , EOLb, Nb, Nρ, and nρ are the expected ICM clearing price,
premium paid to support renewable, any other additional income or penalty per injected
energy (e.g., balancing cost) and cap for payment to renewable [33], BESS end-of-life
per-unit capacity, nominal BESS charge cycles, number of hours covered per payment,
and number of intervals for delay in payment, respectively. The second term in Equation (7)
approximates the cost associated with the degradation of BESS considering the yearly
interest rate Πb for BESS capital cost Cb and frequency of payment per year for DHRB fh,ρ.

3.2.3. Problem Definition

The revenue maximization (RM) problem is defined based on the presented constraints
and objective function:

• Constraints: (1)–(6) and (A1)–(A8);
• Objective function: (7);
• Decision variables: Pb,c, Pb,dc, Ps, and Pw.

3.3. Robust Optimal Scheduling Problem

The presented RM optimization problem assumes that the expected ICM price will be
realized; however, this value is uncertain due to its dependence on the matching market
order. To take this aspect into account, the methodology presented by [34] is employed.
With this methodology, the actual purchase price of electricity is

Ch,d + ∆C+
h,dΛ+

h,d + ∆C−h,dΛ−h,d,
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where ∆C+
h,d and ∆C−h,d are the maximum and minimum power purchase price change,

respectively; these are defined as

∆C+
h,d = min(C+

h,d + Cprem
h , Ccap

h )− Ch,d

∆C−h,d = min(C−h,d + Cprem
h , Ccap

h )− Ch,d

The application factors Λ+
h,d and Λ−h,d are defined over the [0 1] interval. In any

electricity price scenario, Ok
Φh

(where k ∈ K and K is the set of price scenarios), the condition

Λ+
h,d ∗Λ−h,d = 0 and

d∗+n+
D

∑
d=d∗−n−D

Λ−h,d ≤ Φh must hold. The use of BESS may become inefficient

if the ICM price is lower than predicted, i.e., Λ−h,d > 0. For fixed Pb,c, Pb,dc, Ps, and Pw,
the worst electricity price scenario Oworst

Φh
is the scenario at which Λ−h,d = 1 in up to Φh

dispatch intervals. Hence, Oworst
Φh

can be found by solving

Min
d∗+n+

D

∑
d=d∗−n−D

Ph,d

ND
∆C−h,dΛ−h,d

s.t.
d∗+n+

D

∑
d=d∗−n−D

Λ−h,d ≤ Φh

0 ≤ Λ−h,d ≤ 1,

(8)

where the parameter Φh is referred to as the uncertainty budget. Accordingly, in any Ok
Φh

other than Oworst
Φh

, the fixed variables will lead to a greater or equal DHRB income.
It can be noted that Ph,d affect Oworst

Φh
. However, robust operation of the DHRB entails

optimizing against the worst-case scenario (maximizing the minimum income, i.e., Max-
imin). This implies that a mixed-integer nonlinear programming (MINLP) problem (com-
bining (8) and RM) needs to be solved. Bilevel optimization techniques can be employed
to handle this problem by solving RM and (8) iteratively. However, iterative approaches
may not be ideal due to convergence issues. Therefore, the bilevel problem is converted to
a unilevel MILP problem using the duality theory. Accordingly, a new objective function
and constraint are defined by (9) and (10), respectively.

Max


d∗+n+

D

∑
d=d∗−n−D

Ph,d

ND
(Ch,d + Cadd

h,d )−
d∗+n+

D

∑
d=d∗−n−D

∑
td∈Td

B

∑
b=1

Cbχb,td

χb,total
(1 + Πb)

Nh,i,d
fh,ρ

−
d∗+n+

D

∑
d=d∗−n−D

Ψh,d − ξhΦh


(9)

−Ψh,d − ξh ≤
Ph,d

ND
∆C−h,d, (10)

where Ψh,d and ξh are non-negative dual variables yielded from (8). Subsequently, the robust
revenue maximization (RRM) problem is given:

• Constraints: (1)–(6), (10) and (A1)–(A8);
• Objective function: (9);
• Decision variables: Ψh,d, ξh, Pb,c, Pb,dc, Ps and Pw.
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This problem finds DHRB set-points SPΦh that maximize the minimum income if
d∗+n+

D

∑
d=d∗−n−D

Λ−h,d ≤ Φh. Hence, SP0 is identical to the set-points found in the RM problem.

Further details on the applied technique can be found in [34].

3.4. Rolling Approach

The rolling algorithm shown by Figure 3 is used to solve the RRM problem for the
d∗ − n−D to d∗ + n+

D settlement periods window and identify the dispatchable power for
the target settlement period and meet the committed power in the past announced settlement
periods. In every iteration, this algorithm updates the forecast and battery degradation
coefficients (per Appendix B) for d∗ − n−D to d∗ + n+

D to improve accuracy. This gives the
DHRB operator the ability to adjust the forecast and aggregation units’ parameters where
necessary.

Start

Forecast Data

Available

D DWait

Stop

End

Yes

No

No

Yes

Store

Results

Fetch

Data

Figure 3. Rolling approach for the dispatchable hybrid power plant.

As implied, the proposed framework is capable of handling multiple resources and
associated forecasts. However, for it to efficiently deliver dispatchable renewable genera-
tion, it is necessary to adequately size the BESS both in terms of capacity and rate of charge
and discharge. Sizing the resources is out of the scope of this paper; however, more details
can be found in [9,35,36].

4. Case Study

A case study was carried out on an 80-MW hybrid renewable power plant comprising
a 50 MW wind farm, 30 MW solar PV system, and 5 MWh BESS. The length of each
settlement period was assumed to be 30 min (ND = 2). One-year, 10-min resolution
(NT = 3) wind and solar power generation profiles obtained from [37] were used as input
(assumed as output of the aggregation unit in Figure 1). Ten years of electricity market data
obtained from [32] was used to form the 1 year maximum and minimum ICM price profiles
(C+

h and C−h ) and expected ICM price profile (C
′
h); however, these could be produced

with certain confidence levels using forecasting techniques (e.g., ARIMA [29]). Short-term
balancing cost increase due to the intermittency of renewables is assumed e3/MWh; since
a DHRB guarantees the dispatch, the short-term balancing cost can be avoided and deemed
as a potential income for the DHRB, i.e., Cadd

h = e3/MWh. The parameters are summarized
in Table 1.
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Table 1. List of parameters.

Parameter Value Parameter Value Parameter Value

Emax
b 5 MWh λmax

b,e 1 λmin
b,e 0.2

Pmax
b,c 10 MW λmax

b,c 1 λmin
b,c 0

Pmax
b,dc 10 MW λmax

b,dc 1 λmin
b,dc 0

Pmax
w 50 MW λmax

w 1 λmin
w 0

Pmin
w 30 MW λmax

s 1 λmin
s 0

EOLb 0.65 Nρ 730 δb,e 0.005%
Cprem

h 30 e
MWh fh,ρ 12 δb,c 0.95

Ccap
h 77 e

MWh nρ 0 δb,dc 0.95
Cb e1.5m Πb 0.04 Nb 4000

4.1. Effect of Uncertainty Degree

Figure 4 shows C
′
, C+, and C− ICM price profiles for 1 day, with 48 settlement

periods. It can be seen that while the difference between the expected and the minimum
electricity price is negligible in some of the settlement periods, in others it reaches up to
82%. The realization of the lower electricity prices may contradict the economic justification
of using BESS to realize dispatchable renewable generation.
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Figure 4. Predicted (C
′

h,d), maximum (C+
h,d), and minimum (C−h,d) ICM price for 1 day.

Initially, the effect of the uncertainty degree was investigated. In the day of interest,
SPΦh were found for Φh ranging from 1 to 48. For this purpose, the RRM problem was
solved in single runs, i.e., without the rolling algorithm (n−D = 1 and n−D = 47). SPΦh were
then used to calculate the income of the DHRB in the corresponding Oworst

Φh
. In Figure 5, this

is compared to the minimum income of the DHRB, at various Φh, if SP0 is used instead.
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Figure 5. Comparison of minimum income in RM and RRM.
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It can be seen that for every Φh shown, using SPΦh results in a greater (or equal)
worst DHRB income compared with using SP0. However, by using SPΦh , there is a risk
of loss of income if price scenarios other than Oworst

Φh
are realized. This is shown with

the aid of ≈2 million random-generated Ok
Φh

(within C−h,d and C+
h,d). The average DHRB

income using SPΦh in Ok
Φh

was calculated. This was then compared with the average
DHRB income using SP0 in the same Ok

Φh
to yield the average income deterioration trend.

The trends for improvement of minimum income and deterioration of average income are
shown in Figure 6. It can be seen that at certain Φ, the risk of using SPΦh instead of SP0 is
higher than its benefit. It should be noted that the drops and rises in the improvement and
deterioration trends are due to the change in the difference between the DHRB income in the
corresponding price scenarios and should not be mistaken with the actual DHRB income.
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Figure 6. One-day DHRB income analysis.

As illustrated in Figure 7, by using SPΦh , the BESS energy transaction reduced when
Φ increased. The effect of less usage of BESS manifested in the nondispatchable energy,
which followed a similar but inverse trend. Interestingly, this is in the favor of DHRB
minimum income (per Figure 5). It means that compared to using SPΦh , SP0 not only leads
to lower minimum income but also further exhausts BESS.
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Figure 7. One-day DHRB nondispatchable and BESS energy transaction change.
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4.2. Invoking the Rolling Algorithm

The characteristics of the RRM problem when used within a rolling algorithm were
investigated by solving it for 1-year operation of the DHRB using a sliding window of
10 settlement periods (n−D = 2 and n−D = 6) for uncertainty degrees ranging from 1 to 9.
The rolling algorithm updates SPΦh and, consequently, Oworst

Φh
in every run; therefore, Λ−d is

only fixed when d leaves the sliding window. This means that ∑ Λ−d <= Φ may not hold
for every 10 consecutive settlement periods or even be consistent over the days. Figure 8
shows the 1-year normal distribution fit of daily ∑ Λ−d that resulted in SPΦh . Despite the
inconsistency, it can be seen that the mean value of ∑ Λ−d increased with Φh.
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15

30

45

F
re
q
u
en
cy

Daily

SP1 SP2 SP3 SP4 SP5

SP6 SP7 SP8 SP9

Figure 8. Normal distribution fit of daily ∑ Λ−d in 1-year operation.

For the day of interest of Section 4.1, Figure 9 shows the average change of DHRB
income (over the same random Ok

Φh
) if SPΦh is used instead of SP0. Interestingly, the income

improved slightly with SP1; however, for the rest of the SPΦh , the DHRB income deteri-
orated. The maximum deterioration occurred at SP6, which is worst than the maximum
deterioration seen in Figure 6, where a rolling algorithm was not invoked (e.g., day ahead
market).

Figure 9. One-day DHRB average income change.

To explore the applicability of the RRM as a year-long solution (with rolling algorithm),
≈2 million year-long random Ok

Φh
(within C−h,d and C+

h,d) with Φh ranging from 1 to 48
(within a day) were generated. The average change of 1-year DHRB income if SPΦh is used
instead of SP0 is shown in Figure 10. It can be seen that for all of SPΦh , the average change
of income is negatively indicating that it deteriorated. The reason behind this phenomenon
is the nondispatchable energy. Figure 11 shows the total DHRB nondispatchable energy
and BESS energy transaction in 1-year operation with each of the studied SPΦh .
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Figure 10. One-year DHRB average income change.

8.96

8.98

9

9.02

9.04

1.44

1.51

1.58

1.65

1.72

0 3 6 9

B
E

S
S

 E
n

er
g
y
 T

ra
n

sa
ct

io
n

 (
G

W
h

)

N
o
n

-d
is

p
a
tc

h
a
b

le
 E

n
er

g
y
 (

G
W

h
)

Set Point

Non-dispatchable Energy BESS Energy Transaction

Figure 11. One-year operation total DHRB nondispatchable and BESS energy transaction change.

It is inferred that less use of BESS in vulnerable settlement periods increased the
total power plant nondispatchable energy, hence the reduced income of DHRB. It should
be noted that the change in the total DHRB nondispatchable energy and BESS energy
transaction may not necessarily be equal since this change might correspond to only
fractions of the settlement period that are not equal in length.

To capture the benefit of the difference noted in the BESS energy transaction, the sim-
ulation was extended to the end of the life of BESS by duplicating the 1-year renewables
and electricity price profiles. For each SPΦh , Figure 12 shows the number of days the BESS
could be operated before its end of life. It can be seen that up to SP3, the lifetime of BESS
increased linearly, however, it saturated after that. This is in line with the total BESS energy
transaction trend shown in Figure 11.
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Figure 12. Number of days before BESS end of life.

Two situations were considered:

• Situation A: DHRB stopping power injection after BESS lifetime;
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• Situation B: DHRB committed to injecting the minimum predicted renewable power
(within each d), until the d corresponding to BESS’ end of life with SP9 is completed,
i.e., d = 46,003.

The latter is a hypothetical situation, which was solely considered for comparison
purpose. The change in lifetime average DHRB income (over the random Ok

Φh
) if SPΦh is

used instead of SP0 has been calculated for situations A and B and is shown in Figures 13
and 14, respectively.

Figure 13. DHRB lifetime average income change in situation A.

Figure 14. DHRB lifetime average income change in situation B.

It can be seen that in situation A, compared to SP0, the average extra income of
DHRB through the BESS lifetime is ≈e 91k when SP1 is used. This number can reach up
to ≈e 202k by using SP9. A slight increase is also noted comparing Ok

48 with Ok
1. This

means that the more the number of hours, the more the electricity price differs from the
expected value, and the more the average extra income will be if SPΦh is used instead of
SP0. However, the change of the income in situation B exhibited a different behavior, which
is similar to that illustrated in Figure 10. It can be noted that using SPΦh instead of SP0
results in a reduction of the average lifetime DHRB income. This reduction is largest for
SP3 onward. Although, the loss of income reduces as the number of hours the electricity
price differs from the expected value increases.

5. Conclusions

This paper explored the participation of a dispatchable hybrid renewable solar–wind
power plant with a battery energy storage system in the intraday continuous electricity
market. Economic justification of BESS operation in a DHRB can be jeopardized by the
uncertain electricity price. Duality theory was employed to derive a unilevel MILP problem
for robust optimization of DHRB set-points. Implications of using robust optimization
for short-term and long-term operation of DHRB and BESS lifetime were investigated.
With the aid of a sensitivity analysis, it was shown that robust optimization improves
the minimum income of DHRB; however, it may not yield the optimum solution if the
electricity price differs from the worst scenario. Hence, there will be a risk of loss of income
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for DHRB. The loss of income is associated with the increased DHRB nondispatchable
energy. However, this phenomenon was accompanied by slightly reduced BESS energy
transaction, which in turn resulted in its longer lifetime. Therefore, over the lifetime of
BESS, on average (over a large set of electricity price scenarios), the income of DHRB was
higher comparing robust to deterministic optimization. The methodology presented can
help to optimize the planning and operation of DHRB.
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Appendix A. Scheduling Constraints

ωw,td λmin
w ≤ λw,td ≤ ωw,td λmax

w (A1)

ωs,td λmin
s ≤ λs,td ≤ ωs,td λmax

w (A2)

ωb,c,td
λmin

b,c κmin
b,c,td
≤ λb,c,td

≤ ωb,c,td
λmax

b,c κmax
b,c,td

(A3)

ωb,dc,td
λmin

b,dcκmin
b,dc,td

≤ λb,dc,td
≤ ωb,dc,td

λmax
b,dc κmax

b,dc,td
(A4)

Emax
b λmin

b,e κmin
b,e,td
≤ Eb,td

≤ Emax
b λmax

b,e κmax
b,e,td

(A5)

ωb,c,td
+ ωb,dc,td

≤ 1 (A6)

B

∑
b=1
−Emax

b λmin
b,e κmin

b,e,td
δb,eδ−1

b,c ≤ Ph,d ∀ td ∈ Td (A7)

Pb,c,td
≤

S

∑
s=1

Ps,td +
W

∑
w=1

Pw,td + Emax
b λmin

b,e κmin
b,e,td

δb,e

δb,c
, (A8)

where λmaxb,e, λminb,e, λmax
b,c , λmax

b,dc , λmin
b,c , and λmin

b,dc are BESS depth of charge and discharge
limits and charge and discharge rate utilization factor limits, respectively. λmax

w , λmin
w , λmax

s ,
λmin

s are the wind farm and solar PV system utilization factor limits, respectively. ωs, ωw,
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ωb,c, ωb,dc are binary values (on: 1, off: 0) representing the solar PV systems, wind farm,
and BESS charge and discharge status, respectively. κmax

b,e , κmin
b,e are BESS capacity fading

coefficients. κmax
b,c , κmin

b,c , κmax
b,dc , κmin

b,dc are BESS charge and discharge power fading coefficients,
respectively.

The wind and solar power utilization limits are imposed by (A1) and (A2), respectively.
The charge and discharge rate of BESS and the state of charge are maintained within the
allowed range by (A3)–(A5). Equation (A6) avoids simultaneous charge and discharge
of the BESS. The combination of (A5) and the self-discharge component of BESS (i.e., δb,e)
can make the problem infeasible. Accordingly, (A7) allows the hybrid power plant output
to become negative, i.e., consuming relatively little power. This enables canceling the
BESS self-discharge component even when enough renewable generation is not available.
Further, (A8) limits the BESS charge power at every time step to the total renewable
power output plus the least power required to cancel the BESS self-discharge component.
Note that it was assumed the rating of the coupling transformer of the DHRB (shown
in Figure 1) is not a limiting factor for its bidding quantity and, consequently, scheduled
power. However, if such a limitation exists, it can be considered by imposing a linear
constraint on the scheduled power output of the hybrid power plant in the optimization
problem.

Appendix B. Battery Degradation

Battery degradation is linearized over d∗ − n−D to d∗ + n+
D, with the assumption that

this interval is sufficiently short,

κtd =
(κend − κstart)(d− d∗ + n−D + f rac( td−1

NT
))

n+
D + n−D + 1

+ κstart, (A9)

where κstart and κend are the degradation coefficients at the beginning of d∗ − n−D and end of
d∗ + n+

D, respectively. The former is calculated based on previous operation and the latter is
estimated based on the worst future operation scenario (i.e., ωb,c,td

λb,c,td
+ ωb,dc,td

λb,c,td
= 1))

of BESS.
Any battery degradation model [38–40] can be employed to calculate κstart and κend.

For this paper, the linear model presented by [36] was incorporated:

κmax
b,e,td

= κmax
b,e,td−1 +

(EOLb − 1)χb,td−1

χb,total
(A10)

κmin
b,e,td

= κmin
b,e,td−1 +

(EOLb − 1)χb,td−1

χb,total
(A11)

κmax
b,c,td

= κmax
b,dc,td

= κmin
b,c,td

= κmin
b,dc,td

= 1 (A12)
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