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Abstract: In terms of power and energy consumption, DRAMs play a key role in a modern server
system as well as processors. Although power-aware scheduling is based on the proportion of energy
between DRAM and other components, when running memory-intensive applications, the energy
consumption of the whole server system will be significantly affected by the non-energy proportion
of DRAM. Furthermore, modern servers usually use NUMA architecture to replace the original SMP
architecture to increase its memory bandwidth. It is of great significance to study the energy efficiency
of these two different memory architectures. Therefore, in order to explore the power consumption
characteristics of servers under memory-intensive workload, this paper evaluates the power con-
sumption and performance of memory-intensive applications in different generations of real rack
servers. Through analysis, we find that: (1) Workload intensity and concurrent execution threads
affects server power consumption, but a fully utilized memory system may not necessarily bring
good energy efficiency indicators. (2) Even if the memory system is not fully utilized, the memory
capacity of each processor core has a significant impact on application performance and server power
consumption. (3) When running memory-intensive applications, memory utilization is not always
a good indicator of server power consumption. (4) The reasonable use of the NUMA architecture will
improve the memory energy efficiency significantly. The experimental results show that reasonable
use of NUMA architecture can improve memory efficiency by 16% compared with SMP architecture,
while unreasonable use of NUMA architecture reduces memory efficiency by 13%. The findings
we present in this paper provide useful insights and guidance for system designers and data center
operators to help them in energy-efficiency-aware job scheduling and energy conservation.

Keywords: energy efficiency; memory system; memory-intensive computing; energy proportionality

1. Introduction

In recent years, memory-based computing is one of the alternative methods to solve
many emerging workloads that are constrained by high data-access costs. Efficient data stor-
age and analysis is one of the critical challenges in the big data paradigm [1–7]. Therefore,
the processor-centric computing is transforming to memory-centric computing. Although
a single 12 TB memory server has appeared on the IDC market today, in many cases,
the data to be processed has exceeded the memory capacity of the server [8]. In addition,
application-level scalability is limited by memory capacity and communication latency.
A common solution is data parallelization, which divides the dataset into smaller subsets
to accommodate memory capacity and parallelization acceleration. More specifically, data
flows into and out of the processor in parallel like sparks for rapid analysis [2,4,9,10]. It
is also possible to introduce new memory hierarchies, such as 3-D memory stacking, to
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improve bandwidth, energy efficiency and scalability [11–19]. How to reduce data move-
ment and energy consumption as much as possible also depends on these new storage
technologies in large-scale storage systems. In addition, ref [3,20] also proposed memory-
based data calculation, which reduces the energy consumption of the server system by
performing calculations in the memory module. In [21], the author believes that there is no
universally accepted solution to provide efficient distributed shared memory.

For computing-intensive applications, data processing can be easily accelerated using
many core processors or GPUs. However, for memory-intensive applications, the appli-
cation performance is highly correlated with memory capacity and bandwidth. DRAM
is an important source of server power consumption, especially when the server is run-
ning memory-intensive applications. Although power capping and thermal throttling of
processors are well investigated and commonly used in data centers, fine-grained and
scalable power-aware adaptation of memory systems is still an open problem. Current
energy-efficiency-aware scheduling assumes that DRAM is also energy proportional like
processors. However, the non-energy proportionality of DRAM significantly affects the en-
ergy consumption of the whole server system, especially for memory-intensive applications.
However, the non-energy proportionality of DRAM causes the power consumption model
to be unable to accurately represent the energy consumption of the server, which affects
the energy consumption of the entire server system, especially for memory-intensive appli-
cations. Therefore, a full understanding of the server energy ratio under memory-intensive
workloads can help better place workloads and increase the energy savings of data center
hybrid resource scheduling [22,23]. For example, the memory of each core will also change
when the scale of the system increases, which will affect the performance of the application
and the cost of the overall system.

In response to the continuous increase in energy consumption caused by the contin-
uous expansion of the data center, the industry standards organization has developed
the SPECpower_ssj2008 [24] (referred to as SPECpower in the rest of this article) bench-
marks to evaluate the energy efficiency of servers. SPECpower is widely used to charac-
terize the energy efficiency of the system at different utilization levels. Mainstream server
vendors submit the SPECpower test results to SPEC and provide them online after passing
the review.

However, the SPECpower benchmark will not stress memory system well, because it
is a server-side Java benchmark. In Table 1, we list the per-core memory statistics (MPC,
the ratio of installed memory capacity to installed processor cores) for 658 servers released
before 2020.

Table 1. Memory pre core statistics of published servers with SPECpower_ssj results.

memory per
core(GB/core) 0.06 0.25 0.48 0.5 0.57 0.66 0.85 0.88 1.0 1.2 1.3 1.45 1.5 1.6 1.71 1.77 2.0

count 1 1 1 2 1 15 1 2 153 3 32 7 68 4 20 13 145

memory per
core(GB/core) 2.25 2.28 2.5 2.6 2.9 3.0 3.2 3.4 3.5 4.0 4.3 5.3 6.0 6.8 8.0 10.6 16.0

count 1 1 1 9 6 37 1 78 1 33 1 4 1 2 7 4 2

It can be observed that in all the 658 SPECpower results published, there are only 13
servers with a single-core memory greater than or equal to 8 GB/core, and only 2 servers
with a single-core memory of up to 16 GB/core. Most servers have less than 4 GB/core.

Assume we have a single-node server equipped with 8 Xeon 8260 CPUs (one of
the most common CPU on the market in 2019Q4) and 8 TB memory (the maximum
memory capacity supported by the processor), the memory per core is 42.6 GB/core. If
the processor has fewer cores as most usual configurations of 2 or 4 sockets per node,
the memory per core will be significantly greater than 42.6 GB/core. Therefore, from this
perspective, the SPECpower results cannot be an ideal and reliable source for an energy
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efficiency study of large memory systems. This motivates us to investigate the energy
efficiency of servers with large memory installation.

In this paper, we use the STREAM benchmark to test three rack servers with different
workload intensities to study the energy efficiency of large memory servers running
memory-intensive applications. Since the SPECpower benchmark cannot stress memory
system well, we use the STREAM benchmark to check how the performance and power
changes with different memory stress levels (multi-threads) or racks or modules. If we can
find that the memory system has different energy efficiency (or proportionality patterns)
from the CPU, at least under different workload types, we can provide some insights for
workload placement in clouds or big data analytics scenarios. Our experiments show
that hardware configuration can significantly affect server energy efficiency for memory-
intensive applications. The findings we presented in this paper provide useful insights and
guidance for system designers and data center operators to achieve energy-efficiency-aware
job scheduling and energy conservation.

The remainder of this paper is organized as follows. In Section 2, we summarize related
work. In Section 3, we first describe the server energy efficiency and energy proportionality
from the published SPECpower benchmark results and introduce the energy efficiency
metric for servers with large memory installations. In Section 4, we provide experimental
results and observations of the energy efficiency of servers with large memory under
typical memory-intensive workloads. In Section 5, we characterized the energy efficiency
of memory systems, including the economies of scale in memory utilization, comparison
of energy efficiency between SMP and NUMA architecture, and we also derive insights
on energy efficiency of memory-intensive applications. We conclude the paper and make
remarks on future work in Section 6.

2. Related Work

Nowadays, owing to rapid advancement in hardware technology, the ever-increasing
main memory capacity has promoted the development of memory big data management
and processing [5]. Although in-memory processing moves data into memory and elim-
inates disk I/O bottlenecks to support interactive data analysis, in-memory systems are
more susceptible to the utilization, time/space efficiency, parallelism, and concurrency
control of modern CPU and memory hierarchies than disk I/O-based systems [25–29].

In many cases, memory bandwidth restricts the performance of computer systems.
Besides, because of pin and power constraints of CPU packages, it is also a challenge to
increase the bandwidth. To increase performance under these restrictions, we have pro-
posed the near-DRAM Computing (NDC), near-DRAM acceleration (NDA) architectures,
Processing-In-Memory (PIM), Near Data Processing (NDP), or memory-driven comput-
ing [30–34]. In [30], the authors proposed Chameleon, an NDA architecture that can be
achieved without depending on 3D/2.5D-stacking technology and seamlessly integrated
with large memory systems for servers. Experiment has shown that a Chameleon-based
system can provide 2.13× higher geo-mean performance while consuming 34% lower
geo-mean data transfer energy than a system that integrates the same accelerator logic
within the processor.

Recently, new memory hierarchies like 3-D memory stacking are proposed for pro-
motion in energy efficiency, bandwidth, and scalability. For example, the hybrid memory
cube (HMC) [35] has promised to enhance bandwidth and density and decrease power
consumption for the next-generation main memory systems. Besides, to fill the gap be-
tween processors and memories, 3-D integration gives a second shot to revisit near memory
computation. Active Memory Cube (AMC) [36], which has been proposed recently, con-
tains general-purpose host processors and in-memory processors (processing lanes), which
is specially designed and would be integrated in a logic layer within 3D DRAM mem-
ory. DRAM contains multiple resources called banks that can be accessed in parallel and
maintain state information independently. In Commercial Off-The-Shelf (COTS) multicore
platforms, banks are shared among all cores in common, even if programs running on
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the cores do not share memory space. In this situation, it is hard to predict memory as a re-
sult of contention in the shared banks [37]. For the sake of testing different forms of memory,
various benchmarks and system have been implemented by some researchers [38–41].

In multi-core platforms, memory is shared among all processor cores. However,
the gains of compute offered by multi-cores are often counteracted by degradation of
performance towing of shared resources, such as main memory [42–46]. In order to
efficiently use multi-core platforms, tightly binding the interference when accessing shared
resources is required. For example, due to interference in the shared, a task running on
one core can be delayed by other tasks running simultaneously on other cores DRAM
main memory. In some cases, such memory interference delay can be large and highly
variable. A tight upper bound on the worst-case memory interference in a COTS-based
multi-core system was proposed by Kim [47] and he explicitly modeled the major resources
in the DRAM system, including banks, buses, and the memory controller. Dirigent [48]
is proposed to balance the performance of latency-critical jobs that finish sooner than
required with higher system throughput. Fine time granularity QoS problems for GPUs
in heterogeneous platforms [49] have been also tackled by Min et al. However, it is not
common to use progress heuristics for the GPU, and the mechanism proposed is restricted
to managing main memory bandwidth contention between the CPU and GPU.

In big data analytics, in order to address the problems of limited bandwidth, energy in-
efficiency, and limited scalability by enabling in-memory computations using non-volatile
memristor technology [50], Computation-in-Memory (CIM)-based architectures are pro-
posed. They found that in large-scale data analytics frameworks, the CPU is the main
performance bottleneck of these systems. For example, the Tachyon [51] file system out-
performs in-memory HDFS by 110× for writes. In [52], the authors propose FusionFS,
a distributed file system and distributed storage layer local to the compute nodes, which
saves an extreme amount of data movement between compute and storage resources and is
in charge of most of the I/O operations. Compared with popular file systems such as GPFS,
PVFS, and HDFS, FusionFS is better. epiC [53] is a big data processing framework, which is
in order to tackle the Big Data’s data variety challenge. epiC introduces a general actor-like
concurrent programming model, which is independent of the data-processing models and
is for specifying parallel computations. In [54], the authors propose DigitalPIM, a Digital-
based Processing In-Memory platform, which has abilities to accelerate fundamental big
data algorithms in real time with orders of magnitude more energy efficient operation.
In [55], the authors proposed power management schemes to raise the speedup of prior
RRAM-based PIM from 69× to 273×, pushing the power usage from about 1 W to 10 W.

However, in [56], the authors found that naive adoption of hardware solutions does
not guarantee superior performance over software solutions and point out problems in
such hardware solutions that limit their performance, although hardware solutions can
supply promising alternatives for realizing the full potential of in-memory systems. In [57],
the authors found that if we increase the number of DRAM channels it will decrease DRAM
power and improve the energy-efficiency across all applications at the same time.

In heterogeneous platforms, the CPU and the GPU are integrated into a single chip
for higher throughput and energy efficiency. Its memory bandwidth is the most critically
shared resource in such a single-chip heterogeneous processor (SCHP), requiring discreet
management to maximize the throughput. Based on analysis of memory access characteris-
tics, Wang et al. [58] proposed various optimization techniques and improved the overall
throughput by up to 8% compared to FR-FCFS.

On modern multi-core platforms, memory bandwidth is highly variable for more
memory-intensive applications. Jiang et al. [59] found that memory configuration on a vir-
tualized platform also influences the server’s power and performance. In [60], the authors
proposed an efficient memory bandwidth reservation system, MemGuard, which has pro-
vided bandwidth reservation to guarantee the bandwidth for temporal isolation, utilizing
the reserved bandwidth with efficient reclaim to maximal. It improves performance by
sparing the best effort after satisfying each core’s reserved bandwidth. In [61], the authors
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proposed to move computation closer to main memory, which offers an opportunity to
reduce the overheads associated with data movement and they explore the potential of
using 3D die stacking to move memory-intensive computations closer to memory. In [62],
the authors propose OffDIMM, which can map a memory block in the address space of
the OS to a subarray group or groups of DRAMs and sets a deep power-down state for
the subarray group when offlining the block. However, OffDIMM decreases background
power by 24 percent on average without notable performance overheads.

All in all, a processor’s frequency scaling and power optimization is well investigated,
but the research in memory-related power performance optimization is still insufficient.
Furthermore, when in-memory computing becomes the mainstream paradigm for big data
analytics, power consumption of large memory dominates. This drives us to investigate
the power characteristics of servers running memory-intensive applications.

3. Notations of Server Energy Efficiency Evaluation

To drive server energy efficiency improvements, SPEC established SPECpower, which
is the authoritative benchmark to measure the power and performance of computer systems
in the industry. SPECpower’s workload is designed to evaluate the energy efficiency and
performance of small and medium-sized servers running server-side Java applications
at different utilization levels. That is why SPECpower results are not ideal and reliable
sources for an energy efficiency study of large memory systems are required.

However, the methodology of energy efficiency measurement and evaluation of
SPECpower is still worthy of reference. Although SPECpower does not put pressure on
storage components, it tests CPU, memory, cache, JVM, and other operating system compo-
nents. Its detailed workload characteristics can be found in [63]. Specifically, SPECpower
will report the server power consumption at different utilization levels within a set time
period. SPEC has formulated very strict evaluation rules for SPECpower and requires
the information of the tested system to be fully disclosed in the report. That is why 40
results published by the SPEC are marked as non-compliant and not accepted by SPEC.

We give a sample result of a server in Table 2, from the results released by SPEC-
power_ssj2008 in 2016, the server’s memory per core of 16 GB/core.

Table 2. An example of SPECpower_ssj2008 testing result in 2016.

Performance Power
Performance to

Power RatioTarget Load Actual Load ssj_ops Average Active
Power (W)

100% 99.80% 24,662,648 3868 6377

90% 90.10% 22,252,836 3481 6393

80% 80.00% 19,758,684 3032 6517

70% 70.00% 17,284,975 2611 6619

60% 60.00% 14,824,481 2340 6336

50% 50.00% 12,350,615 2143 5764

40% 40.00% 9,877,126 1971 5011

30% 30.00% 7,410,001 1823 4064

20% 20.00% 4,949,964 1674 2956

10% 10.00% 2,475,968 1531 1618

Active Idle 0 1080 0

∑ssj_ops/∑power 5316

In order to better understand this paper, we have listed some notations and terms of
SPECpower benchmark results:

(1) Utilization. In the target load column of specpower results in Table 2, which assume
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benchmark to delete all hardware components concertedly, there are 10 utilization
levels, ranging from 10% to 100%.

(2) Peak utilization. We refer to 100% utilization as peak utilization.
(3) Energy efficiency (EE). It is defined as the performance to power ratio with unit of

ssj_ops per watt. The formula is as follows:

EE =
ssj_ops

Average Active Power (W)
(1)

In Table 2, the energy efficiency values are the last column named “performance to
power ratio” and we abbreviate energy efficiency as EE. However, for memory sys-
tems, we use bandwidth per watt (BpW) to measure memory energy efficiency (MEE):

MEE = BpW =
Perceived Bandwid(MB/s)

System Power(watts)
(2)

(4) Server overall energy efficiency. The server’s overall performance to power ratio, that
is, the ratio of the sum of ssj_ops to the sum of 10 utilization levels (from 10% to
100%) and the sum of active idle power (∑ssj_ops/∑power). In addition, the server
overall energy efficiency is also used as its SPECpower score. For example, in Table 2,
the overall energy efficiency of the server (total score) is 5316.

(5) Peak energy efficiency. It is defined as the highest energy efficiency of a server among
all utilization levels. For example, in Table 2, the server peak energy efficiency is 6619
(at 70% utilization).

(6) Energy Proportionality (EP). In this paper, we use the energy proportionality (EP)
metric proposed in [64]. Taking the server in Table 2 as an example, we can draw its
normalized utilization–power curve in Figure 1. The solid line in Figure 1 is the EP
curve of the server in Table 2, the dotted line is the ideal energy proportionality server
and the dashed line is our tested and untuned server with 16 GB of memory per core
running the SPECpower benchmark. Based on this, we can compute the EP of a real
server by the following formula [64]:

EP = 1 − Areareal − Areaideal
Areaideal

(3)

Figure 1. Energy proportionality curve of the server in Table 2 and an ideal energy proportional
server (power normalized to power at 100% utilization).

From Equation (3), we can see that EP is greater than or equal to zero but less than
2.0. For the ideal energy proportional server, its EP value is 1.0, which is of great reference
significance for the study of energy efficiency characteristics of servers.
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4. Experiment Results on Typical Memory-Intensive Workloads
4.1. Experiment Setup

Similarly, we can also derive a server’s energy proportionality curve using a memory-
intensive benchmark. We used STREAM [65], NAMD [66], and CloudSuite [67], as
the memory benchmark. We modified the code to change the array size in STREAM
to vary the workload from idle to 100% utilization. We ran benchmarks on three different
2U rack servers, which ran the same x64 version CentOS 7 with Linux kernel 3.10. All
the power data were measured by a WattsUP.Net power meter. The base configuration of
these servers is listed in Table 3.

Table 3. Base configuration of tested 2U servers.

No. Name Hardware
Availability Year CPU Model Total

Cores
CPU TDP

(Watts) Memory (GB) DISK

#1 ThinkServer
RD640 2014 2×Intel Xeon

E5-2620 #1 12 80 160(16 G×10) DDR4
2133 MHz 1×SSD 480 GB

#2 ThinkServer
RD450 2015 2×Intel Xeon

E5-2620 #2 12 85 192(16 G×12) DDR4
2133 MHz 1×SSD 480 GB

#3 Fujitsu 2019 2×Intel Xeon
8260 40 165 384(16 G×24) DDR4

2666 MHz 1×SSD 480 GB

4.2. Results of STREAM Workload

In order to stress the memory system, we ran different numbers of concurrent STREAM
threads with varying array size from 4 GB to 16 GB. Due to space limitation, we only
provide the results of 4 GB. We present the power consumption of the tested servers in
Figures 2 and 3.

Figure 2. Power consumption of server #1 with array size = 4 GB.

When the cpu or server temperature is too high, the processor’s power capping
and thermal throttling technology will appropriately reduce CPU frequency to protect
the server, in order to protect the cpu or server, so the power consumption of 48 threads is
less than 36 threds on server #2. However, overall, our experiments show that with the in-
crement of concurrent threads and therefore memory utilization, the power consumption
of the server also increases. We present the perceived bandwidth of a single thread of
the tested servers in Figures 4 and 5. The memory energy efficiency is listed in Figure 6.
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Figure 3. Power consumption of server #2 with array size = 4 GB.

Figure 4. Average perceived bandwidth of single thread with array size = 4 GB (MB/s) on server #1.

Figure 5. Average perceived bandwidth of single thread with array size = 4 GB (MB/s) on server #2.

From Figures 3–6, we observe that (take server #2 as an example):

(1) When the number of concurrent threads is 36, the power consumption and CPU
utilization are the highest at the CPU frequencies of 1.2 GHz, 1.8 GHz, 2.4 GHz, and on-
demand governor. Generally, power consumption grows with the CPU frequencies.

(2) When threads increase, the perceived bandwidth of triad computation in a single
STREAM thread decreases at first and reaches its lowest at 36 threads. Then it bounces
a little at 48 threads because of the contention and starvation of execution threads.

(3) The perceived bandwidth increases while the bandwidth growth rate decreases as
CPU frequency increases. Moreover, the bandwidth of different CPU frequency is
almost the same at 24 threads, which is because the server has 12 physical cores and
24 execution threads in total.
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(4) Both the memory energy efficiency and its change rate decreases as the number of
concurrent threads increases. It can also be inferred that frequency scaling cannot
improve memory energy efficiency a lot in a highly contented condition.

Figure 6. Average memory energy efficiency of single thread with array size = 4 GB (MB/s) on
server #2.

4.3. Results of NAMD Workload

We used the NAMD (Nanoscale Molecular Dynamics) simulator to simulate large
systems (millions of atoms). We run the NAMD simulations of two virus structures, one
contains 8 million atoms and another contains 28 million atoms, namely, the stmv.8M.namd
configuration and stmv.28M.namd configuration. The results are shown in Figures 7 and 8.
For all NAMD experiments, the system power is significantly correlated with the memory
and CPU utilization on different machines with different hardware configurations and
CPU generation. However, the correlation coefficient on server #2 is less than that of server
#1. One possible reason may be that server #2 has a newer CPU than server #1 and the CPU
difference makes sense when running NAMD.

Figure 7. CPU and Memory utilization of NAMD.

We list the Pearson correlation coefficients of power and memory and CPU utiliza-
tion on server #1 and #2 in Table 4. We can see that for NAMD benchmark, both mem-
ory and CPU utilization are good indicators for system power consumption on both
server #1 and #2.
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Figure 8. Power and completion time of NAMD.

Table 4. Correlations among power, memory, and CPU utilization running NAMD.

Server Power-Memory Power-Cpu Cpu-Memory

#1_8M 0.936 0.958 0.995

#1_28M 0.973 0.966 0.997

#2_8M 0.922 0.938 0.983

#2_28M 0.671 0.750 0.944

4.4. Results of CloudSuite Workload

In order to confirm if the memory utilization is a good indicator for system power
under other memory-intensive applications, we ran the CloudSuite In-Memory Analytics
on server #2. The results show that neither memory nor CPU utilization is a good indicator
for system power consumption. For example, the correlation coefficient of power and CPU
utilization is 0.053 and −0.09 in Table 5 when we run the CloudSuite in-Memory Analytics
and both In-memory Analytics and Data Serving benchmarks. We plot the real-time power
and system utilization data in Figures 9 and 10. We also conducted experiments where
the memory utilization ranged from 30% to 98% and, again, neither memory nor CPU
utilization is a good indicator for system power consumption. This implies that we should
not implement power-aware scheduling according to only a single parameter like memory
or CPU utilization, even for large memory nodes running memory-intensive applications.

Figure 9. Power and utilization of in memory analytics on server #2.
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Figure 10. Power and utilization of in memory analytics and data serving on server #2.

Table 5. Correlations among power, memory and CPU utilization running in-memory analytics on
server #2.

Power-Memory Power-Cpu Memory Utilization

IM −0.57 0.05 0.39

IM_DS −0.52 −0.09 0.48

5. Characterizing Energy Efficiency of Memory Systems
5.1. Economies of Scale in Memory Utilization

In order to investigate the power consumption of each server at varying mem-
ory utilization, we conduct experiments with different concurrently running STREAM
threads. We then compute the power consumption per percentage of memory utiliza-
tion in Figures 11 and 12. For other servers and array size, we can obtain similar results.
Figures 11 and 12 suggest that when the number of threads increases, the power per per-
centage of memory utilization decreases.

Figure 11. Power per percent memory utilization of server #2 with array size = 4 GB.

We also present the power per percent utilization of server #2 running the SPECpower
benchmark in Figure 13 and compare the power per percent utilization of SPECpower and
STREAM of server #2 in Figure 14. From Figures 13 and 14, we observe that the power
consumption per percent utilization of SPECpower and STREAM benchmark decreases
when system utilization increases. However, SPECpower has lower power per percent
utilization than STREAM during all utilization levels.
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Figure 12. Power per percent memory utilization of server #2 with array size = 8 GB.

Figure 13. Power per percent utilization of server #2 running SPECpower benchmark.

Figure 14. Power per percent utilization of server #2 running SPECpower and STREAM benchmark
(CPU frequency at 1.2 GHz).

5.2. SMP and NUMA Energy Efficiency Comparison

Server memory access architecture is divided into SMP and NUMA. In the SMP
architecture, all CPUs share all resources (such as bus, memory, I/O system, etc.). In
addition, since data exchange between the CPU and the memory is performed by the bus,
the bus bandwidth can easily become a bottleneck of the SMP data transmission. To
solve the limitation of the SMP bus bandwidth, the most intuitive solution is to increase
the number of buses, so the non-uniform memory access (NUMA) architecture emerged.
NUMA is a memory architecture designed for multiprocessor devices. In this architecture,
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the memory access time depends on the location of the memory relative to the processor,
and it is quicker for processors to gain access to memory in the local node than in different
nodes. This is due to the fact that there are multiple NUMA nodes, which have their
own CPU and memory. In the NUMA architecture, each node’s CPUs share a memory
controller. Therefore, the memory access time is the same for CPU in a same NUMA node.
However, access to the memory of another NUMA node needs to pass through the router,
and the data consistency guarantee needs to be provided by the cache consistency protocol,
so access speed to the memory of the remote node will be slower. It can be illustrated
that the NUMA architecture application performance is related to the memory allocation
strategy. Access to the remote memory will increase the access delay, thereby causing
the application performance degradation. In our experimental platform in this section,
we use a two-way server, so it is only divided into local nodes and remote nodes under
the NUMA architecture. The experiments in this section are based on server #3 in Table 3.

In order to study the memory efficiency changes of the server in NUMA, we rewrite
the STREAM test benchmark so that it can determine the proportion of memory allocated to
the near-end and far-end, such as 10% memory are allocated to near-end memory and 90%
to far-end memory. Through different memory allocation methods, we can experiment and
analyze the memory energy efficiency of the server under the NUMA architecture. This
article uses 16 G, 32 G, 64 G, and 128 G different STREAM array sizes, and divides the near-
end memory and the far-end memory according to the proportions of 0%, 20%, 50%, 80%,
100%, etc. Zero percent means that the whole memory is allocated to the far-end, and 100%
means that the whole memory is allocated to the near-end. In the experimental results,
the frequency drive of the CPU is in the on-demand mode. For the memory system, this
article uses the bandwidth per watt (BpW) as shown in Equation (4) to measure the energy
efficiency (MEE) of the memory system, where the power consumption of the memory
system is the cumulative power consumption of all memory:

MEE(Memory Energy Efficiency) =
Preceived Bandwid(MB/s )

MemoryPower(watts)
(4)

First, the memory energy efficiency data of different STREAM array sizes are obtained
under the SMP architecture of the same experimental platform. As shown in Table 6,
different array sizes represent different memory utilization rates, but the power consump-
tion and energy efficiency of the memory system do not change much. Next, the BIOS in
the experimental platform and the NUMA switch in the kernel are turned on to activate
the NUMA architecture. Figures 15 and 16 show the power consumption and energy
efficiency of the memory system with different near-end and far-end memory allocation
strategies when the STREAM array size is 16 G and 128 G, respectively. As the alloca-
tion ratio between the near end and the far end is different, the power consumption of
the memory system in the two NUMA nodes also changes. Furthermore, as the percent-
age of memory allocated to the near-end increases, the speed of operating the memory
becomes faster, and the average bandwidth of the STREAM load gets higher and higher, so
the energy efficiency of the memory system gradually increases.

Table 6. Experimental results of different STREAM array sizes under SMP architecture.

Size of STREAM Memory Power
Consumption (W) MEE

16 G 28.54 341.45

32 G 28.43 342.12

64 G 29.85 331.52

128 G 29.08 340.78
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Figure 15. Experiment of singe thread STREAM array size of 16 G under NUMA architecture.

Figure 16. Experiment of singe thread STREAM array size of 128 G under NUMA architecture.

Although the allocation ratio of the memory system changes and the power consump-
tion of the near-end memory and the far-end memory changes, the power consumption
of the entire memory system (near-end memory + far-end memory) has not changed
significantly, and the total power consumption of the memory is always 30 W. Further,
the memory efficiency of the array size of 128 G under the same memory allocation method
is slightly higher than that of 16 G. This shows that the relationship between memory power
consumption and memory utilization in a memory system is not strongly related. It is
not the case that the higher the memory utilization, the higher the power consumption of
memory usage. Comparing the experimental results of the SMP architecture in Table 6,
under the same array size of 128 G, all the memory of the NUMA architecture is allocated
to the near end, and its average energy efficiency will be 16% higher than the SMP archi-
tecture. However, if all the memory is allocated to the remote end, the energy efficiency
will be reduced by 13% compared to the SMP architecture. Therefore, using the NUMA
architecture is beneficial to improve the energy efficiency of the memory system, but if
the memory allocation method is not ideal, it will significantly affect the memory energy
efficiency of the system.

In order to study the relationship between memory power consumption, energy
efficiency, and the number of memory operations, we recompile the STREAM with OpenMP
and set the STREAM array size to be 128 G under the NUMA architecture. Then the whole
memory is allocated to near-end node and the number of parallel threads is 2, 4, 8, 16,
32, 40, 60, and 80, respectively. It should be noted that since the number of logical cores
of a single CPU of the experimental platform is 40, the threads use logical threads on
CPU0 if the number of parallel threads is less than 40. CPU0 and its near-end memory
can be regarded as a near-end node. The memory energy efficiency improved significantly
as the number of parallel threads increased. The experimental results of the NUMA
architecture are shown in Figure 17.



Energies 2021, 14, 4089 15 of 20

Figure 17. Experiment of multi-thread STEAM array size of 128 G under NUMA architecture.

The memory energy efficiency improved significantly as the number of parallel threads
increases. From 200 of a single thread to 1700 in multi-threading, the memory power
consumption in the memory system also increased significantly. In previous studies of
server energy efficiency, the energy efficiency of a memory system is usually considered to
be a fixed value, which is estimated as a constant power consumption. However, compared
with the single-threaded experiment, we can see that the memory power consumption is
not static, and as the number of parallel threads increases, the memory power consumption
also increases. However, it is not the case that the higher the number of threads, the higher
the energy efficiency of the memory system. When the number of parallel threads is
greater than 16, the memory energy efficiency decreases slightly and tends to be stable.
Furthermore, if we still increase the number of threads, the energy efficiency of the memory
cannot be increased, and instead it will be degraded.

Figure 18 shows the experimental results of the multi-threaded parallel STREAM
array size of 128 G under the SMP architecture. As the number of threads increases,
the energy efficiency of the memory system also increases, and it will be decreased slightly
and tends to be stable when the number of parallel threads is greater than 16. Besides,
when the number of parallel threads is less than 16, the memory energy efficiency of
SMP architecture is 40% lower than that of the NUMA architecture. In addition, when
the number of parallel threads is greater than 16, the memory energy efficiency of SMP
architecture is 5% higher than that of the NUMA architecture. The reason for this may be
that when the number of parallel threads increases, some threads are assigned to the remote
CPU in the NUMA system, resulting in remote memory access, which reduces memory
access speed and memory energy efficiency greatly. Therefore, it is not suitable to use
the NUMA architecture if the number of parallel threads of the application is too high.
All in all, not all applications using the NUMA architecture can improve the memory
energy efficiency and deciding whether to use the NUMA architecture should depend on
the number of threads, the distribution of threads, and memory allocation strategies. Data
center operators should focus on application types, task planning, and task placement to
determine how to use NUMA architecture reasonably to improve memory efficiency.
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Figure 18. Experiment of multi-thread STEAM array size of 128 G under SMP architecture.

5.3. Insights on Energy Efficiency of Memory-Intensive Applications

From the above observations, we derive some insights for memory-intensive applica-
tions in data centers in terms of power and energy consumption.

Insight #1: The power consumption per percentage utilization of the server decreases
as array size increases because of the reduction of the number of concurrent STREAM
threads and vice versa. This indicates that power consumption of the server may be
increased by multiple threaded applications.

Insight #2: Neither memory nor CPU utilization is suitable for evaluating system
power con-sumption when it comes to memory-intensive applications. Thus, for large
memory nodes which memory intensive applications are running on, we are supposed to
con-sider more indicators rather than memory and CPU utilization when implementing
power aware scheduling.

Insight #3: The reasonable use of the NUMA architecture will improve the memory
energy efficiency significantly. It is necessary to ensure that most of the memory is allocated
to the near-end nodes when using NUMA architecture. Otherwise, the memory energy
efficiency will be lower than that of the SMP architecture. The experimental results show
that it can increase the memory energy efficiency by 16% more than the SMP architecture
with a reasonable use of NUMA architecture, but it decreases the memory energy efficiency
by 13% than the SMP architecture with an unreasonable use of NUMA architecture.

Insight #4: We should pay attention to the tasks distribution on CPU, and the data
center operators should allocate the tasks to a single CPU if possible. Besides, they would
better use the near-end memory when allocating memory.

6. Conclusions

Through the evaluation of large memory systems running a memory-intensive applica-
tion to understand the energy efficiency characteristics of memory system, it can help data
center managers and system operators in many folds, including system capacity planning,
power shifting, job placement, and scheduling. In this paper, we conducted extensive
experiments and measurements to investigate the power and energy characteristics of
three 2U servers running various memory-intensive benchmarks. Experiment results show
that server power consumption and performance changes with hardware configuration,
workload intensity, and concurrent running threads. However, fully utilized memory sys-
tems are not the most energy efficient, In addition, though the memory system is not fully
utilized, application’s performance and server power consumption can be impacted a lot
by different powered memory modules of installed memory capacity (the memory capacity
per processor core). This implications can inspire us in desing of reconfigurable system
and real-time power aware adaption. We verified the effect of different memory allocation
and thread count strategies on the memory efficiency of NUMA and SMP architectures.
The experimental results showed that proper task placement and memory allocation were
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required to make full use of NUMA architectures, otherwise the system energy efficiency
would be reduced.

Our findings presented in this paper provide useful insights and guidance to system
designers, as well as data center operators, for energy-efficiency-aware job scheduling and
energy savings. In order to ensure that NUMA architecture improves the energy efficiency
of the memory system, data center operators should pay attention to application types, task
planning, and placement. As for future work, we plan to take further step into the energy
efficiency of large memory systems run-ning more diverse memory intensive applications,
such as in-memory databases, Hadoop, and Spark jobs, so that specific configurations
can be selected to improve the server’s energy efficiency based on the characteristics of
the upper-layer applications.
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