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Abstract: Buildings account for 40% of the energy consumption and 31% of the CO2 emissions in the
United States. Energy retrofits of existing buildings provide an effective means to reduce building
consumption and carbon footprints. A key step in retrofit planning is to predict the effect of various
potential retrofits on energy consumption. Decision-makers currently look to simulation-based tools
for detailed assessments of a large range of retrofit options. However, simulations often require
detailed building characteristic inputs, high expertise, and extensive computational power, presenting
challenges for considering portfolios of buildings or evaluating large-scale policy proposals. Data-
driven methods offer an alternative approach to retrofit analysis that could be more easily applied
to portfolio-wide retrofit plans. However, current applications focus heavily on evaluating past
retrofits, providing little decision support for future retrofits. This paper uses data from a portfolio of
550 federal buildings and demonstrates a data-driven approach to generalizing the heterogeneous
treatment effect of past retrofits to predict future savings potential for assisting retrofit planning.
The main findings include the following: (1) There is high variation in the predicted savings across
retrofitted buildings, (2) GSALink, a dashboard tool and fault detection system, commissioning,
and HVAC investments had the highest average savings among the six actions analyzed; and (3) by
targeting high savers, there is a 110–300 billion Btu improvement potential for the portfolio in site
energy savings (the equivalent of 12–32% of the portfolio-total site energy consumption).

Keywords: building energy retrofits; energy savings evaluation; data-driven energy analysis; causal
forest; heterogeneous treatment effect

1. Introduction
1.1. Motivation

In 2018, buildings consumed 40,000 trillion Btu of energy in the U.S., accounting for
40% of U.S. total energy consumption [1]. Buildings also contributed to over 2000 million
metric tons of CO2 equivalent greenhouse gas (GHG) emissions in the U.S., which consti-
tutes up to 31% of U.S. total GHG emissions [2]. Reducing energy consumption and GHG
emissions in the building sector is an important step to reducing energy-induced pollution
and global warming.

Retrofits of existing buildings are recognized as an effective means to reducing build-
ing consumption and carbon footprints [3–5]. According to a report by Granade et al. [6],
over 25% of primary energy consumption and the associated carbon footprint could be
reduced by energy efficiency improvements in existing buildings [6]. Energy conservation
measures such as upgraded building envelopes, lighting, and efficient appliances are
projected to not only be effective in saving energy and reducing carbon footprint but also
to easily pay for themselves with the avoided energy expenses [6,7].
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Simulation-based tools and methods have been widely used in the prediction of
retrofit savings. A growing number of studies use field experiments or observational data
to measure the real effect of energy retrofits, finding discrepancies between the realized
and the projected savings. For example, in a large field experiment of 30,000 households
in Michigan, Fowlie et al. [8] showed that the Weatherization Assistance Program re-
duced energy expenses by an average of USD 2349 per home over a 16-year horizon
(17 MMBtu/year), but only about a quarter of the projected USD 9810 (56 MMBtu/year). In
a quasi-experimental study of 636 commercial buildings in Phoenix, Liang et al. [9] showed
that the Energize Phoenix program, from which buildings receive single or combinations
of retrofit actions among HVAC, lighting, windows, refrigeration, pumps, and motors,
led to energy savings of 12%, one-fifth of the projected 60%. Table 1 summarizes such
discrepancies between empirical evaluations and retrofit effects predicted with simulation-
based tools. The commonly used experimental and quasi-experimental approaches include
randomized control trials (RCT), randomized encouragement design (RED), instrumental
variable (IV), difference-in-differences (DD), event study, matching, etc. Explanations about
these methods can be found in [10].

Table 1. Comparison between measured savings with empirical methods and predicted savings with simulation-based tools.

Engineering
Model or Projection

Empirical
Approach n Realization Rate 1 Building Use References

NEAT Experimental (RED) around 30,000 30% in total energy Residential [8]

TREAT DD,
event study 101,881

35% in total energy
58% in energy

expenses
Residential [11]

DEER DD,
IV 275

79% in electricity
for AC homes

0% in electricity for
non-AC homes

Residential [12]

[13] Experimental +
engineering 2 504 87% in cooling

88–92% in heating Residential [14]

World Bank DD,
event study, matching 1,162,775

About 25% in
electricity

reduction from
fridge replacement

Residential [15]

Dwelling Energy
Assessment Procedure

(DEAP)
DD 640,000 64 ± 8% Residential [16]

Net Benefit
Model DD 12,000 1/3 Residential [17]

Not specified Time-series approach 2094
24% overall,

49% for HVAC,
42% for lighting

K-12 school [18]

Not specified DD 847 30–50% Commercial and
residential [9]

[19]
Repeated cross-sectional
comparison controlling

for observables
Around 7000 <32% 3 Residential [20]

1 Measured savings divided by simulation projected savings. 2 This study is a bit different from others, as it did not compare a pure
engineering model vs. a pure empirical model. It attributed the deviation to the engineering model as the rebound effects (increase in
usage as a result of higher appliance efficiency). 3 The realized electricity savings are no more than 15%, and gas savings no more than 15%.
The total realized savings will be less than 25%, as compared to the projected 77%.

There could be a variety of reasons for such under-delivery. First, some simulation-
based models in program projections are simplified and not calibrated to actual building
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consumption or did not consider behaviors that impact consumption. A second reason
could be retrofit-induced behavioral changes, where higher efficiency could stimulate
higher consumption. For example, in a poorly insulated house, some building occupants
might not heat or cool the house to the most comfortable temperature since too much
energy expenditure is needed to achieve the desired indoor temperature. After the retrofit,
these homeowners might need less energy expenditure to achieve the desired temperature,
which could result in less savings in energy consumption, even if higher thermal comfort
is achieved. This is called the “rebound effect”; however, other studies have found that
the rebound effect might not explain all of the discrepancy [8,11]. A third reason could
be the quality of installation and worker incentives. For example, energy savings are
significantly lower when retrofit actions are carried out on a Friday—a day particularly
prone to negative shocks on workers’ productivity—than on any other weekday [21–23].
A fourth reason could be the large heterogeneity in the retrofit effects. This means that a
retrofit program or action might have different levels of effectiveness in different buildings,
and the retrofit tools did not successfully target the group of buildings that have the most
substantial savings potential [24]. This paper focuses on understanding the heterogeneity of
retrofit effects, i.e., the effects as a function of a series of characteristics related to buildings,
energy-use level, weather, etc.

This paper presents a data-driven approach to predicting the average and distribution
effects of six types of retrofit actions, including three capital retrofits with hardware instal-
lation and three operational retrofits. The research applies recently developed machine
learning tools in the prediction of heterogeneous treatment effects of energy retrofits across
a portfolio of commercial buildings, using a list of building characteristics and climate
conditions [25]. In companion research to be published in the future, we examine how
climate change mitigation scenarios could be incorporated into savings prediction and
retrofit planning.

1.2. Related Literature

The main goals of retrofit analysis tools include evaluating the savings of past retrofits,
predicting the savings potential of future retrofits, and/or optimizing retrofit decisions
based on the predicted savings. According to ASHRAE Guideline 14 [26], past retrofit
savings for whole buildings can be evaluated with either building energy simulations
(the calibrated simulation approach) or data-driven methods (the inverse modeling ap-
proach). Today, the energy-savings prediction for retrofit planning purposes is dominated
by building energy simulations [27]. Data-driven methods are mainly used in the decision
optimization phase in retrofit planning given predicted savings from simulations [28]. This
research fills the gap by presenting a data-driven method to predict retrofit savings.

1.2.1. The Applications of Data-Driven Methods in Existing Building Retrofit Studies

Data-driven methods are currently used to evaluate past retrofits, retrofit decision
optimization, and pre- or post-processing of simulation inputs or outputs to reduce its
complexity. In this section, each of the above applications will be briefly discussed.

One main application of data-driven models in building retrofits is the measurement
and verification (M&V) inverse model evaluating savings of past retrofits, based on the
M&V principles in ASHRAE Guideline 2014 [26] and IPMVP (International Performance
Measurement and Verification Protocol) [29]. The effect of an implemented retrofit in a
specific building is evaluated by creating a baseline model (counterfactual) with a regression
model fitted to its pre-retrofit energy and a set of observed covariates, which usually include
weather and occupancy. The regression model can take on many forms (see Table 2), from
simple linear regression models to advanced techniques like deep neural networks.

Decision optimization is another main application of data-driven models in retrofit
planning. Such optimization solvers can provide rankings of alternative design options
or encode decision-makers’ preferences in the selection of optimal strategies, based on
predicted savings from simulation tools and other objectives. Some studies bypass the
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retrofit savings prediction step and directly learn a model to predict the best retrofit actions
from building characteristics [30].

Due to the intense computation requirements in building energy simulations (BES),
some data-driven methods are deployed to reduce the set of buildings to be simulated. In
this application, various clustering methods are used in grouping buildings with similar
characteristics and identifying representative buildings of each group. Some studies cluster
buildings based on their characteristics (age, window ratio, etc.) [31], whereas others do so
based on the predicted retrofit effects [32].

To reduce the simulation time, some data-driven models are trained to approximate
the simulation model results of energy consumption or occupant comfort with a series of
building characteristics. The results are commonly fed to optimization schemes to produce
ECM (energy conservation measure) recommendations.

Data-driven approaches modeling the conditional average treatment effect of behav-
ioral energy interventions with detailed characteristics of occupants and buildings appear
in some recent studies on residential buildings [33,34]. These studies model household
energy savings potential as a function of the occupant and building characteristics and
target high potential savers to reduce implementation costs while maintaining high overall
savings. This study extends this branch of research to the commercial building sector, with
a different set of retrofit effect predictors that focuses less on occupant characteristics and
more on weather and climate.

Table 2. Data-driven methods used in retrofit evaluation or planning.

Role of the Model Model Source

M&V inverse modeling

Linear regression [35–38]
Piecewise linear regression [35,39,40]
Neural network (shallow) [39,41,42]

Deep learning [43]
Support vector machine

regression (SVR) [44,45]

Kernel regression [42]
Gaussian process regression [39,46]
Gaussian mixture regression [39]

Decision tree [47]
Random forest [48]

Multi-objective optimization

Genetic algorithm (GA) [49–52]
Nondominated sorting genetic

algorithm II (NSGA-II) [53–55]

Particle swarm optimization [52]
Sequential search [52]

Predict retrofit decisions Falling rule list [30]

Approximate BES results Neural network (shallow) [49,55,56]

Generate inputs for BES parametric runs Genetic algorithm (GA) [57]

Identify representative buildings Clustering [31,58]

Estimate retrofit effect
Elastic nets [34]

Gradient forest [34]
Causal forest [33]

1.2.2. Advantage of Data-Driven Methods in Retrofit Savings Prediction

Simulation tools allow full control of physical and environmental parameter settings
and have the potential to analyze a wide range of retrofit scenarios, including prototyping
new retrofits. However, they require more intensive data input, higher expertise in building
energy modeling, and long computation time. To reduce the computation time, many tools
use a pre-simulated database, usually with prototype buildings. This could speed up the
analysis and provide a quick screening of retrofit alternatives, but many such tools do not
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have model calibration. As a result, whether the prototype building matches the reality is
left unverified. Even for those with calibration, how close the model parameters are to the
actual building is still unclear, as the goodness of the calibration is mainly measured by the
closeness of simulated energy and the actual energy, not the model parameters. How this
uncertainty propagates when the ECM-related model parameters change is unclear [59].
On the other hand, the use of measured data with data-driven approaches has the potential
to better reflect the savings actually achieved. Equally important, most simulation-based
tools cannot assess operational or behavioral efficiency measures [59], whereas the data-
driven approaches established in this study can evaluate operational improvements (for
example, dashboard tools) as well as hardware retrofits.

The following paper is organized into four sections: database and methodology,
results, discussion, and conclusion. In Section 2, the paper will first introduce the dataset,
the assumptions of the causal model, the inputs, and the machine learning model. In
Section 3, the results of the average electricity and gas savings of the six main retrofit
actions and their sub-actions will be presented, followed by a demonstration of the benefit
targeting buildings with high savings potential. To assist the interpretation of the model,
the association between the weather inputs and the energy savings is also presented.
Section 4 first identifies the most important retrofit effect predictors, then compares the
magnitude of the savings of the current study against other similar studies. Section 5
concludes by summarizing the key results, providing guidelines on the application of the
method to portfolio retrofit planning, and pointing out some limitations and directions of
future developments.

2. Database and Methodology

This section describes the data set and some methodological choices. The diagram in
Figure 1 shows the methodology workflow. The input data has three main components: the
effect predictors, the retrofit action, and the pre- to post-retrofit energy change. Key effect
predictors are identified through the causal mechanism analysis. With these, the machine
learning model could learn a function that predicts the retrofit effect of various retrofit
actions based on the predictor values of a target building. By interpreting the model, the
most informative predictors could be identified. This result is shown in Section 4.1. The
model also directly predicts retrofit effects for building–action pairs. With this information,
one can compare the average effectiveness of different actions. This result is presented in
Section 3.1. With the predicted savings, portfolio owners can target high-energy-saving
buildings. The benefit of targeting is evaluated in Section 3.3 by comparing the portfolio
total savings with retrofit decisions made with targeting and those with retrofit decisions
made in reality.

2.1. Data and Summary Statistics

The building energy data and retrofit records in this study are from the U.S. General
Service Administration (GSA) portfolio. GSA is a government agency providing office
space, services, and goods to government agencies. Executive Order 13,423 required
government agencies to reduce their energy-use intensity by 30% by the fiscal year 2015,
compared with its usage in the fiscal year 2003. With USD 5.5 billion in funding from the
American Recovery and Reinvestment Act (ARRA) [60], a series of retrofit actions were
undertaken in buildings in the GSA portfolio between 2010 and 2015. Follow-up Executive
Order 13,693 (revoked in 2018) required an annual energy use intensity reduction of 2.5%
per year from 2016 to 2025 [61].

This study quantifies the retrofit effect of actions taken during the 2010–2015 period in
the GSA portfolio and uses this information to provide decision support for future retrofits.
A subset of 552 buildings in the GSA building portfolio is used in the retrofit effect analysis
(270 with recorded retrofits, 282 with no recorded retrofits).
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Figure 1. Methodology diagram.

The study quantifies the retrofit effect of six groups of retrofit actions, with building
counts shown in Figure 2. Advanced metering refers to the installation of a system of smart
meters to “monitor and/or store energy consumption data for specific building systems
or the entire building” [62]. The commissioning retrofit involves seasonal system testing,
identifying and fixing system issues, post-occupancy evaluation, etc. [63]. The GSALink
action is a combined energy-use dashboard and fault-detection tool. These three actions
involve relatively few hardware installations and are thus categorized as operational
investments. The “building envelope” retrofits include new or repaired building roofs,
facades, or windows. HVAC retrofits consist of repairing or replacing components in
the heating, cooling, and ventilation systems such as chillers, boilers, and cooling towers.
Lighting retrofits include daylighting strategies and the installation of indoor and outdoor
LED lighting, occupant response lighting, integrated lighting control, etc. [64]. These
three groups of actions involve substantial hardware changes and are thus classified as
capital investments.

Figure 2. Retrofit building count: (a) percentage and number of buildings with each type of retrofit action, and (b) percent
and number of buildings with 0 through 5 types of retrofit actions.

Among the 552 buildings in the study, around 30% had investments in advanced
metering, 26% conducted commissioning, 10% had GSALink monitoring, 31% had invest-
ments in HVAC, 30% in lighting retrofits, and 22% in building envelopes. Since these
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percentages exceed the 49% of buildings with investments, it should be clear that over 30%
of all buildings (nearly 70% among the retrofitted buildings) had 2 or more retrofit actions
at the same time (Figure 2).

Table 3 summarizes a few pre-retrofit numeric features of the retrofitted buildings
and un-retrofitted buildings in the study. For an un-retrofitted building, a dummy retrofit
time was selected by randomly sampling the retrofit times of the retrofitted buildings.
Note that the retrofitted buildings had slightly larger gas consumption and larger building
size. The differences between the retrofitted and the un-retrofitted buildings could have
caused biases in the results. To account for this difference, a doubly robust causal inference
model—the causal forest—was selected. The propensity score weighting component in the
model “balanced out” the difference between the two groups and thus reduced biases in
the predicted retrofit effects.

Table 3. Summary of the pre-retrofit characteristics of the retrofitted buildings and the un-retrofitted buildings.

Retrofit Effect Predictor Min Mean Median Max St. Dev.

withre
trofit

Electricity
(kBtu/sqft/year) 1.85 41.67 38.72 287.25 20.89

Gas (kBtu/sqft/year) 0.01 21.96 21.14 132.22 17.80
Cooling degree day (CDD) 58.6 1409.3 1160.2 4628.2 989.5
Heating degree day (HDD) 71.5 4484.1 4667.1 9172.7 2005.2

Gross square footage 5912 402,742 269,946 3993,881 456,913

without
retrofit

Electricity
(kBtu/sqft/year) 2.11 45.21 40.21 182.01 23.93

Gas (kBtu/sqft/year) 0.00 29.94 21.07 283.68 30.77
Cooling degree day (CDD) 20.9 1398.5 1363.7 4589.0 961.2
Heating degree day (HDD) 184.3 4460.4 4188.3 10,580.2 2389.8

Gross square footage 1161 216,610 65,055 3456,919 428,105

2.2. Assumptions and Confounding Variables

To identify the retrofit effect from non-experimental data, it was crucial to understand
the causal mechanisms and identify and control for the confounding variables, those factors
affecting both the retrofit decisions (treatment) and building energy consumption (outcome).

Building energy consumption could be affected by building size due to the difference
in surface-to-volume ratio, the different properties of the building systems, etc. Building
type and ownership could influence the occupants’ energy-use behaviors, and in turn, could
impact energy consumption. Building vintage and retrofit history is related to construction
property and equipment efficiency, and thus could influence the energy consumption of a
building. Local climate affects the amount of heating or cooling needs, which in turn affects
both the total energy consumption and heating/cooling end uses. Figure 3 summarizes the
list of variables affecting the energy consumption of a building.

According to [65], two main determinants of retrofit decisions in commercial buildings
are technical feasibility and financial consideration. Technical feasibility is affected by
factors including building vintage, energy types, and construction properties [65]. Build-
ing type and local climate affect financial considerations through the building resiliency
requirements and pre-retrofit energy consumption levels. The geographical location of a
GSA region is related to climate, which in turn influences the financial benefits of retrofit
decisions. Building size affects retrofit implementation cost, which then shapes retrofit de-
cisions. Ownership could also influence retrofit decisions, as split incentives or regulatory
hurdles might make tenants less willing or able to conduct retrofits. This can be seen in
the current GSA building data, where all retrofitted buildings are owned buildings, and
policies have been set for energy savings, all of which affect retrofit decisions. Figure 4
outlines the factors affecting building retrofit decisions.
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Figure 3. Variables affecting energy consumption (variables in yellow are the control variables).

Figure 4. Retrofit decision determinants (variables in yellow are the control variables).

Based on the reasoning above, a simplified causal diagram was drawn incorporating
the factors affecting building energy consumption and factors impacting retrofit decisions
(Figure 5). Note that there could have been some un-measurable confounders, for example,
whether the building manager is environmentally conscious. Buildings with an environ-
mentally conscious manager could have been more likely to receive retrofit investments
and more likely to use less energy in the absence of retrofits. This is illustrated by the
dashed arrows in the diagram. The absence of these un-measurable confounders could
have biased the results. The study assumes that the strength of the relationship encoded
with the dashed arrows is weak.

Seven groups of input features were selected for the prediction of the retrofit effect,
based on the causal mechanism discussed above and data availability. Table 4 lists the
retrofit effect predictors. Building characteristics included 4 variables: building size, type,
LEED (Leadership in Energy and Environmental Design) certification status, and indicator
for historic buildings (a proxy for building age). Short-term weather was used in the form
of a binned representation of daily average temperature three years before the retrofit,
following [66–68]. The 30-year annual heating and cooling degree day climate normal
from NOAA (National Oceanic and Atmospheric Administration) was used to reflect the
long-term local climate condition. The pre-retrofit annual energy consumption category
included the consumption of four fuel types. GSA sustainability practices were organized
under the regional offices, each with its unique sustainability activities. Such policy regions
are controlled with indicators of regional membership. GSA buildings were classified into
a GSA-designated category, which denotes the building ownership and the energy-use



Energies 2021, 14, 4334 9 of 24

intensity. The last predictor class encoded the type of retrofit actions that took place before
or at the same time as the current action under analysis.

Figure 5. Simplified causal diagram.

Table 4. The classification of retrofit effect predictors.

Retrofit Effect Predictor Class Retrofit Effect Predictor

Building characteristics

Building size in gross square footage.
Whether a building is a historic building.

Whether a building had a LEED certificate
before the retrofit project

Whether a building is an office building or
a courthouse

Weather
(average annual number of days with daily
mean temperature within a certain range)

A total of 8 variables, the kth variable
indicating the annual average number of days
with daily temperature in the kth temperature

bin. The temperature bins are below 10 ◦F,
between 10 ◦F and 20 ◦F, . . . , between 80 and
90 ◦F, and above 90 ◦F. The 60 ◦F to 70 ◦F bin is

left out as a reference.

Climate
1981–2010 climate normal of annual cooling

degree day (CDD),
and annual heating degree day (HDD)

Pre-retrofit energy
Average monthly electricity, natural gas,

chilled water,
and steam consumption in kBtu/sqft/year.

Region

A total of 10 indicator variables, the kth
indicator variable representing whether a

building is in GSA region k. Region 1 is left out
as the reference level.

Category

A total of 3 indicator variables, each
corresponding to a GSA building category

designation of B, E, or I. Category A is left out
as the reference level 1.

Previous actions Indicator variables of pre- or co-existing
action categories.

1 A: Government-owned buildings subject to the energy reduction goals, B: government-owned buildings exempt
from the goals, E: reimbursable and non-re-portable, and I: energy-intensive buildings.
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2.3. The Causal Forest Model

The study applied the causal forest estimator [69] to predict the retrofit effect as a
function of building characteristics, climate, energy-use level, etc. The causal forest model
was selected due to its better predictive accuracy and high confidence interval coverage,
compared with traditional non-adaptive neighborhood matching methods [69].

A causal forest is an ensemble of many causal trees. Each causal tree is built with
a random subsample of the whole data set. This subsample is randomly split into two
halves. One half is used in learning the tree partition by maximizing the variance of the
heterogeneous treatment effect, and the other half is used in computing the effect estimates.
This approach both reduces the bias and minimizes the mean squared error.

In this study, a causal forest was fitted for each type of retrofit action and fuel type
(electricity and gas) separately, using buildings with that retrofit type and buildings with
no retrofit. The schematic diagram in Figure 6 illustrates how the HVAC causal forest
model estimates the retrofit effect on the gas consumption of a target building. Suppose
the target building is an office and non-historic building of 30,000 square feet. During the
three years before the retrofit, on average there are 100 days in a year with temperature
between 70 ◦F and 80 ◦F, and 30 days with a temperature between 30 ◦F and 40 ◦F. The
causal forest predicts that investing in HVAC retrofits is estimated to reduce the average
annual natural gas consumption of this target building by 1.5 kBtu/sqft. This savings is
estimated by contrasting the pre to post-natural gas consumption changes of the retrofitted
and the un-retrofitted buildings that share similar characteristics with this building.

Figure 6. Illustration of a regression tree in the causal forest estimating effects of HVAC retrofits.

The causal forest model uses the implementation in the generalized random forest
(grf) R package developed by Tibshirani et al. [70]. In the first round of model fitting,
the propensity score (treatment probability) is estimated, then the model is re-fitted with
the propensity score bounded within the range of 0.05 to 0.95 so that the overlapping
assumption required in the identification of the causal effect is satisfied. The training
process uses cross-validation to tune the following hyper-parameters: the proportion
of data used in building a causal tree, the number of candidate features considered in
a split, the minimum number of buildings in each leaf node, the proportion of data in
the sub-sample used in computing the split, the accepted level of imbalance of a split,
and the penalty of an imbalance split. All the data pre-processing and model fitting was
conducted using R on a Mac laptop machine with a Quad-Core Intel Core i7 processor and
16 GB memory.

3. Results
3.1. The Average and Distribution of Retrofit Effect

Among all six retrofit actions, on average, the energy reporting and dashboards in
GSALink had the highest average savings in annual electricity consumption per square
foot (electric site EUI (EUI: energy use intensity)), whereas commissioning and HVAC
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capital improvements had the highest average savings in natural gas consumption per
square foot (gas site EUI). Figure 7 presents the mean and the 95% confidence interval of
the predicted retrofit effect of past retrofits, restricted to the set of buildings with positive
electricity or gas consumption three years before the retrofits. The summary statistics of the
distribution of the estimated savings among the set of retrofitted buildings are shown in
Table 5. For most actions, there were some buildings with negative savings, even negative
median savings. This means the same retrofit action saved energy for some buildings but
increased energy usage for others. It is thus crucial to target buildings with high savings
potential in retrofit planning.

Figure 7. Bar chart of the mean and 95% C.I. of the estimated retrofit effects of past retrofit actions.

Table 5. The distribution of the estimated site electricity or gas EUI in kBtu/sqft/year savings among retrofitted buildings.
1 kBtu/sqft/year = 3.15 kWh/m2 = 11.36 MJ/m2.

Fuel Action Type Action
Summary Statistics

Min Q1 Median Q3 Max Mean

Electricity

Capital

Building
envelope −5.09 −2.84 −0.82 1.58 4.47 −0.66

HVAC −5.02 −1.86 1.53 4.76 11.71 1.90
Lighting −4.36 0.52 2.20 4.53 14.20 2.55

Operational

Advanced
metering −1.41 −0.09 0.36 0.93 2.86 0.47

Commissioning −7.15 −2.75 1.56 3.57 11.00 0.94
GSALink 1.04 3.40 4.26 5.57 10.60 4.87

Gas

Capital

Building
envelope −4.81 −2.47 −1.10 0.97 1.95 −0.89

HVAC −1.93 1.04 2.75 3.83 8.50 2.55
Lighting −4.30 −1.15 0.06 1.61 6.78 0.35

Operational

Advanced
metering −3.63 −1.15 −0.24 1.51 6.86 0.49

Commissioning −1.24 0.88 1.97 3.76 8.56 2.62
GSALink 0.41 0.69 0.89 1.24 1.81 0.98

In addition to the six large groups of operational and capital ECMs, the data set
enabled the analysis of a set of sub-actions in the capital ECMs. Among the HVAC sub-
actions, new cooling towers and new air handlers had the highest average site electricity
EUI savings. Repairing controls and repairing boilers had the highest average site gas EUI
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savings. Surprisingly, new cooling towers also had noticeable average site natural gas EUI
savings. This might have been due to the reduction in gas used in the reheat of cooling
supply air. Another possibility might have been due to commissioning retrofits co-existing
with HVAC capital investments, which is rather effective in saving gas consumption. Even
though such co-existing actions were controlled with indicator variables of past retrofit
categories, the interactions between actions might have been more complicated and not
adequately accounted for. A future development of this data-driven analysis would be to
gather more retrofit data sets so that the interactions of different retrofit investments can
be estimated. Figure 8 visualizes the mean and 95% confidence interval of the predicted
retrofit effect of HVAC sub-actions on the site electricity EUI and site gas EUI.

Figure 8. Bar chart of the mean and 95% C.I. of the estimated retrofit effects of past HVAC retrofit
sub-actions on the site electricity EUI and site gas EUI.

Among the building envelope sub-actions, new windows had the highest site electric-
ity EUI savings. Across all building envelope sub-actions, new windows were the best at
reducing site electricity EUI, followed by repairing façades and repairing roofs. Repairing
façades was the most effective in reducing site gas EUI. The negative gas EUI savings
in new windows and new facades might have been due to the increased solar heat gain
coefficient (SHGC) that reduces the contribution of passive solar heat in the winter. The
negative site gas EUI savings of repairing roofs might have been a result of the reduction
of solar gain in winter from adding more reflective roof coatings to reduce cooling loads.
These negative values suggest that the goal of most envelope retrofits is reducing the
cooling load rather than improving thermal insulation. Figure 9 presents the summary
statistics of the predicted retrofit effects of six building envelope sub-actions on the site
electricity EUI and site gas EUI.

As is anticipated, lighting sub-actions were more effective at saving site electricity EUI
than site gas EUI (Figure 10). On average, daylighting and outdoor lighting controls were
the most effective at saving site electricity EUI. Daylighting retrofits also had some site gas
EUI savings, which might have been due to the improved windows and the increased solar
heat gain from daylighting.
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Figure 9. Bar chart of the mean and 95% C.I. of the estimated retrofit effects of past building envelope
retrofit sub-actions on the site electricity EUI and site gas EUI.

Figure 10. Bar chart of the mean and 95% C.I. of the estimated retrofit effects of past lighting
retrofit sub-actions.

3.2. Model Performance

Currently, there is no established methodology to test the true performance of data-
driven causal models using observational data, where the treatment, retrofit in this case, is
not randomly assigned. This is because the retrofit effect is not observable. For data from
experiments, the observed difference between the treated and untreated units equals the
actual treatment effect, but this is not the case for non-experiment data.

There are a few heuristics measures provided in the grf package to evaluate the relative
performance of the model. The mean forest prediction score evaluates the goodness of
the prediction of the average effect. The closer the score is to 1, the better. GSALink and
lighting had the most accurate mean prediction in electricity savings. HVAC, building
envelope, and commissioning had the most accurate mean prediction in gas savings
(Table 6). Another metric is the differential forest prediction score. The p-value of the score,
also shown in Table 6, reflects whether the treatment effect heterogeneity is statistically
significant. The effect heterogeneity was statistically significant for electricity savings of
HVAC and commissioning, and marginally significant for building envelope. The effect
heterogeneity was statistically significant for the gas savings of advanced metering.
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Table 6. Model performance in the prediction of the mean and effect heterogeneity of the six retrofit actions.

Retrofit Action

The Absolute Value of
the Mean Forest Prediction Score—1

The p-Value of
the Differential Forest Prediction Score

Electricity Gas Electricity Gas

Advanced metering 1.78 0.87 0.94 0.04 *
Building envelope 0.37 0.13 0.07 0.49

Commissioning 0.98 0.15 0.04 * 0.34
GSALink 0.19 1.55 0.95 0.93

HVAC 0.45 0.01 0.00 *** 0.27
Lighting 0.13 1.41 0.21 0.73

*, *** in the last two columns indicate statistical significance at p < 0.05 and p < 0.001.

3.3. The Benefit of Targeting Buildings with Higher Savings

This section illustrates how the knowledge of predicted savings could help portfolio
owners achieve higher portfolio-wide savings. The scatter plot in Figure 11 explains
why targeting and prioritization could improve portfolio-wide savings on HVAC retrofits.
The “reality” case reflects implemented retrofit decisions in reality. The “optimal” case
represents the scenario where only buildings with high savings potential for that action
are retrofitted. Compared to the “optimal” scenario, the implemented retrofit decisions
were suboptimal in two aspects. First, it wasted resources retrofitting buildings with zero
or negative savings potential and it missed out on buildings with high savings potential.
Targeting and prioritization could correct both mistakes.

Figure 11. Illustration of why targeting works in improving portfolio-wide source energy savings of
HVAC retrofits.

To evaluate the benefit of prioritization, a hypothetical scenario is examined where the
portfolio manager could go back in time and use the knowledge of the predicted retrofit
savings to re-assign retrofits to the buildings with the highest savings potential while
maintaining the same number of retrofitted buildings. As is shown in Figure 12, by targeting
the buildings with high predicted savings, the portfolio-wide total savings for 552 federal
buildings could improve by about 110–300 billion Btu in site energy, 170–680 billion Btu in
source energy, and 10,000–50,000 metric tons of CO2 emissions reduction.

Figure 13 compares the benefit of prioritizing these HVAC sub-actions to the buildings
with the greatest savings potential compared to the implemented retrofits, keeping the
number of retrofitted buildings the same. Repairing controls had the highest portfolio
savings improvement in site energy. New cooling towers improved most in source energy
savings and CO2 emissions reduction. New air handlers improved the two energy expense
metrics the most by prioritization. The highest benefits of HVAC sub-actions were about
41% to 42% equivalent to the pre-retrofit energy consumption or GHG emissions among
all sub-actions and objectives (site energy, source energy, energy expense, energy expense
considering environmental externalities, and CO2 emissions).
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Figure 12. The improvement of portfolio-wide savings from the “reality” case to the “optimal” case
when re-assigning retrofits to high-saving buildings (1 billion Btu = 1055 billion joules).

Figure 13. The benefit of targeting for HVAC retrofit sub-actions (1 billion Btu = 1055 billion joules).

Prioritizing envelope sub-actions for the buildings with the greatest savings potential
revealed that new windows achieved the highest improvement of 456 billion Btu in source
energy, 5 million in energy expenses considering externalities, and 35,000 metric tons in
CO2 emissions reduction. These improvements constitute 15% to 23% of the pre-retrofit
energy consumption or GHG emissions for each of the five objectives. New roofs ranked
second in prioritized benefits, with savings equivalent to 12% to 14% of the pre-retrofit
quantities. Figure 14 summarizes the benefits of prioritizing building envelope sub-actions.

Figure 14. The benefits of prioritizing building envelope sub-actions (1 billion Btu = 1055 billion joules).

Prioritizing lighting sub-actions for the buildings with the greatest savings potential
revealed that indoor daylighting benefitted the most from prioritization across all objec-
tives, achieving an improvement of 1175 billion Btu in source energy, USD 13 million
in energy expenses considering externalities, and 86,000 metric tons in CO2 reductions.
These improvements are as large as 50–56% of the pre-retrofit energy consumption or GHG
emissions for each of the five objectives. The outdoor actions did not benefit as much as the
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indoor actions, but they still achieved an improvement of close to 30% of the pre-retrofit
quantities. Figure 15 illustrates the benefits of prioritizing these lighting sub-actions for the
top saving buildings.

Figure 15. The benefits of prioritizing lighting sub-actions (1 billion Btu = 1055 billion joules).

3.4. The Association between Predicted Savings and Weather

To interpret the causal forest (CF) predictions and evaluate the association between the
input features and the predicted savings, a linear regression model was fitted by regressing
the CF-estimated retrofit effect (technically, the doubly robust scores [69]) onto a subset of
the most informative predictors (the variable with importance scores at least 10 times the
average importance scores across all variables was selected). A schematic flow diagram
is shown in Figure 16. The coefficients of the linear model reflect how much difference in
savings prediction could be associated with a one-unit difference in the value of the retrofit
effect predictor.

Figure 16. Schematic diagram of summarizing a causal forest with a linear model (linear model).

As an example, Figure 17 visualizes the linear model coefficients summarizing the CF
prediction of HVAC on electricity savings. Hotter and colder weather was associated with
increased HVAC electricity savings; specifically, one additional day with a temperature
below 10 ◦F was associated with a 0.6 kBtu/sqft/year electricity savings increase by
investment in HVAC retrofits (p = 0.03).

The previous U-shaped pattern appeared in the electricity savings of most actions,
where total electricity savings increased with additional cold or hot days in a year. GSALink
had the highest increase in hot-day electricity savings, at about 1.05 kBtu/sqft/year per
one additional hot day in a year with a daily temperature above 90 ◦F. More cold days were
associated with more gas savings in building envelope, HVAC, and lighting retrofits. Gas
savings from lighting retrofits might have been due to the correlation between the outdoor
daylighting level and outdoor temperature. For example, buildings at a high-altitude
location could have cold and dark winters, resulting in increased consumption of both
heating and lighting. These findings suggest that building envelope, HVAC, and lighting
retrofits should be pursued in climates with more extreme weather, whereas advanced
metering may have similar savings in extreme and mild climates. Figure 18 visualizes
the weather variable coefficients of the linear model approximations of the causal forest
models for each action–fuel combination.
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Figure 17. The contribution of weather predictors to total electricity savings by HVAC retrofits.

Figure 18. The contribution of weather-related predictors to the savings prediction of electricity and gas savings of
six actions.

4. Discussion
4.1. Variable Importance of Input Features

A variable importance evaluation was conducted for each action–outcome combina-
tion based on how often each variable was used in top-level splits when building the causal
trees [70].

As an example, Figure 19 shows the importance ranking of each retrofit effect predictor
in the estimation of the effect of HVAC retrofits on annual electricity use (kBtu/sqft/year).
The retrofit effect predictors with close to zero importance were omitted from the plot for
clarity of presentation. The analysis revealed that for predicting the electricity savings
of HVAC retrofits, pre-retrofit gas and electricity use ranked as the first and third most
important variables in the prediction of the electricity savings of HVAC retrofits. Although
it may be unexpected that pre-retrofit gas matters for electricity savings, the combination
of the two pre-retrofit conditions determines whether space heating is all-electric, all-gas,
or a combination of the two. This could determine the magnitude and seasonal pattern of
electricity savings. Furthermore, the building with high gas usage could have had high
electricity use as well, possibly due to the low thermal insulation level. The number of
days within 30–40 ◦F or 80–90 ◦F ranked second and fourth in the prediction of the effect
of HVAC retrofits on annual electricity use, as they were related to the heating and cooling
load, and thus useful in predicting electricity savings.
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Figure 19. Variable importance of retrofit effect predictors predicting the effect of HVAC retrofits on
annual electricity use.

Due to a large number of action–outcome combinations, the variable importance of
each action–outcome combination was aggregated into one value, indicating the most
important predictor class among the top five most important predictors, identified by
selecting the class with the highest average importance score. Figure 20 visualizes the most
important retrofit effect predictor classes for the effect of six retrofit actions on electricity
and gas savings. Variable to variable-class mapping is shown in Table 4. Pre-retrofit gas and
electric energy use and weather were the most important variable classes for estimating
the effect of most actions on both electricity and gas savings. It would be most important
to consider short-term weather (dark blue) for the prediction of the electricity savings of
commissioning and lighting actions and long-term climate (light blue) for the prediction of
the gas savings of GSALink and advanced metering.

Figure 20. Most important retrofit effect predictor categories for level-2 actions.

4.2. Results Comparison with Similar Studies

In this sub-section, the retrofit effects estimated in this study are compared to several
data-driven building studies evaluating similar retrofit actions.

Among the three operational actions, commissioning is the most well studied. According to
a meta-analysis by Mills et al. [71], the median commissioning savings is 5.8 kBtu/sqft/year for
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electricity and 6.5 kBtu/sqft/year for gas, substantially larger than the savings estimated
in this study, at 0.9 kBtu/sqft/year for electricity and 2.6 kBtu/sqft/year for gas. The lower
estimates in this study could have been due to the fact that it frequently co-exists with
other retrofit actions. Even if multi-actions are controlled with an indicator variable of a co-
existing action category in the model, this analysis assumed the additive of retrofit effects,
which might not be the case, according to Chidiac et al. [72]. The effect of commissioning
could have been overshadowed by co-existing actions.

Although commissioning is evaluated in commercial buildings, the energy savings
impact of advanced metering is mostly studied in residential buildings with large variations
in estimated electricity savings, from 1.6–1.7% [73] to 6.1–6.4% [74]. In this study, the
installation and use of advanced metering was estimated to save an average of 2.1%
(0.47 kBtu/sqft/year) electricity, which is within the range of savings magnitude for
residential buildings.

The advantages of building automation, energy-usage visualization, and fault-detection
programs such as GSALink have been quantified to have a median energy savings of 8%
(ranging from −1% to 30%) [75]. In this analysis, the estimated median energy savings was
10.6% (ranging from 2% to 38%), which is slightly higher than the previously quantified
median savings and its range.

For the three capital actions analyzed in this study, the average electricity savings
demonstrated was 6.5% for lighting, −2.7% for enclosure retrofits, and 4.6% for HVAC
retrofits. These values are lower than two previous commercial building studies of 10.2%
for lighting and 18% for HVAC in [9], and 42% for lighting and 49% for HVAC in [18].
Among retrofit sub-actions, the average of window repairs and replacements at 22% is
similar to the 17.4% electricity savings in [9]. In the current study, new controls reduced
the electricity consumption by 0.13% on average, whereas repairing controls achieved 9.3%
electricity savings, larger than the magnitude of savings of 2.1% reported in [9].

As these comparisons suggest, the energy savings quantified in this study were
generally on the lower end of the savings estimated in the literature. In addition to the
impacts of multiple investments, these lower estimates could have been due to a portfolio-
wide energy reduction goal in the federal sector. All savings were estimated by contrasting
the pre- to post-retrofit energy changes of the retrofitted and the un-retrofitted. For the
federal portfolio, the no-retrofit buildings might also have had energy reductions due to
Executive Order 13,423, which sets goals for annual reductions in energy.

5. Conclusions

This paper presents the application of a machine learning method with causal forest
for the prediction of retrofit savings from six broad retrofit actions and sub-actions using
a commercial building portfolio. The paper fills in a gap in the power of using data-
driven methods to predict retrofit savings, which is currently dominated by simulation
methods. Simulation-based retrofit planning methods allow full control of physical and
environmental parameter settings and have the potential to analyze a wide range of retrofit
scenarios, including prototyping new retrofits. However, they require intensive data input,
high expertise, and long computation time. In addition, most simulation-based tools do not
adequately assess operational or behavioral changes or their impacts on energy efficiency.
The data-driven method proposed in this study captures capital and operational variables
through actual energy records, is less computation- and data-intensive, and can be more
easily extend to the evaluation of large portfolio projects. The savings predictions are most
likely closer to reality due to the use of real measured data. The study also contributes to
the limited literature on large-scale empirical evaluation of energy efficiency interventions
in commercial buildings.

Based on measured data on energy use and weather history, retrofit records, build-
ing characteristics, and other control variables identified through the causal mechanism
analysis, portfolio owners and policymakers can train models that estimate energy savings
for past retrofits, predict energy savings for future retrofits, and design retrofit plans that
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maximize portfolio savings or cost-effectiveness by targeting building sub-groups with
high predicted savings. To save energy, portfolio owners can first rank buildings based
on the model-predicted energy savings, then select buildings with positive savings. This
ensures the largest portfolio-wide energy savings. When a budget constraint is added, the
portfolio owners could rank buildings by energy savings per dollar spent in the retrofit
implementation and select buildings from the top of the list until the budget runs out.
When there are more layered savings objectives, multi-objective optimization methods
such as [76,77] can be incorporated into the decision support process.

This study presents an initial demonstration of how to use a data-driven approach to
predict the retrofit effect as a function of a series of characteristics. It is far from complete,
with the following limitations.

• The sample size is still rather small, given the desire to evaluate six classes of energy
conservation actions (ECM) and 21 sets of sub-actions.

• The ECM action classifications are broad with limited or conflicting indications of the
sub-actions taken.

• The retrofit records only have a completion date, not a start date, such that before and
after data sets may not be accurately defined. In addition, many actions share the
same completion date, which could lead to the contamination of “pre-retrofit” data
with “during-retrofit” data, potentially resulting in biased savings estimates.

• As previously discussed, Executive Orders 13,423 and 13,693 are strong policy drivers
for buildings in the GSA portfolio to reduce their energy consumption, whether
they are retrofitted or not. This might make the retrofit savings estimates more
conservative and the same action might reach higher savings in buildings without
such a policy driver.

• Due to some un-documented retrofit actions, some retrofitted buildings might be
categorized as un-retrofitted in the study. This could also lead to a more conservative
savings estimation. In the future, such uncertainty should be reduced by improving
the retrofit action documentation or including a sensitivity analysis.

• Even though co-existing or past actions are controlled for with indicator variables,
the interactions between actions might be more complicated and not adequately
accounted for.

The following future improvements are identified to enhance the performance and
increase the usability of the proposed method.

• Acquire larger data sets with more thorough documentation of retrofit details and
building characteristics and covering a larger variety of retrofit actions. With this
improvement, savings could be predicted more accurately for a larger set of more
specific actions.

• The decision support section is relatively simple in this study, as the focus is more on
the savings prediction, rather than decision optimization. More complicated multi-
objective optimization methods in Section 1.2.1 could be incorporated.

• The effect of the retrofit action sequences could be studied in the future, possibly using
methods from the time-varying treatment effect literature, such as [78–80].
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