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Abstract: Oil price forecasts are of crucial importance for many policy institutions, including the
European Central Bank and the Federal Reserve Board, but projecting oil market evolutions remains
a complicated task, further exacerbated by the financialization process that characterizes the crude
oil markets. The efficiency (in Fama's sense) of crude oil markets is revisited in this research through
the investigation of the predictive ability of technical trading rules (TTRs). The predictive ability
and trading performance of a plethora of TTRs are explored on the crude oil markets, as well as
on the energy sector ETF XLE, while taking a special focus on the turbulent COVID-19 pandemic
period. We are interested in whether technical trading strategies, by signaling the right timing of
market entry and exits, can predict oil market movements. Research findings help to confidently
conclude on the weak-form efficiency of the WTI crude oil and the XLE fund markets throughout
the 1999-2021 period relative to the universe of TTRs. Moreover, results attest that TTRs do not
add value to the Brent market beyond what may be expected by chance over the pre-pandemic
1999-2019 period, confirming the efficiency of the market before 2020. Nonetheless, research findings
also suggest some temporal inefficiency of the Brent market during the 1 and % years of pandemic
period, with important consequences for energy markets’ practitioners and issuers of policy. Research
findings further imply that there is evidence of a more intense financialization of the WTI crude
oil market, which requires tighter measures from regulators during distressed markets. The Brent
oil market is affected mainly by variations in oil demand and supply at the world level and to a
lesser degree by financialization and the activity of market practitioners. As such, we conclude that
different policies are needed for the two oil markets and also that policy issuers should employ
distinct techniques for oil price forecasting.

Keywords: crude oil; energy markets; technical trading rules; predictability; data snooping; market
efficiency; COVID-19 pandemic

1. Introduction

Over the last decades, the oil market registered significant growth, becoming the
world’s biggest commodity market and transforming from a purely physical to a highly so-
phisticated and complex financial market [1]. Its rhythm of growth remains high: the global
oil and gas market is expected to grow from $4677.45 billion in 2020 to $5870.13 billion
in 2021 at a compound annual growth rate (CAGR) of 25.5%, and the market is expected
to reach $7425.02 billion in 2025 at a CAGR of 6% [2]. In addition, crude oil also tops
the commodities markets in terms of liquidity, being the most actively traded commodity
around the globe, while the price of oil reflects the overall health of the energy sector
worldwide.

Oil price forecasts are of crucial importance for macroeconomic projections, which
is especially explained by the impact that oil prices have on inflation and output and,
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consequently, on the issuance of monetary policy. However, recent movement of crude
oil markets has highlighted the difficulty in forecasting oil prices and attested that oil
market dynamics tend to vary substantially over time. Moreover, crude oil markets are
characterized by increased volatility, which might be explained both by variations in the
price elasticity of oil demand and supply, and also by the process of “financialization” of
the oil market with the increasing use of oil as a financial asset [3—6]. Consequently, oil
derivatives markets have expanded over the last decades, with the presence of purely
financial practitioners (institutional investors such as hedge funds, pension funds, insur-
ance companies, and also individual traders) with no interest in the physical commodity
becoming more prominent. Concurrently, a variety of instruments that permit speculation
in oil have become available for trading, from passive investment vehicles such as energy
indexes and ETFs to derivative instruments such as futures, options, or CDFs. All these de-
velopments in oil markets have a direct impact on the oil market movements, its efficiency
and subsequent predictability.

Financial institutions and regulators around the globe (i.e., The Federal Reserve Board,
the World Bank, the International Energy Agency, the European Central Bank etc.) regularly
issue oil price forecasts, which is further a paramount factor for policy formulation within
the European Central Bank (ECB), the IMF and the Federal Reserve Board [7]. However,
predicting oil price movements remains a challenging endeavor [3], which is further
complicated by its increasing financialization and the intense speculative activity within
the market that improved its efficiency (in Fama’s EMH sense) and hence contributed to
its unpredictability. Moreover, none of the techniques previously employed for oil price
forecasting has proved particularly successful and thus presently there is no “optimal” or
commonly accepted forecasting technique for oil price [8].

As such, the analysis of the efficiency of the crude oil markets is a timely research
topic, with important implications for policy issuers and for financial markets practitioners.
Nonetheless, and somewhat surprisingly given the practitioners’ interest in this commodity
as reflected in its market liquidity, the academic literature on the profitability of technical
trading rules applied to crude oil markets remains rather scarce. Our study contributes to
extending this literature. This paper thus revisits the Fama efficiency [9] of the crude oil
markets though exploring the predictive ability and trading performance of a plethora of
technical trading rules (TTRs) applied to relevant energy series (i.e., WTI crude, Brent crude
and XTE). Moreover, our focus on energy/oil markets is even more motivated by the fact
the COVID-19 pandemic has severely impacted the oil markets, due to travel restrictions,
disrupted supply chains and imposed government lockdowns. Previous studies have
found that the efficiency of crude oil markets is lost during crisis periods, investigating the
2008 global financial crisis [10,11]. As the impact of the ongoing pandemic crisis on the oil
market efficiency has not been yet assessed, this constitutes a secondary research goal of
the current study and a further contribution to the extant literature.

The Efficient Market Hypothesis (EMH) and the related concept of market efficiency
remain paramount in modern finance, with a plethora of empirical studies dedicated to
confirm it on different markets, assets and time periods, with divergent results. EMH has its
roots in the works of Eugene Fama [12,13] and Paul Samuelson [14]. Furthermore, Fama’s
seminal work defines an efficient market as “a market with a large number of rational,
profit “maximisers” actively competing, each attempting to predict future market values of
individual securities, and where current important information is almost freely available to
all participants” [15] and it also distinguishes between three forms (or ‘strengths”) of market
efficiency—weak, semi-strong and strong. In its weak-form, EMH states that current prices
reflect all existing historical information, and thus prices will exhibit random walk.

Alternatively, technical analysis (or Chartism) specifically involves making investment
decisions based on past price movements. As Alexander [16] has said it, “the technician
studies price movements of the immediate past for telltale indications of the movements
of the immediate future.” However, in relation to EMH, this would imply that technical
trading rules (TTRs) based on historical price data would offer no predictive power, and
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hence technical analysis would be inexpedient. Nonetheless, as Menkhoff [17] shows,
technical analysis remains very popular among practitioners, with the vast majority of 692
surveyed fund managers from five countries acknowledging relying on technical analysis
for market timing and decision-making, and to favor it relative to fundamental analysis.
This is an indication that Chartism must hold some value to traders that is unaccounted by
the EMH.

Consequently, in this study, we choose to employ instruments pertaining to techni-
cal analysis (i.e., TTRs) to investigate the overall efficiency of the oil markets, to assess
the potential differing financialization process of the two most important crude oil mar-
kets (WTI and Brent) and to analyze the impact of the COVID-19 induced crisis on oil
markets” efficiency.

The remainder of the paper is organized as follows. The next section gives a review of
the literature concerned with technical trading rules applied to commodity markets and
most specifically their predictive ability and performance on oil/energy markets. Section 3
discusses the data and method. Empirical results and discussions are contained in Section 4,
followed by some concluding comments in the final section.

2. Literature Review

Although the predictive ability and profitability of technical trading rules applied to
various international stock markets during different time periods have been thoroughly
examined, the literature on technical trading rules applied to commodities markets in
general and energy/oil markets in particular remains rather scarce.

One of the first studies in this narrow literature is that of Marshall et al. [18], which
test over 7000 rules on 15 commodity futures markets, including WTI crude oil, heating oil
and soybean oil for a period spanning 1 January 1984-31 December 2005. They analyze
the entire series and two equal sub-periods and cannot report that technical rules achieve
superior performance after accounting for data snooping, except the oats market. The oil
markets are thus found to be efficient over the 1984-2005 period.

Further, Szakmary et al. [19] examine the profitability (net of transactions costs) arising
from the implementation of 12 trading rules (six DMAC and six channel specifications)
on a monthly dataset for 28 commodities, having a different start date for each series
and with all series ending on 31 December 2007. The dataset includes the same three
oil markets again, i.e., WTI crude oil, heating oil and soybean oil, and results confirm
that technical rules do perform well, although mean returns are lower and less significant
toward the end of the analyzed period (i.e., during the 19962007 sub-period), especially
when testing is restricted to high-volume markets, a category to which WTI crude oil
belongs. Nonetheless, the authors refrain to claim that their study confirms the weak-form
inefficiency of commodity futures markets included in the analysis.

Narayan et al. [20] use daily data on four commodities, including again WTI crude
oil, spanning the period 16 May 1983-22 November 2011, to which they apply a narrow
universe of six standard moving average (SMA) trading rules and report that investors can
earn abnormal return (net of commissions) from technical trading rules in three of the four
markets, including in the WTI crude oil market, where trading rules achieve the highest
return. However, their results do not seem to account for data snooping, which is a bias
proven to have a significant impact on results and thus are not sufficiently strong to prove
the inefficiency of the WTI crude oil market. Subsequently, Narayan et al. [21] also conclude
that commodity futures markets can indeed offer investors statistically significant profits.

Further, Wang et al. [22] employ daily prices of WTI crude oil futures contracts over
1983-2014 and develop dynamic MA trading strategies through genetic algorithms, whose
trading performance is further compared to the buy-and-hold strategy and to some static
MA rules. The study confirms the superiority of dynamic moving averages on the WTI
crude oil futures market during downward trending markets. However, it also lacks a
check of results robustness.
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More recently, Psaradellis et al. [23] offer probably the most updated study on technical
trading rules applied to the crude oil market. The study thus investigates the success of the
7846 trading rules proposed by Sullivan et al. [24] applied on the daily prices of WTI crude
oil futures and on the United States Oil (USO) fund, from 2006 to 2019. Results confirm that
there is no persistent nature in rules’ performance for the two oil markets after adjusting for
data snooping, thus supporting WTI market efficiency for the 20062019 period, although
some interim market inefficiencies might be encountered.

Overall, previous studies thus generally agree on the efficiency of the WTI crude oil
market for different periods, all spanning before the ongoing COVID-19 pandemic, after
adjustment for data snooping-bias is made. To the best of our knowledge, the efficiency of
the Brent crude oil market in relation to the performance of technical trading strategies has
not been tested, nor has the efficiency of the XLE fund market. This study intends to fill this
void, providing relevant results for policy makers, academics and investment practitioners.

Thus, we add to the literature first by extending the energy markets under scrutiny
by including the most traded crude oil contract at world level, i.e., Brent crude oil along
with a relevant energy-traded ETF, namely XLE and, secondly and most importantly, by an
updated investigation on the performance of a large universe of TTRs during an historically
turbulent period for crude oil markets and energy portfolios (i.e., the COVID-19 pandemic).

Additionally, a non-trivial issue about TTRs and their performance that needs further
discussion is testing the statistical significance of results.

In this respect, bootstrapping firstly emerged as a convenient way of testing TTRs
on data generated using some algorithm. Brock, Lakonishok and LeBaron [25] proposed
the bootstrapping methodology for testing the predictability of some of the simplest
trading rules and found that technical rules—in particular SMA—were able to achieve
excess returns that could not be explained by a random walk model, an AR (1) process,
nor a GARCH (M or Exponential) model. Another method, the stationary bootstrap
that resamples from blocks of data with random lengths, was developed by Politis and
Romano [26]. However, the bootstrapping methodology developed by Brock et al. [25] is
the one that has been extensively applied in the literature concerned with the profitability
and predictability of TTRs on speculative markets.

Nonetheless, this method is vulnerable to the so-called data-snooping bias. Data
snooping reflects the process of testing and retesting filters, rules and combinations on a
high number of randomly generated series until some (apparently) significant specifications
emerge. In other words, the data snooping bias reflects the danger that the best forecasting
model encountered in a specification search is just the result of chance instead of superior
forecasting abilities and thus has no predictive superiority over a given benchmark model.
Among others, Fang et al. [27] demonstrate that the predictive ability of the technical
trading rules employed by Brock et al. [25] disappears when the sample selection bias, data
mining, hindsight bias, and other usual biases are accounted for. Park and Irwin [28] also
confirm that most studies that do encounter superior profitability of TTRs are subject to
various problems in their testing procedures, including biases, which should be addressed
in order to provide conclusive evidence. In addition, Harvey and Lu [29] draw attention
that seemingly successful trading strategies can be encountered by chance, and the “no-
biases” assumption of traditional tools of statistical analysis no longer hold.

The first strong solution for the data-snooping danger, still seen as the standard
method for adjustment, was proposed by White [30], and was based on results from
Sullivan, Timmermann, and White [24]. The procedure, entitled White’s Reality Check (RC)
for data snooping, tests the null hypothesis that the best model does not have predictive
superiority over a benchmark versus the alternative that the best model is over performing.

Afterwards, there have been some attempts in the literature to improve this method-
ology. Mainly, Hansen [31] maintains that the RC procedure can be affected by testing a
large plethora of irrelevant rules, an issue that can be corrected by the “Superior Predictive
Ability” (SPA) test. Further Bajgrowicz and Scaillet [32] introduce the false discovery rate



Energies 2021, 14, 4485

50f19

(FDR) as a new approach to data snooping and show that the economic value of TTRs that
has been previously reported in the literature is no longer significant.

In this paper, we proceed to check the robustness of our results first by applying the
popular Brock et al. [25] bootstrapping methodology (on a higher number of randomly
generated series than employed by the original study and most others thereafter) and
further, we correct for the data-snooping bias by following the most commonly used
technique, namely, the RC procedure. This approach has the advantage of allowing easy
comparison of results with previous related studies, and thus contributes to a higher
relevancy of results.

3. Data and Method
3.1. Data

In the empirical modeling, we use daily spot prices of the two main grades of crude
oil (Brent and WTI), as well as daily prices of a representative energy-traded fund, the
Energy Select Sector SPDR® Fund or XLE. As XLE has the smallest trading history, to
ensure comparability across markets, we set the same data window for the three time series,
and hence data will span 1 January 1999 through 29 March 2021, or a total of 5686 daily
observations for each energy market.

Brent North Sea Crude (also known as Brent crude oil) and West Texas Intermediate
(known as WTI crude oil) are the most widely traded oil grades. Brent Crude is produced
in the North Sea between Shetland Islands and Norway, while West Texas Intermediate is
produced in the United States fields. According to the US Energy Information Administra-
tion, “sweet crude” refers to crude oil that has sulfur content of less than 1%, a category
that Brent and WTI both fall under. Furthermore, both are less thick (or “lighter”) than
other types of crude oils, making them quicker to process and thus more appealing to man-
ufacturers of petroleum products. Brent crude is the reference price for crude oil in Africa,
Europe, and the Middle East, and it is assumed that Brent determines the value of around
two-thirds of global crude oil production. Alternatively, West Texas Intermediate stands
as the major oil benchmark for North America. As far as trading crude oil is concerned,
Brent crude oil is listed on the New York Mercantile Exchange (NYMEX), a division of the
Chicago Mercantile Exchange (CME), whereas Brent is listed on the electronic Intercon-
tinental Exchange (ICE). As a result of their respective host markets, delivery locations
vary by country in the case of Brent crude, which is traded internationally, while the main
delivery location for physical exchange and price settlement for WTI is Cushing, Oklahoma.
The price differential between Brent and WTI (which is a consequence, among others, of
different transportation costs, of the supply and demand balance in different parts of the
world, of geopolitical events, etc.) is called a spread.

The Energy Select Sector SPDR® Fund (XLE) mirrors the S&P 500’s market-cap-
weighted index of US energy companies. The Select Sector SPDR Exchange Traded Funds
divide the S&P500 into nine industry categories, with XLE representing the energy sector.
As a result, XLE is an investment vehicle that provides traders with a desired exposure to
firms in the oil, gas, and consumable fuel industries, and related services.

Crude oil prices are obtained from the Federal Reserve Bank of St. Louis’s (FRED)
database, which collects data from the U.S. Energy Information Administration, while data
for XLE are collected from Yahoo! Finance.

We argue that a separate investigation for a recent and relevant time period (the
2020-2021 COVID-19 pandemic) is not only more appropriate, but also more relevant to
academics and investment practitioners. We base our hypothesis on previous empirical
findings on the performance of TTRs on energy markets that show that the returns to
technical strategies are not consistently strong for periods up to 2005 [18] or up to 2019 [23].
Thus, in order to take a closer look at the turbulent ongoing pandemic period, we will
subset the so-called “COVID-19 window,” which is spanning 1 January 2020 through
29 March 2021.
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Figure 1 reflects the evolution of the BRENT and WTI crude oil price from January
2020 to March 2021, showing historical lows and significant volatility during the pandemic
period. On 20 April 2020, the WTI crude oil price was disconnected from its typical
relationship with the price of Brent crude oil, collapsing by more than $50/barrel.

WTI - blue colour, Brent - red colour

Zoom 1m 3m 6m YTID 1y All From Jan 1, 2020 To  Apr12,2021

$50

Jan '20 Mar '20 May ‘20 Jul '20 Sep '20 Nov '20 Jan '21 Mar '21

< n »

Figure 1. Spot Prices (Crude Oil in Dollars per Barrel) during the pandemic period (January 2020-
March 2021). Source of data: U.S. Energy Information Administration, Crude Oil Prices: West Texas
Intermediate (WTI)—Cushing, Oklahoma and Europe Brent, retrieved from FRED, Federal Reserve
Bank of St. Louis; Author’s representation.

Overall, the price of both WTI and Brent crude oil during the pandemic period
registered a dramatic fall in the early stages of COVID-19 up until April 2020 and a
subsequent recovery to pre-pandemic levels by March 2021, attesting the efficiency of
interventions by oil-producing countries that have imposed supply caps, and also reflecting
the optimism about post-pandemic economic recovery resulting from the progress of
COVID-19 vaccine distribution worldwide.

The three daily energy series are turned into daily returns indexed from R to T, so that
T =R+ n — 1. We follow White [27] and compute daily returns as:

Index; ;11

Index; ; -1 )

Yity1 =

where y; ;1 is the return of the Index i on trading day ¢ + 1.

Figure 2 provides an overview of the three energy markets average return volatil-
ity over the 1999-2021 period, attesting the particularly dramatic month of April 2020,
especially in the case of the WTI crude oil market.

The summary of descriptive statistics for one-day buy-and-hold returns for all three
energy series employed in the empirical estimations, for the pre-pandemic period and also
for the COVID-19 window, are presented in Table 1, panel A and panel B, respectively.
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WTI - blue colour, Brent - red colour, XLE- green colour
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Figure 2. WTI, Brent, and XLE Average Monthly Returns (January 1999-March 2021). Source of data:
Author’s representation with crude oils daily price data sourced from the U.S. Energy Information
Administration, retrieved from FRED, Federal Reserve Bank of St. Louis and XLE daily price data
sourced from Yahoo! Finance.

Table 1. Descriptive statistics for one-day returns for WTI, Brent, and XLE.

Panel A: 1 January 1999-31 December 2020 Panel B: 1 January 2020-29 March 2021

WTI Crude Brent Crude XLE WTI Crude Brent Crude XLE
No of obs 5367 5367 5367 319 319 319
Min —0.1571 —0.1804 —0.1444 -3.0197 —0.4747 —-0.2014
Max 0.1784 0.1988 0.1647 0.5309 0.5099 0.1604
Range 0.3355 0.3791 0.3092 3.5505 0.9845 0.3618
Sum 3.7387 3.3175 2.3881 —2.8715 0.4065 0.0742
Median 0.0011 0.0006 0.0007 0.0021 0.0027 —0.0009
Mean 0.0007 0.0006 0.0004 —0.0090 0.0013 0.0002
SE mean 0.0003 0.0003 0.0002 0.0109 0.0036 0.0020
CI. mean. 0.95 0.0006 0.0006 0.0004 0.0214 0.0070 0.0039
Variance 0.0006 0.0005 0.0003 0.0378 0.0041 0.0012
SD 0.0241 0.0224 0.0168 0.1944 0.0639 0.0353
Coef. var 34.5940 36.2955 37.6722 —21.5959 50.1049 151.9894

The mean daily returns for the energy series largely confirm common perceptions of
these markets. The XLE fund shows returns that compare rather well with the crude oil
series during the whole 22-year period, and it also presents the lowest volatility of price
returns both before and during the COVID-19 pandemic. On the other hand, during the
pandemic period, WTI is the least rewarding in terms of return and also the riskier in
terms of volatility among the three series. The Brent crude oil market has the highest mean
returns for the pre-pandemic period (of about 0.07% per day) and also for the COVID-19
window (0.13% per day), while WTI is the only market that lost in terms of daily returns
over the 20202021 period, whilst also being the most risky market. WTI statistics are surely
strongly influenced by the historical plummet that the WTI price has suffered in April 2020.
We notice from data presented in Panel B of Table 1 the dramatic aforementioned daily
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drop of over 300% for WTI crude oil prices in April 2020, the largest one-day decrease
in history.

This is further also more clearly reflected in Figure 3, showing returns volatility for
the three energy markets during the pandemic period.

WTI - blue colour, Brent - red colour, XLE- green colour

Zoom 1m 3m 6m YTD 1y Al From Jan 1, 2020 To  Mar 29,2021
%0 “mﬁ"‘f”" o A Aa
%-100
%-200
%-300
%-400
Jan '20 Mar '20 May '20 Jul '20 Sep '20 Nov 20 Jan 21 Ma

Figure 3. WTI, Brent Crude Oil and XLE Daily Returns during the COVID-19 pandemic (January
2020-March 2021). Source of data: Author’s representation with crude oils daily price data sourced
from the U.S. Energy Information Administration, retrieved from FRED, Federal Reserve Bank of St.
Louis and XLE daily price data sourced from Yahoo! Finance.

3.2. Method
3.2.1. Signals and Excess Return of Simple Moving Average Strategies

The simple moving average (SMA) crossover is, by far, the most widely used among
technical trading rules or TTRs [33]. The traditional simple moving average (SMA) rule
issues buy (sell) signals that generate trades. When the short-period moving average
rises above (or falls under) the long-period moving average by a pre-specified level or
percentage (which is often set to zero in investment practice), buying (or selling) trades
are initiated. As such, when the short-period moving average (S) exceeds the long-period
moving average (L), a purchase signal is issued as follows:

L
) Pt(Al)/L] = Buy at time t ()
A=1

s
[ Y P /51 >
A=1

where P; is the price at time ¢, and the band equals zero.
Sell signals are generated when the short-period moving average (S) is below the
long-period moving average (L):

s
lz Pt—(/\—l)/s‘| < [
A=l

Further, excess returns over a given benchmark produced by a SMA TTR is estimated as:

>

Pt_(A_l)/L] = Sell at time t 3)
A=1

frr = (L+y1S1 (X B) /(14 yi1So(Xop By) — 1 4)
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where 51 and Sy are “signal functions” that take two permissible values, 1 for long trading
positions and —1 for short trading positions. The signal value represents the total percent-
age of capital allocated at moment ¢ in a trading position, which further implies a 100%
allocation of capital at any moment in this trading system.

The signal function converts indicators Xj ;1 or X1 and parameters B} or B in
Equation (4) into trading positions. The nominator in the above equation represents the
SMA technical rule to be tested, while the denominator represents the benchmark. Here,
the buy-and-hold (BH) strategy, a traditional benchmark strategy in portfolio management,
is the benchmark of choice.

Average excess return for a particular TTR is then estimated as:

T
f=n1Y fin ®)
t=R

The parameters in Equation (4) are the lengths of the two MA averages (111 for the short
MA and n; for the long MA). See Anghel and Tudor [34] for more detailed information of
signals and excess returns of SMAs.

Although some pairs of parameters are popular in the literature and in practice, we
avoid pre-setting them and instead we run all rules using parameters ranging from 1-30 for
S and 31-500 for L for the first subperiod, and parameters ranging from 1-15 for S and
16-120 for L for subsequent pandemic subperiod. We decide to restrict the parameter
ny to a maximum value of 120 (representing approximately 6 months of trading) in the
second subsample, which is consistent with practitioners’ trading strategies based on
TTRs (i.e., Menkhoff [17] showed that technical analysis is generally employed for trading
decisions that do not exceed a horizon of 6 months). In the first subperiod, we permit a
wider investigation and allow the second parameter to vary up to a maximum value of 500,
which represents more than two years of trading.

Thus, for the larger pre-pandemic window:

ny € {1:30}

and
ny € {31:500}

and therefore we have a total number of SMA TTRs tested on 21 years of data corresponding
to the pre-pandemic timeframe equal to: length (111) x length (115) = 30 x 470 = 14,100 for
the parameter B; in Equation (4).

Subsequently, for the smaller pandemic interval:

ny € {1:15}

and
ny € {16:120}

corresponding to a total number of SMA TTRs tested during the 1 and % years of pandemic
timeframe equal to: length (11) x length (n2) = 15 x 105 = 1575 for the parameter B} in
Equation (4).

Hence, first, we test 14,100, and subsequently 1575 technical trading crossover rules
based on Simple Moving Averages, computed as:

t
short SMA; =1/n1 Y_ Xy (6)

t—}’ll

t
long SMA; =1/ny ) X; )

t—ny
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The function S; in Equation (4) will then dynamically convert into trading positions
(long or short) according to the specified 14,100/1575 SMA TTRs.
R software was used to implement the method and perform estimations.

3.2.2. Robustness Checks

The first step in our estimations consists in computing average excess returns
over the benchmark buy-and-hold trading strategy, as in Equation (5) produced by the
14,100/1575 SMA TTRs for each of the three energy markets (WTI, Brent and XLE) in the
two sample periods (pre-pandemic and pandemic).

Secondly, the significance of excess returns produced by the 14,100/1575 SMA rules
is tested.

In order to accurately accomplish this task, we should consider the high non-normality
of the three energy markets. For non-normal distributions, the null hypothesis of normal-
ity could lead to serious inference errors when estimating classis statistical significance
diagnostics. All three energy series are highly non-normal, presenting highly leptokurtic
distributions (see Table 2). Although this is expected from daily returns, especially in the
case of crude oil markets, results are nonetheless surprising and show a huge amount of
excess kurtosis for all three markets, both pre and during the COVID-19 pandemic, but
especially higher during the pandemic period. Leptokurtosis signifies that negative returns
occur more often than positive returns, and estimations confirm this is indeed the case for
the crude oil market (both WTT and Brent) and also for the energy fund XLE. Further, the
Anderson-Darling (A-D) test is estimated to test the normality assumption for the three
energy markets in the two sample periods. Results presented in Table 2 allow us to reject
the null hypothesis of normality for all markets and all time periods.

Table 2. Distribution characteristics.

Panel A: Pre-COVID-19 Period COVID-19 Window
(1 January 1999-31 December 2019) (1 January 2020-29 March 2021)
WTI Crude Brent Crude XLE WTI Crude Brent Crude XLE
Skewness 0.080747 0.101254 —0.134112 —12.38 0.50 -0.37
Kurtosis 7.3788 7.5677 11.8093 186.9 28.7 9.3
A-D Test 5362 * 5379 * 5352 * 214 % 289 * 273 *

* significant at 1%.

Thus, to deal with non-normality in our data when testing for significance, we imple-
ment the popular bootstrapping methodology proposed by Brock et al. [25] in estimating
p-values, under a random walk assumption for the distribution of returns [35] for all three
energy series. As such, the null model is first fit to empirical data and its parameters
are further estimated. The residuals are subsequently 1000 times randomly re-sampled
(i.e., Brock et al. [25] generated 500 random series in their original study) and combined
with the model parameters to generate random price series that will present the same
characteristics as the original series. According to Brock et al. [25], the results do not
differ significantly irrespective of which null model is employed (random walk, AR (1),
GARCH-M, or EGARCH). Thus, for the null hypothesis, we continue with the random
walk assumption in this study.

Hence, firstly we test whether the 14,100 SMA TTRs can generate excess returns for
traders in the three energy markets during the pre-pandemic period. Further, after first
estimating excess returns produced by the 14,100 trading rules for the three energy series
in the 1999-2019 period, the bootstrapping methodology allows to compare the excess
returns produced by a particular TTR applied to the real time series to excess returns
that resulted from the empirical distribution, where the empirical distribution has been
constructed by applying the same 14,100 trading rules to 1000 simulated time series with
replacement under the null of a random walk. Thus, we sample with replacement from
the original return series 1000 times for each of our original energy markets (WTI, Brent
and XLE), obtaining 1000 simulated series or markets for each of the three real energy
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markets, each simulated series having the same length as the original series (i.e., 5367 for
the pre-pandemic period). We therefore produce three data frames each with dimensions
(5367 x 1000) on which the significance of each of the 14,100 TTRs is tested. This implies
that for each of the three energy markets, for the pre-pandemic timeframe, the 14,100 TTRs
are first applied on the real time series of returns and subsequently on 1000 simulated
return series for the respective energy market. Finally, the returns for each trading rule and
the mean return across trading rules are estimated.

The procedure will then be replicated for the smaller COVID-19 window so that three
simulated data frames with dimensions (319 x 1000) will be produced (where 319 is the
number of observations of the original series and 1000 the number of simulated time series).

The average return ]7; is thus obtained by applying the TTRs on the simulated series,
whereb=1, ..., Bis the number of the simulation from the total of B simulations performed.
Here, B = 1000.

Next, for the pre-pandemic period, results’ significance is tested by comparing excess
returns obtained on each of the three real energy markets to excess returns produced on the
3 x 1000 total simulated series of returns, each of length 5367. The main idea underlying
this bootstrap methodology is that for a trading rule to be statistically significant at the &
level, it must generate more revenue on fewer than 1% of the bootstrapped series than on
the original series. The bootstrap p-value is then the percentage of times the buy-sell profit
for the rule is greater on the 1000 random series than on the original series.

The same method is applied during the COVID-19 interval, where 3 x 1000 simulated
series, each of length 319 have been produced.

Therefore, the estimated bootstrap p-value results from comparing the average real
return f with the quantiles of average simulated returns ?* = 7;, b=1,...,B. Hence:

B
Yo=1 177

; ®)

B random bootstrap p-value =

Finally, we account for the inherent data-snooping bias by following the standard
Reality Check (RC) procedure for data snooping proposed by White [30].

White [30] develops the Reality Check Test applied to the best model (here, the best
performing TTR) selected from a large sample of previously tested models. His algorithm
consists in firstly computing the performance of the benchmark, which is expressed here
as average excess return over the BH return. Thus, the first step consists in computing
f,—the average excess performance of rule 1, followed by computing ﬁ = ﬁ,b, b=1,...,
B, which is a vector of length B (the number of simulations or bootstrapped samples, here,
set again to 1000) containing the average excess performances on simulated (bootstrapped)
time series, all for rule 1. Basically, up to this point, the procedure is identical to the earlier
random bootstrap p-value estimation.

Next, White [30] sets V; = f; and V;b = ﬁ,b — f1,b=1,..., B, so that the perfor-
mance of rule 1 relative to the benchmark is tested by comparing V; with the quintiles of
V;b. Similarly, for rule 2:

Vo = max{f, V1 } ©)

and B B o
Vo = mﬂx{ (fop = f2)r Vl,h} (10)
where, as before, b =1, ..., B. In order to test whether the best of rule 1 and 2 is better than

the benchmark, V5 is compared with the quintiles of V5.

Thus, there is a recursive process of testing whether the best model for the kth rule
is superior to the benchmark, where k =3, ... ,1and [ is the number of rules to be tested
(here, I equals first 14,100 and subsequently, 1575 corresponding to the two sub-periods).
The method thus implies comparing:

Vi= Wlx{?kkafl} (11)
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with the quintiles of:
— = —
Vip = max{fk,b - fr Vlt—l,b} (12)

where b =1, ..., B for each of the [ rules until a conclusion can be reached about the best
performing trading rule.
Formally, Reality Check p-value could be expressed as:

B
Yoo v vy

RC p-value =
C p-value B

(13)

4. Results and Discussion

In Table 3, we present the parameters and performance (excess returns over the
benchmark BH returns) for the best performing TTRs encountered on the three energy
markets across the two subperiods (results for the pre-pandemic period are presented
in Panel A, while results for the pandemic period are reported in Panel B). Random
bootstrapping p-values resulting from 1000 iterations, together with the number of signals
generated by the optimal TTR are also presented. Note that transaction costs are not
included in the first estimations.

Table 3. The best TTRs” parameters and performance with no transaction costs and BH returns as benchmark.

Panel A: Pre-COVID-19 Period: COVID-19 Window:
1 January 1999-31 December 2019 1 January 2020-29 March 2021
Total No. of SMA TTRs Tested: 14,100 Total No. of SMA TTRs Tested: 1575
WTI Crude Brent Crude XLE WTI Crude Brent Crude XLE

Best Rule: SMA (ny, np) SMA (5, 33) SMA (27, 281) SMA (3, 28) SMA (12,17) SMA (5, 16)

Excess Return (%/day) —0.1324 0.00782 ** —0.0024 0.08244 0.5357 *** 0.2762
Excess Return (%, annualized 1) —28.38 1.99 ** —0.52 20.00 284.32 *** 83.45
1000 Random bootstrap p-value 2 0.037 0.118 0.182(0.854 Rpc) 0.064(0.38 Rpc) 0.148

No of Signals 201 22 8 16 18

** denotes significance at the 5% level, *** denotes significance at the 10% level. ! To be more suggestive, daily returns have been annualized
such that for every market: annual excess return = [(1 + daily excess return)"2>>~1]. The benchmark return is the buy-and-hold return. 2
This represents the random bootstrapping p-values resulting from 1000 iterations across the three energy markets and the two subperiods.
Even without adjusting for data-snooping bias, this approach is nonetheless relevant not only for comparative purposes with previous
studies, but also as it helps in identifying the total number of TTRs that are profitable prior to data-snooping bias adjustment. A tested TTR
is statistically significant at the 5% level if excess returns on the 1000 random bootstrapped series exceed excess returns on the original
series less than 5% of the time.

Results in Table 3 indicate that technical analysis appears to be significantly more
profitable over the pandemic period than over the pre-pandemic period. Excess returns
achieved by all 14,100 SMA crossover TTRs are negative in the pre-pandemic period for the
WTI and XLE markets, indicating some small profits only for the Brent crude oil market
(annualized excess return of the optimal TTR over the buy-and-hold benchmark return
of about 2%, which is statistically strong, with a 1000 random bootstrap p-value of 0.037).
Figure 4 reflects excess return for all 14,100 tested TTRs for the Brent market over the
21-years of pre-pandemic period. We chose to show only the Brent market as it is the only
one for which some over-performing rules exist. It is obvious by looking at the chart below
that only a small number of strategies are able to gain excess return over the benchmark BH
strategy for the Brent market in the pre-pandemic period. Indeed, estimations confirm that
only 7 rules out of the universe of 14,100 (or approximately 0.04%) are over-performing
during 1999-2019.

We thus far conclude that none of the 14,100 moving average crossover TTRs
can generate excess returns on the WTI and XLE markets, suggesting that the two
energy markets are weak-form efficient over the 1999-2019 period with respect to these
technical indicators. However, it seems that the same 14,100 rules were able to achieve
statistically significant excess return, albeit rather small in magnitude, for the Brent
market over the 1999-2019 pre-COVID-19 period, indicating this market might present
weak-form inefficiency.
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Figure 4. Annualized excess returns achieved by all 14,100 SMA crossover rules for the Brent market
over the 1999-2019 period.

In turn, the pandemic period presents consistent excess returns achieved by the
1575 tested SMA trading strategies for all energy markets, and especially for the Brent
market where an annualized excess return of over 284% has been achieved by the best
performing TTR, which is SMA (12,17). However, for the WTI and XLE markets, this
over-performance (annualized excess return of 20% for WTI and 83.45% for XLE) does not
hold strong when its significance is tested via the standard bootstrapping methodology
(1000 random p-values of 0.182 and 0.148, respectively). For the Brent market, TTRs are
again able to achieve superior and statistically significant predictability (1000 random
p-value equals 0.037).

Thus, we show in Figure 5 the excess return for all 1575 tested strategies for the Brent
market over the 1 and % year of pandemic period. Again, only the Brent market has been
chosen, as it is the only one where signs of inefficiency are present. Therefore, while the
best rule’s performance indicates that over-performing trading strategies in terms of excess
returns over the BH strategy exist for all markets in the second subperiod, the number of
out-performing strategies is nonetheless very high for the Brent market. More precisely,
1528 out of the total number of 1575 TTRs (more than 97%) managed to achieve positive
excess returns (which is also confirmed by Figure 5, where it can be easily seen that most of
the strategies gain abnormal returns during the COVID-19 pandemic, whilst we remember
that only 7 TTRs were found to be over-performing over the pre-pandemic period).

Moreover, as mentioned earlier, these excess returns are statistically significant for
the Brent market during the pre-pandemic and also during the COVID-19 period (with
1000 random bootstrap p-values of 0.037 and 0.064, respectively). Moreover, we notice that
during the pandemic period, the most successful SMA TTRs are the ones with shorter time
horizons in the long-run moving average, while the time horizon for short-run moving
average varies across the three markets. For example, n; equals 16 (XLE), 17 (Brent), and
28 (WTI) when it is allowed to vary in the interval (16:120) during the pandemic period.
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Figure 5. Annualized excess returns * for all 1575 SMA crossover rules for the Brent market over the
January 2020-March 2021 COVID-19 pandemic period.

There is also some variation in the trading frequency of the best performing trading
rule across the three energy markets over the two subperiods. For example, during the
pandemic window in the WTI market, the most profitable TTR only signals a total of
8 trades over the 1 and % year period, whilst for Brent and XLE 16 and, respectively,
18 trades are generated. Surprisingly, the best performing TTRs over the 1999-2019 period
do not signal significantly more trades than over the much shorter pandemic period for
WTTI and XLE. On the contrary, for the Brent market, the optimal TTR is the short-term
moving average rule SMA (5, 33), which generates a total of 220 trading signals over the
pre-pandemic 21-year period, whilst the optimal TTR generates only 16 trading signals
over the COVID-19 period, as seen above.

Despite the fact that the analysis is performed ex-post and also that transaction costs
have not been included at this point, the above results still indicate some predictability of
technical indicators in the case of Brent market, and especially during the pandemic period,
that needs further investigation.

So, we test next for the economic significance of results and find that excess returns
during the pandemic period remain abnormal for Brent when we include transaction costs
in estimations. For the pre-pandemic window, excess returns disappear with the inclusion
of trading costs.

Table 4 presents excess return net of transaction costs over the benchmark buy-and-
hold strategy for the best performing TTR on the Brent market during the pandemic period,
along with its corresponding 1000 bootstrapped p-value and the data snooping adjusted
RC p-value. Meanwhile, Figure 6 reflects annualized excess returns net of transaction
costs for all 1575 technical rules applied to the Brent market over the same period. The
graph confirms that an overwhelming 96.20% of TTRs are still over-performing (1515 out
of 1575 tested TTRs) after trading costs of 5 basis points (bps) are considered. This implies
that only 13 rules’ performance has been affected by the inclusion of transaction costs.
Moreover, the over-performance is high in terms of magnitude of excess returns, with
more than 92% of rules (1452 TTRs) achieving annualized excess returns of over 10%, and
more than 31% of TTRs (493 rules) achieving annualized excess returns higher than 50%,
while the best performing rule gains 270% annualized excess return net of transaction costs
over the BH strategy. On the other hand, the under-performance is far less severe: only
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60 TTRs out of the total universe of 1575 tested over the COVID-19 period (or 3.8%) have
no economic value relative to the benchmark BH trading strategy, the majority of which
(34 TTRs or 56.67%) under-performing by less than 10% in annualized terms.

Table 4. Excess returns of the best performing trading rule on the Brent market during the COVID-19 pandemic (January
2020-March 2021) net of transaction costs *.

. . . Daily Excess Annualized 1000 Random Reality-Check
Optimal Trading Rule No Signals Return ** Excess Return Bootstrap p-Value (RC) p-Value
SMA (12,17) 16 0.5213% 270.69% 0.064 0.406

* Includes trading costs of 5 bps. ** The buy-and-hold strategy is the benchmark.

N

Annualized excess retum (00 %)

Technical rules

Figure 6. Excess returns” net of transaction costs of 5 bps for all 1575 SMA cross-over rules for the
Brent market over the January 2020-March 2021 COVID-19 pandemic period.

When it comes to the statistical significance of the best TTR’s performance, results hold
strong when the bootstrapping methodology is applied (the 1000 random bootstrapping
p-value of 0.064 is not affected by the inclusion of transaction costs in the estimation),
but in turn the p-value resulting from the Reality Check test is no longer significant (RC
p-value = 0.406). This indicates that the adjustment for data-snooping bias still has an
important impact on the significance of results.

Overall, excess returns gained by the optimal TTR on the Brent market during COVID-
19 do not hold strong after accounting for data-snooping bias by employing White’s Reality
Check test, but we feel the adjustment of the p-value via the RC procedure might be too
severe and the procedure too conservative in this particular situation. We argue that the
vast number of over-performing rules encountered on the Brent crude oil market over
the COVID-19 pandemic period together with the magnitude of this over-performance,
compared with the small number of underperforming rules (60 TTR out of 1575) and
the “mild” relative underperformance (only 7 rules, or 0.04% of all TTRs achieve relative
losses higher than 50%, while the majority encounter losses of less than 10% relative to the
benchmark) already mitigates the data-snooping bias.

Consequently, in light of the aforementioned arguments, one cannot completely
exclude the possibility that this adjustment via the RC procedure might be too severe and
thus we should not be too quick to eliminate the possibility that over-performing TTRs
might exist on the Brent market during the COVID-19 pandemic.
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5. Conclusions

As a means of extending previous literature, this paper has analyzed the profitability
of a significant number of SMA TTRs on a wider range of energy markets and a period that
includes the ongoing COVID-19 pandemic.

Using daily data for Brent and WTI spot crude oil prices and for the energy fund XLE
and splitting the data into a pre-pandemic window (1999-2019) and a “pandemic period”
(January—March 2021), we employ 14,100 SMA crossover TTRs for the longer pre-pandemic
period and 1575 SMA crossover TTRs for the shorter pandemic interval.

To the best of our knowledge, this is the first research attempt to investigate the
effectiveness of technical indicators on both main crude oil markets, as well as on a relevant
energy exchange traded fund, in comparative perspective between the pre-COVID-19
pandemic and the pandemic period.

Overall, we find that technical trading rules can achieve high abnormal returns for
all three energy markets over the COVID-19 pandemic period (annualized excess returns
over the BH strategy of approximately 20% for WTI, 284% for Brent, and 83% for XLE,
without including transaction costs), and only for the Brent market, some small abnormal
annualized excess returns (of about 2%) over the 21-years of pre-pandemic period.

However, these excess returns encountered over the pandemic period are not strong on
the WTI and XLE markets when their significance is tested by the standard Brock et al. [25]
bootstrapping methodology with 1000 iterations, while for Brent market, excess returns
gained by TTRs hold strong in all subperiods against the standard bootstrapping method-
ology. Over the pandemic period, excess returns achieved by TTRs on the Brent market
are still high in magnitude and remain statistically significant after transaction costs are
included in estimations. Over the pre-pandemic period, the small excess returns achieved
by some technical rules on the Brent market are eroded by transaction costs and thus have
no economic value. Similar to Taylor [36], our findings could thus reflect a relationship
between technical rules” performance and market conditions.

Nonetheless, the abnormal return achieved by the best-performing TTR on the Brent
market over the 1 and % years of pandemic period no longer holds strong against White’s [30]
Reality Check test. Thus, we find that SMA TTRs are not consistently profitable in the three
energy markets once the data-snooping bias is accounted for.

However, while our results allow us to confidently conclude on the weak form effi-
ciency of the WTI crude oil and the XLE fund markets throughout the 1999-2021 period
relative to the universe of TTRs that we apply, and also to sustain the conclusion that TTRs
do not add value on the Brent market beyond what may be expected by chance over the
pre-pandemic 1999-2019 period, we refrain to also attest the weak-form efficiency of the
Brent market over the COVID-19 pandemic. We feel that the performance of TTRs on the
Brent market during the pandemic period needs further investigation, as most technical
trading strategies achieve high excess returns over the benchmark buy-and-hold strategy;,
these excess returns hold when their significance is checked by the standard bootstrapping
method and are also unaffected by transaction costs. The excess return gained by the
optimal TTR only disappears after adjustment for data snooping is accomplished via the
employment of White’s Reality Check procedure. In this particular situation, the RC test
might be too conservative and thus prone to type II errors. By presenting the results of all
1575 tested TTRs on the Brent market over the pandemic interval (both with and without
transaction costs), and by showing that an overwhelming number of these strategies have
been able to achieve abnormal returns of high magnitude on the Brent market during the
COVID-19 pandemic (96.20% of strategies are still substantially over-performing even
after adjustment for trading costs is made and thus have economic value), we sustain that
survivorship bias is already mitigated. The adjustment made on the bootstrap p-values via
the RC procedure could thus be too severe.

Consequently, while similar to Psaradellis et al. [23], we did not encounter enough
evidence to be able to reject the weak-form efficiency of the three energy markets (Brent
crude, WTT and XLE) for the whole 1999-2021 period, it would be hazardous to completely
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dismiss the above argument in the case of the Brent crude oil market over the COVID-19
pandemic period, when TTRs seem to have benefited from the extreme evolutions that
characterized the market. As such, future studies on the Brent market efficiency during
crisis are needed to sustain the right policy formulation process.

This paper makes several contributions to the existing literature. The first contribution
is to revisit the predictive ability and performance of technical trading rules (TTRs) on
some oscillated energy markets. This is the first paper to include both main grades of
crude oil (WTI and Brent crude) and a relevant energy fund, XLE, and to assess the trading
rules’ performance over two different subperiods: pre-COVID-19 (January 1999-December
2019) and COVID-19 (January 2020-March 2021). The second contribution thus consists
in presenting proof of TTRs” performance during the historically turbulent COVID-19
pandemic period for crude oil markets. Previous studies mostly refer to the WTI crude oil
and cover periods no more recent than year 2019. Other contributions consist in the large
universe of tested TTRs (14,100 over the pre-pandemic period, and 1575 over the pandemic
period, respectively) and also in estimating the relevancy of results by evaluating the
performance of the universe of TTRs while considering both naive [25] (Brock et al. random
bootstrapping method—with 1000 iterations) and more severe methods of accounting for
data snooping effects (White’s Reality Check procedure—also based on 1000 iterations). In
addition, this strategy allows easy comparison with previous findings that have employed
one of the two (or both) techniques. A fifth contribution consists in also estimating the
economic value of results by allowing for transaction costs, while a final contribution stems
for the identification of distinct financialization process between the two main crude oil
markets, WTI and Brent. As such, research findings further imply that there is evidence to
the existence of a more intense financialization process within the WTI crude oil market,
whereas the market for Brent seems to be more impacted by shifts in global supply and
demand. This has important implications for both the right choice of oil price forecasting
methods by policy issuers and also for identifying the accurate policy measures.

Policy makers must thus consider these market characteristics that the study encoun-
ters for effective oil price forecasts and for efficient policy issuance. Moreover, as the
financialization of the WTI market and the approaching expiration date for WTI contracts
for delivery in May 2020 [37], coupled with insufficient storage capacity have determined
its historical and unforeseen plummet on April 2020 into uncharted negative territory [38]
regulators of WTI commodity market (i.e., The U.S. Commodities Futures Trading Com-
mission), should also consider tighter measures (i.e., mandatory reporting of high volume
trades, short selling restrictions, etc.) to prevent the recurrence of such events.
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