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Abstract: Steel slag CO2 sequestration helps mitigate global warming and decrease the stockpile of
steel slag (SS). Through orthogonal design tests and single-factor tests, this paper evaluated the effects
of the water/solid mass ratio (w/s), gypsum ratio (G/SS), molding pressure, and curing duration
on uniaxial compressive strength (UCS) and CO2 uptake of the compacts. The results indicated
that high w/s enhanced both strength and CO2 capture ability. The proper addition of gypsum
helps promote UCS increase and CO2 uptake of steel slag. In addition, increasing the molding
pressure can significantly improve UCS without reducing CO2 uptake. The optimum conditions in
the study were a w/s of 0.20, G/SS of 1/16, and molding pressure of 27 MPa, under which conditions
1 d UCS and CO2 uptake were 55.30 MPa and 12.36%, respectively. Microanalyses showed that
gypsum activates mainly mayenite in steel slag. An increase in water addition also increased the
hydration and carbonation products greatly, and the strengthened molding pressure had a significant
densification effect on micro-pore structures. The study gives guidance in the application of steel
slag in CO2 capture and manufacturing green construction material.
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1. Introduction

Carbon dioxide emissions contribute to global warming in ways that cannot be ig-
nored. Feasible carbon capture and storage (CCS) technologies mainly include geological,
ocean, biological, and mineral sequestration [1], among which mineral sequestration is
considered the safest method. It sequesters carbon dioxide from emission sources, such as
steel companies and power stations, with Ca- or Mg-bearing minerals to form thermody-
namically stable carbonates [2–4].

Industrial solid wastes, including blast-furnace slag [5], coal fly ash [6,7], and steel
slag [8–14], were chosen to be suitable CCS feedstock because of their low cost, high carbon
reactivity, and wide availability. Blast-furnace slag and coal fly ash are well studied and
utilized as supplementary cement materials, enhancing cement performance. On a related
note, only 29.5% of steel slag is used in China [15]. Most of it is stockpiled, occupying land
resources and polluting the environment [16,17]. A total of 1.8 billion tons of steel slag was
stockpiled until 2018 in China, with 110 million tons generated each year. As the world’s
largest emitter of carbon dioxide and the largest steel producer, China has promised to
become carbon neutral before 2060. Using steel slag to capture CO2 is one of the most
feasible ways of dealing with steel slag and CO2 emission at a low cost.

The chemical composition of steel slag includes mainly CaO, 45–60%; SiO2, 10–15%;
Al2O3, 1–5%; Fe2O3, 3–9%; MgO, 3–13%; FeO, 7–20%; and P2O5, 1–4% [17]. The main
minerals in steel slag include tricalcium silicate (C3S), dicalcium silicate (C2S), RO phase (a
continuous solid solution formed by MgO, FeO, and MnO), f-CaO, f-MgO, calcium ferrite,
and calcium aluminoferrite. Minerals such as C2S and C3S are hydraulic components,
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making steel slag a potential supplement in the cement and concrete industry. However,
f-CaO, f-MgO, and the relatively low-hydration-activity RO phase cause expansion after
hydration reactions. In addition, the addition of steel slag in cement usually results in
strength degradation because of low hydration activity [18–20].

Carbonation is considered an effective way to solve these problems. Steel slag has
a significantly high carbon reactivity because of its high alkalinity caused by oxides. Liu
et al. [21] found that carbonated steel slag can even enhance the mechanical properties
of cementitious materials. Furthermore, through carbonation, the volume stability was
improved considerably, as the carbonate minerals formed were thermodynamically sta-
ble [22–24]. Besides supplementing steel slag in cement, some researchers focused on their
carbonation for building materials such as bricks or blocks to optimize their use. Before
carbonation, fresh samples are mostly molded into specific shapes. The shaping methods
include precasting and press shaping. The former molding method proceeds using the
cementitious properties of steel slag. The latter method mainly uses a molding machine to
press the samples into specific shapes for carbonation curing, as shown in Figure 1.
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Figure 1. Press-shaping methods and subsequent carbonation curing of steel slag.

For the second shaping method, three main factors influence the samples’ mechanical
and CO2 capture performance: the raw material (steel slag types and activator), water/solid
mass ratio (w/s), and molding pressure. In China, 70% of the steel slag produced is con-
verter slag, the type we chose for this study. Gypsum is reportedly an effective activator
for the hydration reaction of steel slag. Thus, this study also aims to determine the optimal
amount of gypsum to be added to steel slag carbonation samples. To study factors such
as the activator amount, w/s, and molding pressure on the samples, orthogonal experi-
ments and single-factor experiments were performed to achieve optimized parameters.
Microstructural analyses, such as Fourier transform infrared (FTIR) spectroscopy, thermo-
gravimetric analysis (TGA), mercury intrusion porosimetry (MIP), and X-ray photoelectron
spectroscopy (XPS), were conducted to obtain the associated mechanisms.

Gypsum could be used as an activator for steel slag hydration and carbonation in
this study. To the best of our knowledge, proportion-optimization design for the gypsum-
activated steel slag carbonation samples has been rarely studied. This study optimized
the proportion for blocks through orthogonal experimental design and range analyses,
giving us information about how w/s, gypsum amount, and molding pressure impacted
the strength and CO2 capture capacity of the samples, providing guidance for industrial
practical application. In addition, the single-factor experiments and the corresponding
microanalysis methods helped to explore the chemical and microstructural properties
of samples, as well as the reaction mechanisms. QXRD, especially, can clearly show the
amount changes of minerals in carbonated samples under the influence of carbonation du-
ration, w/s, and molding pressure. MIP can clearly show the pore structure in carbonated
samples. The results of the paper offer reliable guidance for the efficient preparation of
gypsum-activated steel slag carbonate blocks.
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2. Materials and Methods
2.1. Raw Materials

The steel slag used in this study, with a specific surface area of 460 m2/kg, was
from Anshan Iron and Steel Co., Ltd. (Anshan, China). The desulfurization gypsum was
from Jintaicheng Environmental Resources Co., Ltd. (Hebei, China). The composition of
gypsum was broadly CaSO4·2H2O. X-ray fluorescence and carbon/sulfur analyses were
conducted on the steel slag and gypsum to obtain their chemical compositions. The samples’
mineral compositions were characterized using an X-ray diffractometer (Rigaku UltimaIV)
with CuKα radiation. Furthermore, quantitative X-ray diffraction (QXRD) analysis was
conducted by Rietveld refinement using Highscore Plus software (with QXRD Rietveld
method results shown in Figure S1 in Supplementary Material). Table 1 and Figure 2
show the chemical and mineral compositions of the raw materials, respectively. The main
crystalline phases of the steel slag are larnite, alite, RO phase (magnesiowuestite in Table 1),
brownmillerite, mayenite, and portlandite. Figure 3 shows the particle-size distributions of
the steel slag powder and gypsum.

Table 1. Chemical compositions of the steel slag and gypsum (wt %).

Chemical
Composition Steel Slag Gypsum Components Chemical

Formula Steel Slag

CaO 44.78 48.06 Larnite Ca2SiO4 27.9
Al2O3 5.70 1.18 Alite Ca3SiO5 1.9
SiO2 15.28 2.95 Mayenite Ca12Al14O33 12.8

Fe2O3 22.43 0.58 Portlandite Ca(OH)2 2.9
SO3 0.30 43.57 Calcite CaCO3 2.9

MgO 7.04 1.48 Quartz SiO2 2.2
MnO 1.93 1.18 Magnesiowuestite (Fe, Mg, Mn)O 15.7
P2O5 1.00 0.03 Magnesioferrite (Fe, Mg)2O3 8.5
TiO2 0.86 0.39 Brownmillerite Ca2Fe2O5 15.7
V2O5 0.20 – Magnesite MgCO3 6.3
Cr2O3 0.17 – Periclase MgO 3.0
Others 0.28 0.58
Total C 0.865 0.737
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Figure 2. X-ray diffraction pattern for the steel slag.
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2.2. Experimental Program and Test Methods

A paste mixer was used to mix and stir the steel slag powder, gypsum, and water for
2 min after they were weighed according to the experimental proportion (Table 2). The
mixture was then weighed (8.00 g) and compacted into a cylindrical stainless steel mold
20 mm in diameter under a certain molding pressure for 1 min. The compacts were then
demolded and immediately placed into a carbonation chamber (20± 3 ◦C; 70± 2% relative
humidity; 20 ± 3 vol % CO2 concentration).

Table 2. Orthogonal experiment proportions.

Experiment No. w/s (A) G/SS (B) Molding Pressure (MPa) (C) Gypsum (%) SS (%) Water (%)

1 1:5(A1) 1:16(B1) 3(C1) 4.9 78.43 16.67
2 1:5(A1) 1:4(B2) 6(C2) 16.67 66.67 16.67
3 1:5(A1) 1:2(B3) 9(C3) 27.78 55.55 16.67
4 1:8(A2) 1:16(B1) 6(C2) 5.23 83.66 11.11
5 1:8(A2) 1:4(B2) 9(C3) 17.78 71.11 11.11
6 1:8(A2) 1:2(B3) 3(C1) 29.63 59.26 11.11
7 1:10(A3) 1:16(B1) 9(C3) 5.35 85.56 9.09
8 1:10(A3) 1:4(B2) 3(C1) 18.18 72.73 9.09
9 1:10(A3) 1:2(B3) 6(C2) 30.3 60.61 9.09

Uniaxial compressive strength (UCS) tests and carbon content tests on samples at
different ages (1, 3, 14, and 28 days) were conducted. The UCS at each curing age was
determined by calculating the mean value of three tests. The carbon contents of samples
were measured using a EMIA-820 V carbon/sulfur combustion analyzer (Horiba). If the
CO2 uptake of the sample is x%, then according to the principle of carbon conservation,
the following equation can be obtained:

mbc ×CO2initial + mbc ×CO2uptake = mdc ×CO2final (1)

where mbc is the weight of the compact before carbonation (8.00 g here); mdc is the weight
of the dried carbonated compact (g); CO2initial is the CO2 content of the compact before
carbonation, obtained usingωss × CO2ss; ωss is the steel slag content in the initial sample
(wt %); and CO2final is the CO2 content of the dried carbonated compact.

Equation (1) can be rearranged to obtain the equation:

CO2uptake =
mdc × CO2final − mbc × CO2initial

mbc
(2)
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The mass percentage of CO2 absorbed by the steel slag (i.e., the CO2 uptake of the
steel slag) was calculated to evaluate the effect of gypsum on the carbon sequestration
capacity of steel slag:

CO2 uptake of steel slag(%) =
CO2uptake

ωss
(3)

QXRD, TG–DTG, FTIR, MIP, and XPS were conducted to analyze the reaction mecha-
nisms and microstructures of the samples. The XRD and QXRD analyses were conducted
using the method described in Section 2.1. Note that the QXRD results are only for the
crystalline components. The TG–DTG test was conducted using a NETZSCH STA 449F3 at
50 to 1200 ◦C with a heating rate of 10 ◦C/min. A NEXUS670 FTIR infrared spectrometer
was operated for FTIR analysis, with a 400 to 4000 cm−1 wave number and a resolution of
3 cm−1. The equipment used for XPS analysis was a Thermo Scientific Escalab 250 Xi. A
Shirley background was assumed in all cases. Spectra were calibrated using the adventi-
tious hydrocarbon peak at 284.8 eV binding energy (BE) [21]. MIP analysis (Autopore IV
9500, Micromeritics) was conducted to determine the pore-size distributions of the samples.

2.3. Orthogonal Experimental Design

The L9 (33) table was adopted in this test design. The three levels for the three factors
were as follows: 1:5 (A1), 1:8 (A2), and 1:10 (A3) for the w/s ratio; 1:16 (B1), 1:4 (B2), and 1:2
(B3) for the mass ratio of gypsum and steel slag (G/SS); and 3 MPa (C1), 6 MPa (C2), and
9 MPa (C3) for the molding strength. The experimental scheme is shown in Table 3. The
influences of the w/s, G/SS, and molding strength on the uniaxial compressive strength
(UCS) and CO2 uptake were analyzed using this approach.

Table 3. Orthogonal experimental results of CO2 uptake and UCS tests.

Testing Number
CO2 Uptake (%) CO2 Uptake of Steel Slag (%) UCS (MPa)

1 d 3 d 14 d 28 d 1 d 3 d 14 d 28 d 1 d 3 d 14 d 28 d

1 11.93 11.72 12.62 12.95 15.21 14.94 16.09 16.51 18.20 17.90 25.19 15.16
2 9.87 10.38 10.98 11.36 14.80 15.57 16.47 17.04 17.72 19.49 22.42 15.96
3 8.65 9.36 10.12 10.47 15.57 16.85 18.22 18.85 19.36 15.70 26.94 22.80
4 10.33 10.07 11.65 12.32 12.35 12.04 13.93 14.73 13.66 10.73 17.96 13.47
5 9.23 9.93 10.63 11.14 12.98 13.96 14.95 15.67 18.44 23.31 19.03 21.40
6 8.64 8.70 9.12 9.34 14.58 14.68 15.39 15.76 8.17 8.09 7.61 8.28
7 9.10 9.66 10.05 10.29 10.64 11.29 11.75 12.03 13.44 8.22 16.46 17.55
8 7.78 8.66 9.16 9.48 10.70 11.91 12.59 13.03 4.87 5.92 5.70 4.55
9 6.19 8.22 8.09 8.21 10.21 13.56 13.35 13.55 7.01 8.66 8.85 12.52

3. Results and Discussion
3.1. Orthogonal Experimental Results

The effect curve of three factors on 1 d compressive strength and 1 d CO2 uptake
capacity were shown in Figure 4. The 1-day UCS values ranged from 4.87 to 19.36 MPa.
The mean value of K (Kji) for different factors was at different levels in the range analysis.
The best values for the three factors are as follows: the w/s value was 1:5 (A1), G/SS was
1:16 (B1), and the molding pressure was 9 MPa (C3). Meanwhile, Rj demonstrates the
significance of the factor’s influence. A larger Rj value means that the factor has a more
significant impact on the UCS. In Figure 4, the decreasing order RA > RC > RB indicates
that the level of significance of the factors was as follows: w/s (9.99) > molding pressure
(6.67) > G/SS (3.59).
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The 1-day CO2 uptake values ranged from 6.19% to 11.93%. Figure 4 shows that the
best values for the three factors were as follows: the w/s value was 1:5(A1), G/SS was
1:16 (B1), and the molding pressure was 3 MPa (C1). In Figure 4, the decreasing order
RB > RA > RC indicates that the level of significance of the factors was as follows: G/SS
(2.62) > w/s (2.46) > molding pressure (0.41).

Table 3 shows that the CO2 uptake increased with the curing time, whereas the UCS
value increased gradually until 14 days, after which the strength of some samples decreased.
These results are attributed mainly to microstructure breaks due to excessive carbonation,
which was also discussed by Wang [9]. Table 3 shows that the gaps between 14 d and
28 d strength sometimes were huge, so measurement error was not enough to explain
the large strength drop during this period. The drop in strength could be attributed to
microstructure breaks due to excessive carbonation. In other words, the formed hydration
products, such as C-S-H gels and ettringite, could be consumed during the carbonation
process, doing harm to strength development, especially in later stages. Table 3 indicates
that strength degradation was the worst in samples with high w/s, proper amount of
gypsum, and low molding pressure. The three above conditions all led to a high amount of
hydration product and a loose pore structure. The UCS result indicated that the optimum
curing duration was 14 days. Therefore, range analyses of UCS and CO2 uptake after
short-term (1 day) and optimum (14 days) curing were conducted.

Figure 5 shows the effect curve of three factors on 14 d compressive strength and 14 d
CO2 uptake capacity. The 14-day UCS values ranged from 5.70 to 26.94 MPa. The best
values for the three factors were as follows: the w/s value was 1:5 (A1), G/SS was 1:16
(B1), and the molding pressure was 9 MPa (C3), which was closely in line with the 1 d
compressive strength results. In Figure 5, the decreasing order RA > RC > RB indicated
that the level of significance of the factors was as follows: w/s (14.51) > molding pressure
(7.98) > G/SS (5.40).
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Figure 6. The effect curve of three factors on 1 d and 14 d CO2 uptake of steel slag. 

Figure 5. The effect curve of three factors on 14 d compressive strength and 14 d CO2 uptake capacity.

The 14-day CO2 uptake values ranged from 8.09% to 12.62%. The best values for the
three factors were as follows: the w/s value was 1:5 (A1), G/SS was 1:16 (B1), and the
molding pressure was 3 MPa (C1). The decreasing order RB > RA > RC indicated that the
level of significance of the factors was as follows: G/SS (2.33) > w/s (2.14) > molding
pressure (0.06).

Figure 6 shows the effect curve of three factors on 1 d and 14 d CO2 uptake of steel
slag. The 1-day CO2 uptake of steel slag values ranged from 10.21% to 15.57%. The best
values for the three factors were as follows: the w/s value was 1:5 (A1), G/SS was 1:2 (B3),
and the molding pressure was 3 MPa (C1). The decreasing order RA > RC > RB indicated
that the level of significance of the factors was as follows: w/s (4.68) > molding pressure
(1.04) > G/SS (0.72).
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The 14-day CO2 uptake of steel slag values ranged from 12.03% to 18.85%. The best
values for the three factors were as follows: the w/s value was 1:5 (A1), G/SS was 1:2
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(B3), and the molding pressure was 9 MPa (C3). The decreasing order RA > RB > RC
indicated that the level of significance of the factors was as follows: w/s (4.60) > G/SS
(1.63) > molding pressure (0.41).

From the range analyses results, w/s had a significant effect on both UCS and CO2
uptake values. The molding pressure impacted UCS greatly, but had very little influence
on CO2 uptake. G/SS has the least impact on UCS, but affected CO2 uptake of steel
slag greatly.

3.2. Effect of Gypsum Content

From the orthogonal experiment results, when G/SS was 1:16, the compressive
strength reached the highest values. The higher the gypsum content, the lower the strength
and the CO2 uptake. However, regarding the CO2 uptake of steel slag (i.e., the capture
ability of steel slag rather than that of the block), gypsum promoted their CO2 sequestration
ability. The authors analyzed the effect of gypsum on steel slag carbonation previously [9],
and found that gypsum acted as a catalyst as an aspect of CO2 capture. The main function
of gypsum is to stimulate the activity of calcium aluminum minerals, such as mayenite
(C12A7), to initiate a hydration reaction to form ettringite (C3A·3CaSO4·32H2O), which
is carbonated easily to produce monocarboaluminate (C3A·CaCO3·11H2O) and gypsum.
The ettringite formed at the beginning of curing helps to intertwine with C-S-H gels
and enhance the strength. This is why a small amount of gypsum is required to reach
optimum strength.

The hydration and carbonation mechanism of main minerals in steel slag can be
explained by the following chemical reactions:

C2S + H2O→ C-S-H + Ca(OH)2 (4)

C3S + H2O→ C-S-H + Ca(OH)2 (5)

Ca(OH)2 + CO2 → CaCO3 + H2O (6)

MgO + CO2 →MgCO3 (7)

C-S-H + CO2 → CaCO3 + SiO2·xH2O (8)

C12A7 + CaSO4·2H2O + Ca(OH)2 + H2O→ C3A·3CaSO4·32H2O (9)

C3A·3CaSO4·32H2O + CO2 → CaCO3 + CaSO4·2H2O + Al(OH)3 + H2O (10)

C3A·3CaSO4·32H2O + CaCO3 → C3A·CaCO3·11H2O + CaSO4·2H2O + H2O (11)

3.3. Effect of Molding Pressure and Curing Durations

To determine the effect of molding pressure on the UCS and CO2 uptake of specimens,
G/SS (1:16) and w/s (1:5) were controlled, but the molding pressure was varied from 3
to 27 MPa. The results are shown in Figure 7a,b. As seen in Figure 7a, UCS increased
stably with increased molding pressure. From 1 to 14 days of curing, the UCS increased for
most of the samples. In contrast, from 14 to 28 days of curing, the UCS of some samples,
especially those with high molding pressure, dropped to some extent. This result was in
agreement with the UCS result in the orthogonal experiment (Table 3). What we need to
notice is that the increase from 1 to 28 days was not significant. This means that in some
circumstances, to save time, 1 day of carbonation curing is enough. For samples with a
27 MPa molding pressure, the UCS was around 55 MPa after 1 day of carbonation curing.
This strength is ideal in high-strength construction materials.
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Figure 7. (a) UCS and (b) CO2 uptake results of samples with different molding pressures.

The CO2 uptake of the samples cured for 1 day did not show a clear change with
molding pressure. This result proves that high molding pressure (i.e., high density and low
pore volume in the microstructure) almost did not block CO2 from transferring from the air
into the block’s core. In the experiment, when the molding pressure was 27 MPa or greater,
water began squeezing out of the block, which meant that water saturation reached 100%
at this point.

Since 1 d carbonation curing almost reached the plateau, effects of short-term curing
time on UCS and CO2 uptake of 27 MPa molding pressure samples were investigated, with
results shown in Figure 8a. It is clear that UCS increased gradually with curing time, while
CO2 uptake increased significantly before 6 h curing, after which point the value almost
remained stable. Semi-QXRD results in Figure 8b also show that the amount of the main
carbonation product calcite in samples increased with time before 6 h, and the value almost
plateaued after 6 h, which was in line with the CO2 uptake results. Figure 8b also shows
a fall in the amount of larnite, mayenite, portlandite, alite, and gypsum, proving their
high carbonation activity, while brownmillerite, magnesiferrite, and magnesiowuestite
remained stable in the mass percentage, corresponding to their low reactivity. Larnite, the
main carbonation feedstock, still existed after 24 h of carbonation curing. This might be
attributed to the participation of carbonates at the surface of the calcium silicate particles,
blocking the CO2 diffusion. The QXRD Rietveld method results with different carbonation
durations are shown in Figure S2. The R-values for the Rietveld ranged from 5.00 to 5.30,
indicating high reliability of the results.
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Figure 9. FTIR analyses of the samples with different molding pressures and curing times. 

Figure 8. UCS and CO2 uptake results (a) and semi-QXRD analyses results (b) of 27 MPa
molding pressure samples with different curing times.

3.3.1. FTIR Analyses on Samples with Different Molding Pressures and Curing Durations

Figure 9 shows the FTIR analyses of samples with different molding pressures and
curing times. From the figure, no clear differences were found between the samples with
different molding pressures carbonated for 24 h. This indicated that molding pressure had
little influence on carbonation.
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The absorption bands from 3405 to 3548 cm−1 were the stretching vibration bands of
O–H in water molecules, and the 1621 cm−1 band was due to the bending vibration of it.
The appearance of the broad stretching band resulted from the existence of hydrogen bonds
with a wide range of strengths [9]. The intensity of the O–H bond absorption bands was
higher in low-molding-pressure samples, indicating that high molding pressure may lead
to fewer hydration products in this system. This is because when the molding pressure
was 27 MPa, some of the water was squeezed out, which reduced the amount of water for
hydration. For the 27 MPa molding pressure samples under different curing times, the
sample cured for 3 h had the highest amount of hydration products. This was because
some of the hydration products were carbonated in the later stages.
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The “shoulder” at 3548 cm−1 may correspond to the water molecules in the gyp-
sum [25]. The 1420–1480 cm−1 bands were the symmetric stretching vibration bands of
C–O. The peaks at 873 and 712 cm−1 were due to the bending vibration of CO3

2−. It can be
seen that samples with different molding pressures had almost the same intensity in this
range of curves. This indicated that the molding pressure had little effect on the formation
of carbonized products, which was in line with the CO2 uptake results. Furthermore,
Figure 9 shows that the amount of carbonation products formed increased gradually with
curing time before 6 h curing, while the amounts almost remained unchanged after 6 h.

The 900 to 1200 cm−1 bands were from the asymmetric stretching vibration of Si–
O [26]. Particularly, the 993 and 516 cm−1 peaks were the asymmetric stretching and
bending vibration peaks of Si–O–Si in the C-S-H gel, respectively. In addition, the out-
of-plane skeletal vibration of the Si–O bond contributed to the broad bands at around
516 cm−1. It is seen clearly that these characteristic peaks appeared only in 1 h and 3 h
samples. When the samples were carbonated for a long duration (6 h or more), the peaks
of the C-S-H gel almost disappeared. These results agreed with the fact that C-S-H gels
have high carbon reactivity, which means that they are prone to carbonation reactions. For
samples with curing times of 6 h or longer, the peaks at 993 and 516 cm−1 disappeared,
whereas an absorption band at 1041 cm−1 appeared. This was because of the formation of
silica-like products and an increase in the polymerization degree [27].

The 1112 and 1141 cm−1 peaks were characteristic of SO4
2− [25].

3.3.2. TG–DTG Analyses of Samples with Different Molding Pressures and
Curing Durations

Thermogravimetry–derivative thermogravimetry (TG–DTG) analyses of samples with
different molding pressures and curing times are shown in Figure 10. From the TG curves,
the mass loss of S5 was greater than that of S12. The figure also shows that the difference
between S5 and S12 was mainly in the range of 300–500 ◦C, where S5 had subtle mass loss
peaks, whereas S12 did not. At this temperature, the C-S-H gel began to decompose. From
3 to 24 h of carbonation curing, mass loss increased with curing time. The mass-loss peak
in the range of 500–800 ◦C corresponded to the decarbonation of carbonates. The intensity
of the peaks increased with curing time, indicating a continuing process of carbonation
reaction. The mass loss around 100 ◦C was attributed to water loss of hydration products,
such as the C-S-H gel. From the DTG curves in Figure 10, 9 MPa-24 h and 27 MPa-24 h
had similar amounts of hydration products, and these amounts were greater than those of
samples with shorter curing times.
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3.3.3. Pore-Size Distribution Analyses of Samples with Different Molding Pressures

The cumulative pore volume curves and pore-size distribution curves of samples
with 9 MPa and 27 MPa molding pressure after 1 day of carbonation curing are shown
in Figure 11. The curves prove clearly that samples with higher molding pressure had
less pore volume. It is easy to understand that higher molding pressures led to denser
structures. As shown in Figure 11b, S12 had more pores smaller than 10 nm and fewer
pores between 316 and 10,000 nm. Larger pores are harmful to strength. The 27 MPa
molding pressure sample corresponded to not only a lower pore volume, but also smaller
pores, which is why it had a higher compressive strength.
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3.4. Effects of w/s
3.4.1. Effects of w/s on UCS and CO2 Uptake

An experiment was conducted to investigate the effects of w/s on the strength and
CO2 uptake of samples. In this experiment, G/SS and molding pressure were controlled at
1:16 and 9 MPa, respectively. The results are shown in Figure 12. Samples with a higher
amount of water (w/s) tended to have higher UCS and higher CO2 uptake. Therefore,
the addition of water promoted not only strength enhancement, but also the carbonation
reaction process. We also concluded that compared with molding strength, w/s seemed
to have a greater effect on the UCS and CO2 uptake. The contribution of water had two
aspects. On the one hand, water takes part in chemical reactions. When CO2 transfers into
the water, it dissolves into CO3

2− or HCO3
− so that carbonation can occur easily. Water

is also a necessary component for hydration reactions. Larnite and alite in steel slag have
weak carbon reactivity, but hydration products such as the C-S-H gel and portlandite are
carbonated easily. On the other hand, water is an important medium in this system. It
promotes the diffusion of ions such as Ca2+, OH−, and CO3

2−.

3.4.2. Semi-Quantitive XRD Analyses of Samples with Different w/s Values

The results of the QXRD Rietveld method for samples with different w/s ratios are
shown in Figure S3. The semi-QXRD analyses results given in Figure 13 showed that with
an increasing w/s, there was a clear increase in calcite amount and a clear decrease in larnite,
mayenite, and gypsum amounts. The DTG curves showed a similar temperature range
of mass loss, proving that under different w/s, the samples’ hydration and carbonation
products were generally similar. However, the amounts of the products changed with
different w/s. Higher w/s corresponded to higher amounts of carbonates such as calcite
and monocarboaluminate. It also corresponded to less amounts of larnite, mayenite, and
gypsum, in general. The QXRD clearly proved that water played an important role in the
carbonation of steel slag.
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3.4.3. TG–DTG Analyses of Samples with Different w/s Values

The results of the TG–DTG analyses in Figure 14 show the tendency of more mass
loss with increased w/s. The DTG curves show a similar temperature range of mass loss,
proving that the samples’ hydration and carbonation products with different w/s were
generally similar. The L6-1 d sample, which had the least water, also had the least mass loss
at around 100 ◦C, where the C-S-H gel lost water. For L1-1 d and L1-3 d, more mass loss
was seen at this temperature range. This proves that water promoted hydration reactions.
Gypsum decomposes at 120 ◦C. L6-1 d had the most mass loss at this temperature, which
means that the reaction extent of gypsum was lower than those of other samples, which had
more water in the matrix. From 500 ◦C to 800 ◦C, the carbonate decomposition intensity
had a trend similar to that of hydration products. Therefore, the TG results prove the role of
water in promoting hydration and carbonation—the UCS and CO2 uptake of the samples
were promoted with the addition of water.
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3.4.4. XPS Analyses of Samples with Different w/s Ratios

Figure 15 shows the XPS test results for samples L1, L2, L4, and L6 at the age of 1 day.
The main forms of silicon in steel slag were C2S and C3S. According to Black et al. [28], the
Si 2p binding energy peaks for C2S and C3S were 100.80 and 100.57 eV, respectively. Si 2p
binding energy is related to the silicate tetrahedral polymerization extent [29–31]. Black
et al. [29] also reported that Si 2p binding energies showed a strong negative correlation
with C/S in the C-S-H phases. Carbonation of C-S-H resulted in a decreased C/S and thus
an increased Si 2p binding energy. The curves in Figure 12a indicate that the Si 2p binding
energy had increased after 1 day of carbonation curing. This may be because dicalcium
silicate and tricalcium silicate are nesosilicate minerals and have low Si 2p binding energies,
whereas the Si 2p binding energies of carbonate products, such as low Ca/Si C-S-H gel or
silica gels, are higher because of the loss of nonbridging oxygen atoms during hydration
and carbonation.

It is clear that the sample with the higher w/s value had a higher Si 2p binding energy,
indicating that water promoted the hydration and carbonation of silicate minerals. Water
plays a vital role in the following two aspects. First, it acts as a hydration reactant. Water is
the most essential component in hydration reactions. Hydration products such as C-S-H
gels and ettringite are prone to carbonation reaction, so water also promotes carbonation
reactions. Second, water acts as a transport medium. The dissolved Ca2+, OH−, and CO3

2−

are transported via water, accelerating hydration and carbonation reactions and carbonate
product precipitation.

Figure 15b shows the Ca 2p3/2 binding energy of the samples. It was previously
determined that the Ca 2p3/2 binding energies of dicalcium silicate (C2S) and tricalcium
silicate (C3S) in the raw material were 346.87 and 346.55 eV, respectively [28]. Previous
studies also showed that the Ca 2p3/2 binding energy of gypsum was 347.70 eV [32], and
that of Ca/Al-LDH was 347.5 eV [33]. The Ca2p3/2 binding energy for an OPC dry clinker
sample was observed to be about 347.1 eV. For CaO, Ca(OH)2, and CaCO3, the Ca2p3/2
peak was around 347.0 eV [34].

It can be seen from Figure 15b that the Ca 2p3/2 binding energy of all the carbonated
samples surpassed 347 eV. From L1 to L6, the w/s decreased, and the peaks at 347.9
and 347.1 eV increased. This may be attributed to the increasing amounts of ettringite,
C-S-H gels, calcite, and monocarboaluminate during the curing period with the increasing
addition of water.
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Figure 15c shows the Al 2p binding energy results for samples L1 to L6. In steel slag,
C12A7 and C3A were the most important sources of aluminum. From Dubina’s study [35],
the binding energy of alumina (73.47 eV) was typical for AlO4 tetrahedra. C-A-H phases
and the monocarboaluminate had an Al 2p binding energy of around 74.30 eV. From
Figure 15c, the Al 2p binding energy increased with w/s, indicating that more hydration
and carbonation products were formed when more water was added. This result was
consistent with the carbon content and TG–DTG results.

4. Conclusions

To determine the carbonation potential of steel slag, through orthogonal design tests
and single-factor tests, this paper evaluated the effects of the water/solid mass ratio (w/s),
gypsum ratio (G/SS), and molding pressure on uniaxial compressive strength (UCS) and
CO2 uptake of the compacts.

From the range analyses results, w/s had a significant effect on both UCS and CO2
uptake values. The molding pressure impacted UCS greatly, but had very little influence
on CO2 uptake. G/SS had the least impact on UCS, but improved the CO2 uptake of
steel slag greatly. The optimum conditions in the study were a w/s of 0.20, G/SS of 1/16,
and molding pressure of 27 MPa, under which conditions 1 d UCS and CO2 uptake were
55.30 MPa and 12.36%, respectively.

In our study, CO2 uptake of steel slag in the optimal proportion was 16.32%. So, per
Mt of steel slag can capture 0.1632 Mt CO2. The steel slag from the Anshan Iron and Steel
Co. plant is a kind of typical BOF slag in China, which accounts for 70% of the steel slag
in China. The stockpiled amount of steel slag in China is around 1800 Mt. Therefore, the
amount of CO2 that can be captured by this method is 293.76 Mt in China, which is a huge
amount and can contribute to mitigating the greenhouse effect to a great extent. In addition,
the high-strength construction materials could substitute cement. For every ton of cement
produced, 0.78 tons of CO2 is emitted. So, the technique could save 1800 Mt cement and
decrease CO2 emissions by 1404 Mt.
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The gypsum single-factor experiment indicated that gypsum acted as a catalyst for
calcium aluminate during the hydration and carbonation process of steel slag.

Increasing curing duration helped to improve both UCS and CO2 uptake at less than
14 d, while excessive carbonation could do harm to the strength development. Samples
at 1 d curing age had 70~100% UCS compared to that of 14 d, and 85~100% CO2 uptake
compared to that of 14 d. To save time and energy, 1 d curing, and even 6 h curing, is
long enough for the samples. An increase in water addition significantly enhanced the
UCS and CO2 uptake. Increasing w/s from 0.1 to 0.2 could contribute to an increase in
UCS from 7.45 MPa to 31.97 MPa, and an increase in CO2 uptake from 8.59% to 11.31%,
increased by 329% and 32%, respectively. From micro-analyses, hydration and carbonation
processes were significantly improved when enough water was provided. Water played an
indispensable role in the hydration reactions. It also promoted the diffusion of ions such as
Ca2+, OH−, and CO3

2−.
Strengthening molding pressure from 3 MPa to 27MPa led to an increased UCS from

22.90 MPa to 55.30 MPa, with no obvious effects on CO2 uptake value. Although the
strengthened molding pressure almost did not impact the amounts of hydration and
carbonation products in compacts, it had a significant densification effect on micro-pore
structures from MIP results. Increasing molding pressure was an effective way to en-
hance UCS.

From the analyses, the labile minerals in steel slag included larnite, alite, mayenite,
portlandite, and periclase. If all of above-mentioned minerals were carbonated, from the
raw material analyses (especially QXRD), theoretical CO2 uptake of steel slag should be
25.25%. However, the highest value we found in this study was 18.85%, only 74.65% of
the theoretical value. The difference between practical and theoretical results could be
attributed to the prohibited CO2 diffusion by the formed carbonates on the outside of the
particles. Actually, some pure material carbonation research has reported that it is very
difficult for the minerals to be completely carbonated. Wang and Chang [36] investigated
carbonation of β-C2S, Ca(OH)2, and C4AF, finding that the carbonation degree of the
minerals were 52%, 87%, and 25%, respectively. Zhao [37] explored carbonation degree of
γ-C2S through biomineralization, with around 30% γ-C2S left in the carbonated samples.
Zhang [38] studied the carbonation reactivity of C3S and β-C2S, finding a conversion rate
of 65% and 70%, respectively. The most plentiful carbonation product in their studies was
calcite, with some existence of aragonite, vaterite, and monocarboaluminate. The results
in this study were consistent with their studies. Wang and Chang [36] revealed that the
carbonation degree was not only controlled by the dissolution properties of minerals, but
also influenced by the distribution of CaCO3, which was similar to the above explanation
regarding the blocking effects of carbonates on CO2 diffusion.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/en14154489/s1, Figure S1: QXRD analysis result of steel slag, Figure S2: QXRD analysis results
of steel slag after (a) 1 h, (b) 3 h, (c) 6 h, (d)12 h, and (e) 24 h carbonation. (molding pressure: 27 MPa,
G/SS: 1/16, w/s: 0.2), Figure S3: QXRD analysis results of steel slag with different w/s ratio of (a)
1/5, (b) 1/6, (c) 1/8, and (d) 1/10. (molding pressure: 9 MPa, G/SS: 1/16, carbonation duration: 1d).
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