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Abstract: Load disaggregation for the identification of specific load types in the total demands (e.g.,
demand-manageable loads, such as heating or cooling loads) is becoming increasingly important
for the operation of existing and future power supply systems. This paper introduces an approach
in which periodical changes in the total demands (e.g., daily, weekly, and seasonal variations) are
disaggregated into corresponding frequency components and correlated with the same frequency
components in the meteorological variables (e.g., temperature and solar irradiance), allowing to select
combinations of frequency components with the strongest correlations as the additional explanatory
variables. The paper first presents a novel Fourier series regression method for obtaining target
frequency components, which is illustrated on two household-level datasets and one substation-level
dataset. These results show that correlations between selected disaggregated frequency components
are stronger than the correlations between the original non-disaggregated data. Afterwards, convolu-
tional neural network (CNN) and bidirectional long short-term memory (BiLSTM) methods are used
to represent dependencies among multiple dimensions and to output the estimated disaggregated
time series of specific types of loads, where Bayesian optimisation is applied to select hyperparame-
ters of CNN-BiLSTM model. The CNN-BiLSTM and other deep learning models are reported to have
excellent performance in many regression problems, but they are often applied as “black box” models
without further exploration or analysis of the modelled processes. Therefore, the paper compares
CNN-BiLSTM model in which correlated frequency components are used as the additional explana-
tory variables with a naïve CNN-BiLSTM model (without frequency components). The presented
case studies, related to the identification of electrical heating load and lighting load from the total
demands, show that the accuracy of disaggregation improves after specific frequency components of
the total demand are correlated with the corresponding frequency components of temperature and
solar irradiance, i.e., that frequency component-based CNN-BiLSTM model provides a more accu-
rate load disaggregation. Obtained results are also compared/benchmarked against the two other
commonly used models, confirming the benefits of the presented load disaggregation methodology.

Keywords: bayesian optimisation; convolutional neural network; deep learning; disaggregation;
Fourier series; frequency component; load; long short-term memory neural network; nonintrusive
load monitoring; regression

1. Introduction

Due to the recent deployment of demand-side management and demand-responsive
load control schemes, load disaggregation is becoming increasingly important for balanc-
ing renewable generation and provision of various system support services [1,2]. Two
additional drivers for a significant increase of interest in load disaggregation are the much
higher availability of demand datasets from advanced and intelligent monitors, e.g., smart
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meters, as well as the development of efficient neural/recurrent network and deep learning
modelling methods. Load disaggregation denotes a general process in which specific load
types or load categories are identified in the measured aggregated (i.e., total) electricity
demands. Typically, load types and categories of interest for disaggregation are appliances,
or groups of appliances that share similar electrical and/or consumption characteristics,
e.g., demand-manageable loads, such as heating or cooling loads.

In cases where disaggregation is performed on total demands measured by a single
electricity meter (i.e., for a single customer), the common term is “nonintrusive appli-
ance/load monitoring” (NIALM/NILM), as opposed to the monitoring of individual
appliances/loads by separate meters, which is denoted as “intrusive appliance/load moni-
toring” (IALM/ILM) [3,4]. Load disaggregation is readily available for ILM, as the loads
of interest are directly monitored, while NILM-based load disaggregation faces several
challenges. The main idea behind NILM is that different load types will have different en-
ergy consumption “signatures” or “patterns”, which will then allow for their identification
in the total demand, assuming measured data are available with a sufficient resolution.
However, the energy consumption signatures/patterns may vary strongly, depending
on the appliance-specific characteristics, weather conditions, user settings, and habits, or
wider socio-economic factors [5], making the identification of the distinctive load types
difficult. A significantly more challenging problem is load disaggregation at a distribution
network substation level, where available measurements are total demands of a large
number of customers, whose individual smart meter data may not be accessible, e.g., due
to data privacy/ownership concerns.

Direct load disaggregation approaches aim at detecting specific changes in total
demand that can be allocated to the use of individual appliances, e.g., their on/off switch-
ing [6]. Various clustering and classification algorithms are widely applied to identify
unique load signatures in demand time series, such as support vector machines [7], deci-
sion trees [8], and combinatorial optimisation (CO) [9]. If the sufficiently labelled datasets
for both total demands and individual load type demands are available, as in ILM-based
approaches, hidden Markov models (HMM) and their variants (e.g., factorial hidden
Markov model, FHMM) can be used to explore patterns of individual appliances and
their combinations [10,11]. Frequency-based analysis methods, including Fourier [12] and
wavelet [13] transforms, are also used to capture on/off switching events, or to identify load
types with specific harmonic emission signatures. Usually, these methods are inaccurate
when there is high noise in the measured data, and their complexity and computational
times significantly increase when the numbers of appliances and/or their operating states
increase.

As mentioned, deep learning models are being increasingly used in many areas and
in various applications, including load disaggregation [3,5,14,15], where improvement in
accuracy and performance for identifying the underlying load profiles and demand patterns
have been reported. However, these approaches are often criticised as “black box” methods,
because they are difficult to interpret and as their results are sensitive to the settings of
model hyperparameters [16]. Accordingly, the majority of the deep learning models in
current literature are simply built and tuned using the available data, without performing
further exploration or analysis of the modelled processes. For example, the accuracy of
the built models will increase if domain expert knowledge is used to analyse and extract
specific characteristics from available data. This is usually denoted as “feature engineering”,
as the extracted features may be essential for understanding the modelled process, and
as the selection of the most representative data properties may result in performance
improvement. Ref. [17] presents a review of features for appliance classification in load
disaggregation (low and high frequency, steady state, and transient categories), showing
that systematic feature selection can improve accuracy. Ref. [18] considers and compares
electrical and statistical features for load disaggregation, confirming the importance of
selecting both appropriate features and algorithms.
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This paper aims to contribute to the existing research in the general area of load
disaggregation by proposing a novel frequency domain decomposition and correlation
method, which requires only synchronised time series of active power demands and
weather variables (temperature and solar irradiance). The methodology is illustrated
on several case studies with actual measurement data, demonstrating that the use of
correlated frequency components as the additional features in the state-of-the-art neural
network load disaggregation model provides more accurate results than the same neural
network model without frequency components. The three main contributions of the
paper are (a) introduction of a new Fourier series regression method for decomposition
of synchronised demand and weather time series into target frequency components, and
(b) formulation of an approach for evaluating correlations between obtained frequency
components, allowing to select components with strongest correlations as the additional
explanatory variables for the load disaggregation, and (c) comparison of the performance of
deep learning model in which correlated frequency components are used as the additional
explanatory variables with a conventional “black box” deep learning model (without
frequency components), showing that the frequency component-based model provides a
more accurate load disaggregation.

After this introductory section, Section 2 presents a novel frequency component-based
load disaggregation method, where specific combinations of single-component Fourier
series decomposition of targeted periodical components of the total demand are correlated
with the corresponding frequency components of weather variables (temperature and solar
irradiance). These results are then used to indicate changes of heating and lighting loads, as
these have strong negative correlations with temperature, and solar irradiance, respectively.
Afterwards, Section 3 presents a CNN-BiLSTM load disaggregation model, for which the
most appropriate hyperparameters are selected using Bayesian optimisation (BO) approach.
The analysis in Sections 2 and 3 is illustrated on different case studies, showing that the
accuracy of the disaggregated load types improves if specific frequency components of the
total demand, temperature and solar irradiance are used as the additional explanatory vari-
ables in the CNN-BiLSTM model. Section 3 also presents comparison and benchmarking of
the proposed frequency component-based CNN-BiLSTM model with a naïve CNN-BiLSTM
model (without frequency components) and two other commonly used models (CO and
FHMM), confirming benefits of the presented load disaggregation methodology. Finally,
Section 4 gives the main conclusions from the presented analysis. Figure 1 provides a
“block diagram” illustration of the proposed load disaggregation approach, which also
shows a layout of the overall analysis presented in the paper.
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tion of lighting load with solar irradiance. As the temperature and solar irradiance also 
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nations of specific disaggregated frequency components that have stronger negative cor-
relations than the original non-disaggregated data. 

  

Figure 1. A block diagram illustration of the proposed load disaggregation method and overall layout of the analysis
presented in the paper.

2. Selection of Target Frequency Components for Fourier Series Decomposition and
Correlational Analysis

Periodical changes in weather conditions (e.g., daily and seasonal variations in tem-
perature and solar irradiation) have a strong impact on the periodical changes in residential
electricity demands, which are also influenced by socio-economic factors, e.g., weekly
schedule of working days and weekend days [5]. For example, space heating appliances
in a cold-climate location are mainly used in winter and spring/autumn seasons, when
the ambient temperature is low, while demand for lighting is also usually higher in winter,
because of the shorter duration of daylight hours. This results in a strong negative correla-
tion of heating load demand with temperature and a similarly strong negative correlation
of lighting load with solar irradiance. As the temperature and solar irradiance also exhibit
periodical changes on both longer-term scale (e.g., seasonal and annual variations) and
shorter-term scale (e.g., diurnal or daily variations), the actual variations in electricity
demands for heating and lighting are generally expected to follow these periodical changes.
Accordingly, the correlational analysis can be used to select the most strongly correlated fre-
quency components, which then can indicate portions of the disaggregated demands that
contain higher contributions from specific load types and therefore can serve as additional
variables for a more accurate load disaggregation model.

This section first describes the available residential demand datasets. Afterwards,
it presents a novel Fourier series regression (FSR) method with different window sizes,
where each window allows to extract a specific single-frequency component from the
total demand, temperature, and solar irradiance time series data, demonstrating that
these frequency components can relatively accurately reconstruct the original dataset.
Spearman correlation coefficients [19] are used to quantify correlations, in order to identify
combinations of specific disaggregated frequency components that have stronger negative
correlations than the original non-disaggregated data.

2.1. Description of Available Datasets

To illustrate the proposed methodology, this paper uses three available datasets, which
are either measured or pre-processed to have a temporal resolution of 30 min. The first is
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Almanac of Minutely Power dataset (AMPds2) Version 2 from [20], which contains total
active and reactive power demand measurements, as well as measurements of the active
power of the heat pump of a single household located in Burnaby, Canada, from 1 April
2012 to 31 March 2014. The second dataset is UK Domestic Appliance-Level Electricity
(UK-DALE) [21], consisting of measurements of total active and reactive power demands
and measurements of the active power of lighting load for one household in London, UK,
from 18 March 2013 to 17 March 2016. For both AMPds2 and UK-DALE datasets, the
synchronous data for meteorological parameters (temperature and solar irradiance) in
the same geographical location are obtained from an external data source, MERRA-2 [22].
Unlike the first two household-level datasets, the third dataset is related to a medium
voltage (MV) substation-level measurements of predominantly residential total active
and reactive power demands in a city in Scotland, UK, together with temperature and
solar irradiance recordings from 1 January 2007 to 31 December 2012 [23]. In this case,
the measurements of disaggregated loads, including heating and lighting loads, are not
available. All three datasets are used as the case studies for Fourier series regression
and correlation analysis, where in the next sections AMPds2 is used for the identification
of heating load from the total demand using correlations with temperature, UK-DALE
is analysed for the identification of lighting load in the total demand using correlations
with solar irradiance, while MV level dataset is used for considering both the correlation
between the total demand and temperature, and correlation between the total demand and
solar irradiance.

2.2. Disaggregation through Targeted Single-Components Fourier Series Decomposition

Fourier series decomposition is a commonly used approach for representing periodical
function or “signal” with a sum of ideally sinusoidal components and one constant term,
usually written as:

f (n) =
a0
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+

∞
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N
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0 f (n)dx represents the non-periodical, i.e., constant DC com-
ponent.

For extracting the single frequency components, as it is done in this paper for the
target periodical components with specific window lengths, the following relation can
be used:

f (n) = cx + ax cos
(

2π

Nx
n
)
+ bx sin

(
2π

Nx
n
)

(2)

where: cx is the DC component if f (n) is fitted and determined by Fourier coefficients ax
and bx, and the frequency is 1/Nx.

If Equation (2) is applied with the multiple window lengths, where each window
represents one identified or dominant periodical component in the analysed time series,
and where for each component related window length is applied in successive steps, the
sum of the considered frequency components is effectively an alternative to the fitting
by Equation (1). The advantage of Equation (2) is that it allows for extracting different
frequency components in a computationally efficient way by simply applying different
observation window sizes, where the length of each window defines the fundamental
period of each extracted component. For example, if Equation (1) is applied on a time
series length of one calendar year, it will provide annual, seasonal, monthly, weekly,
and daily components, where an annual component is fundamental, and other mentioned
components are harmonics. However, this approach will result in an equal daily component
for all days, which is fitted based on the average of all days. On the other hand, Equation (2)
can be applied separately for each day (window length of one day), then for the week to
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which that day belongs (window length of one week), then for the corresponding month
(window length of one month), then corresponding season (window length of one season)
and finally for the year to which that day belongs (window length of one year), providing
considered frequency components for the day of interest. Afterwards, this procedure can be
repeated for the next day, and so on. A comparison between Fourier series decomposition
by Equation (1) and by applying selected components using Equation (2) is provided later
in this section.

If the exact decomposition through the infinite Fourier series in Equation (1) is not
of interest, successive application of Equation (2) allows to obtain selected or targeted
frequency components, e.g., to disaggregate total demand in periodically changing daily,
weekly and seasonal components. In a matrix notation, it can be written as:

y = Xβ =⇒
f (1)
f (2)

...
f (N)

 =
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)
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(
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)

1 cos
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...
...

...
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× N

)
sin
(

2π
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× N

)


 cx

ax
bx

 (3)

which is equivalent to a regression problem. The value of β = [cx, ax, bx]T can be estimated
using ordinary least squares (OLS), whose objective is to minimise the sum of squared
residuals. The final results of OLS for β can be derived as (XTX)−1XTy. Refs [24,25] also
apply regression techniques in period analysis, i.e., the least absolute shrinkage and selec-
tion operator (LASSO) as the regression regularisation. Also, the Goertzel algorithm [26],
which is a type of discrete Fourier transform (DFT), may be used if only certain frequencies
should be extracted, as in, e.g., real-time applications where short computational times are
of high importance.

In terms of disaggregating measured total demand, temperature, and solar irradiance
time series, only seven predefined frequency components are selected in this paper: half-
daily, daily, two-daily (for two weekend days, if the considered day is on weekend),
five-daily (for five working days, if the considered day is working day), weekly (for seven
days of a week), monthly (for 28 days of a lunar month), seasonal (for 91 days of a season)
and annual (for 364 days of a year, as 365 days will make most of the other frequency
components to be interharmonics). The paper explicitly considers disaggregation of daily
(24-h) demands, where the length of the output window is one day (see Section 3) and
the corresponding daily time series is denoted as Di. The frequency components are
obtained for the considered day of interest, including components with shorter and longer
periodicity than one day. The half-daily component is calculated for the considered day as
the 2nd harmonic of the Fourier series decomposition applied on the window length of
one day (for which the daily component is the fundamental frequency component). The
extension of the observation window allows for the identification of other (lower) frequency
components. In that way, all considered frequency components for Di are extracted, so that
the estimations on the considered day are based on the most relevant observations. This is
illustrated in Figure 2.
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Figure 2. Window lengths for Fourier decomposition into considered frequency components.

It should be noted that there are several ways how observation windows could be
extended: the one illustrated in Figure 2 is by going backwards in the historical data, as
this is generally suitable for load forecasting applications, where the future realisations of
the process are unknown and were using the future data to extend the observation window
may cause a “look-ahead bias” [27]. For general analysis and characteristics or features
extraction, as well as hindcasting applications, observation windows can be extended
differently, e.g., by either putting the day of interest in the centre of the historical data, or at
the beginning of the historical data.

Examples of the results of the frequency component disaggregation of the AMPds2
total demand and temperature data are shown in Figure 3. The first eight plots in Figure 3
(Figure 3a–h) show the selected frequency components, including DC, following the proce-
dure illustrated in Figure 2. It can be seen that frequency components of total demand and
temperature exhibit different correlations, both in terms of the full-length observation win-
dow, but also in terms of the increasing or decreasing trends/gradients on the considered
day, which are discussed in more detail in Section 2.3. Figure 3i–l depict the magnitudes
and phase angles of the considered frequency components of the total demand and temper-
ature time series, while Figure 3m,n show the reconstructions of the non-disaggregated
total demands and temperatures using only considered frequency components, i.e., by
applying Equations (2) and (3) in Figure 3m, and by applying Equation (1) in Figure 3n.
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Figure 3m combines and sums up only considered frequency components in Figure 
3a–g, where DC component from Figure 3h is actually obtained by re-estimating DC com-
ponent as a difference between the mean value of the original daily time series and the 
mean value of the summed frequency components. It can be seen in Figure 3m that the 
original non-disaggregated time series cannot be reconstructed with 100% accuracy, 
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analysis. The considered frequency components can capture general increasing and de-
creasing changes during the considered day, therefore preserving important information 
in the approximation of the original time series. By comparing results for the considered 

Figure 3. Results of the proposed Fourier series regression results on AMPds2 (Monday, 24 March 2014) for load and
temperature recordings: (a) half-daily, (b) daily, (c) 5-daily, (d) weekly, (e) monthly, (f) seasonal, (g) annual, (h) re-
estimated DC component, (i) magnitudes of demand frequency components, (j) phase angles of demand frequency
components, (k) magnitudes of temperature frequency components, (l) phase angles of temperature frequency components,
(m) reconstruction of non-disaggregated demand and temperature daily profiles using considered frequency components;
(n) reconstruction of non-disaggregated demand and temperature daily profiles using conventional Fourier transform.

Figure 3m combines and sums up only considered frequency components in Figure 3a–g,
where DC component from Figure 3h is actually obtained by re-estimating DC component
as a difference between the mean value of the original daily time series and the mean value
of the summed frequency components. It can be seen in Figure 3m that the original non-
disaggregated time series cannot be reconstructed with 100% accuracy, which is expected,
as only a limited number of frequency components are used for the analysis. The considered
frequency components can capture general increasing and decreasing changes during the
considered day, therefore preserving important information in the approximation of the
original time series. By comparing results for the considered day in Figure 3m,n, it can
be seen that the Fourier series decomposition that extracts all frequency components by
Equation (1) results in a less accurate reconstruction of the original time series than the
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proposed method. The biggest differences are in capturing morning peak in demand and
unusual temperature increase during the evening time.

A numerical comparison between Figure 3m,n is presented in Table 1. Two widely
used goodness-of-fit indices, mean absolute error (MAE) and root-mean-square error
(RMSE), as well as the absolute and percentage errors between the actually measured
demands and reconstructed demands in terms of the overestimated, underestimated and
total energy (denoted as EO, EU, and ET, respectively) are used to evaluate the performance
of the models [28,29]. In assessing the energy-based indices, it is assumed that the average
half-hourly demand values are constant over the period of 30 min, so that the energy
can be calculated as the power multiplied by the time. Only the timestamps when the
reconstructed demand is higher/lower than the actual recordings are considered in the
calculations of the amount of overestimated/underestimated energy and their percentages.
Therefore, in some cases, there are higher percentages of overestimated/underestimated
energy while their absolute values are lower, and vice versa, since different methods
may have different time stamps for overestimated/underestimated energy. The results
obtained by both conventional Fourier transform Equation (1) and the proposed FSR
method provide accurate estimations for mean values, and their total errors are zero.
However, the proposed FSR method has lower MAE, RMSE, and absolute overestimated
and underestimated energy values.

Table 1. Comparison of errors of time series reconstruction using conventional Fourier transform (“Conv. Fourier”) and
proposed Fourier series regression (“Proposed FSR”) for the same day in Figure 3.

Temperature
Reconstruction

MAE
[◦C]

RMSE
[◦C]

Demand
Reconstruction MAE [W] RMSE

[W]
EO

[Wh] EO [%] EU
[Wh] EU [%] ET

[Wh] ET [%]

Conv. Fourier 0.901 1.182 Conv. Fourier 253.281 383.512 3039.368 24.736 3039.368 26.850 0.000 0.000
Proposed FSR 0.506 0.652 Proposed FSR 233.751 347.824 2805.014 25.009 2805.014 22.638 0.000 0.000

Similarly, the results for the total demand and temperature recordings of the MV level
datasets are shown in Figure 4, while Table 2 shows the comparisons between the proposed
method and the conventional Fourier transform.
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Figure 4. Results of the proposed Fourier series regression results on MV level dataset (Monday, 6 February 2012) for
load and temperature recordings: (a) half-daily, (b) daily, (c) 5-daily, (d) weekly, (e) monthly, (f) seasonal, (g) annual, (h)
re-estimated DC component, (i) magnitudes of demand frequency components, (j) phase angles of demand frequency
components, (k) magnitudes of temperature frequency components, (l) phase angles of temperature frequency components,
(m) reconstruction of non-disaggregated demand and temperature daily profiles using considered frequency components;
(n) reconstruction of non-disaggregated demand and temperature daily profiles using conventional Fourier transform.

Table 2. Comparison of errors of time series reconstruction using conventional Fourier transform (“Conv. Fourier”) and
proposed Fourier series regression (“Proposed FSR”) for the same day in Figure 4.

Temperature
Reconstruction

MAE
[◦C]

RMSE
[◦C]

Demand
Reconstruction

MAE
[MW]

RMSE
[MW]

EO
[MWh]

EO
[%]

EU
[MWh]

EU
[%]

ET
[MWh]

ET
[%]

Conv. Fourier 1.085 1.287 Conv. Fourier 1.766 2.427 21.192 5.131 21.192 5.806 0.000 0.000
Proposed FSR 0.464 0.567 Proposed FSR 1.447 1.768 17.361 4.507 17.361 4.419 0.000 0.000

The same Fourier series regression method is applied to analyse the total load and
solar irradiance time series, as shown in examples in Figures 5 and 6, with Tables 3 and 4
listing the comparison between the FSR method and the conventional Fourier transform.
The presented results suggest that the proposed FSR method can reconstruct the original
demand more accurately than the conventional Fourier transform, while also providing
more informative results for the considered frequency components of interest.

Table 3. Comparison of errors of time series reconstruction using conventional Fourier transform (“Conv. Fourier”) and
proposed Fourier series regression (“Proposed FSR”) for the same day in Figure 5.

Solar Irradiance
Reconstruction

MAE
[W/m2]

RMSE
[W/m2]

Demand
Reconstruction

MAE
[W]

RMSE
[W]

EO
[Wh]

EO
[%]

EU
[Wh]

EU
[%]

ET
[Wh]

ET
[%]

Conv. Fourier 121.469 131.259 Conv. Fourier 117.872 160.147 1414.469 41.507 1414.469 33.464 0.000 0.000
Proposed FSR 15.713 19.009 Proposed FSR 110.304 155.998 1323.643 39.530 1323.643 30.881 0.000 0.000
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Figure 5. Results of the proposed Fourier series regression results on UK-DALE (Monday, 11 January 2016) for load and 
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estimated DC component, (i) magnitudes of demand frequency components, (j) phase angles of demand frequency com-
ponents, (k) magnitudes of solar irradiance frequency components, (l) phase angles of solar irradiance frequency compo-
nents, (m) reconstruction of non-disaggregated demand and solar irradiance daily profiles using considered frequency 
components; (n) reconstruction of non-disaggregated demand and solar irradiance daily profiles using conventional Fou-
rier transform. 

Table 4. Comparison of errors of time series reconstruction using conventional Fourier transform (“Conv. Fourier”) and 
proposed Fourier series regression (“Proposed FSR”) for the same day in Figure 6. 
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Figure 5. Results of the proposed Fourier series regression results on UK-DALE (Monday, 11 January 2016) for load and solar
irradiance recordings: (a) half-daily, (b) daily, (c) 5-daily, (d) weekly, (e) monthly, (f) seasonal, (g) annual, (h) re-estimated
DC component, (i) magnitudes of demand frequency components, (j) phase angles of demand frequency components,
(k) magnitudes of solar irradiance frequency components, (l) phase angles of solar irradiance frequency components, (m)
reconstruction of non-disaggregated demand and solar irradiance daily profiles using considered frequency components;
(n) reconstruction of non-disaggregated demand and solar irradiance daily profiles using conventional Fourier transform.
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From the previous frequency component disaggregation results, it is clear that for a 

particular day, Di, the correlations between the total demand and temperature/solar irra-
diance are different for different frequency components. As the non-disaggregated total 
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and lighting load and assuming that the heating load and lighting load are strongly neg-
atively correlated with the temperature and solar irradiance, respectively, then disaggre-
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Figure 6. Results of the proposed Fourier series regression results on MV level dataset (Monday, 6 February 2012) for load
and solar irradiance recordings: (a) half-daily, (b) daily, (c) 5-daily, (d) weekly, (e) monthly, (f) seasonal, (g) annual, (h)
re-estimated DC component, (i) magnitudes of demand frequency components, (j) phase angles of demand frequency
components, (k) magnitudes of solar irradiance frequency components, (l) phase angles of solar irradiance frequency
components, (m) reconstruction of non-disaggregated demand and solar irradiance daily profiles using considered frequency
components; (n) reconstruction of non-disaggregated demand and solar irradiance daily profiles using conventional Fourier
transform.

Table 4. Comparison of errors of time series reconstruction using conventional Fourier transform (“Conv. Fourier”) and
proposed Fourier series regression (“Proposed FSR”) for the same day in Figure 6.

Solar Irradiance
Reconstruction

MAE
[W/m2]

RMSE
[W/m2]

Demand
Reconstruction

MAE
[MW]

RMSE
[MW]

EO
[MWh]

EO
[%]

EU
[MWh]

EU
[%]

ET
[MWh]

ET
[%]

Conv. Fourier 43.117 51.570 Conv. Fourier 1.766 2.427 21.192 5.131 21.192 5.806 0.000 0.000
Proposed FSR 27.481 31.472 Proposed FSR 1.447 1.768 17.361 4.507 17.361 4.419 0.000 0.000
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2.3. Extraction of the Strongly Correlated Components

From the previous frequency component disaggregation results, it is clear that for
a particular day, Di, the correlations between the total demand and temperature/solar
irradiance are different for different frequency components. As the non-disaggregated
total demand consists of the contributions of different types of the load, including heating
load and lighting load and assuming that the heating load and lighting load are strongly
negatively correlated with the temperature and solar irradiance, respectively, then disag-
gregated frequency components of the total demand with such strong negative correlations
should contain a significant part of heating and lighting load. In other words, frequency
components with strong negative correlations should help in the identification of heat-
ing and lighting loads. Accordingly, the further text is related to the analysis of these
correlations.

The two most common metrics for correlational analysis are Pearson and Spearman
correlation coefficients. As Pearson coefficient is a measure of linear correlation, this
paper uses the Spearman coefficient, ρ, which can capture non-linear dependencies [30]
to calculate and compare the correlations between total demand and temperature/solar
irradiance:

ρ =
cov
(
rx, ry

)
σrx σry

(4)

where: rx and ry are the ranks of the two analysed data/time series, respectively; cov(·)
means covariance and σ represents the standard deviation. For the example results shown
in Figures 3–6, the Spearman correlation coefficients between the measured demand and
temperature/solar irradiance time series on the considered days are calculated as 0.2323,
−0.0579, 0.1791, and 0.1168, respectively. Note that the longer-term frequency components
(with lower than daily frequencies) are obtained by extended observation windows, but
only the considered/first days of longer windows are used in the calculations. The results
for the correlational analysis of considered frequency components for the same days
in Figures 3–6 are presented in Table 5, where bold values indicate stronger negative
correlations. Since the original time series and the FSR results may be quite different on
various days/datasets, and one identified more negatively correlated frequency component
may be different or may even increase the positive correlation on the other days, it is
important to analyse every individual day and dataset separately.

Table 5. Spearman correlation coefficients between the frequency components of total load and
temperature/solar irradiance in Figures 3–6 (Di only).

Half
Daily Daily 5 Days’ Weekly Monthly Seasonal Annual

Figure 3 −0.3677 0.8849 1.0000 −1.0000 1.0000 −1.0000 −1.0000
Figure 4 −0.9145 0.5363 0.2553 −1.0000 −1.0000 −1.0000 −1.0000
Figure 5 −0.4814 0.4251 0.9946 −0.7414 −1.0000 −1.0000 1.0000
Figure 6 −0.4816 0.3672 −0.2561 1.0000 1.0000 −1.0000 −1.0000

Summing up frequency components with stronger negative correlations (the DC com-
ponents are the same, as if using all frequency components) on the considered day will
result in a new time series, whose characteristics, e.g., increasing or decreasing trends,
can imply the changes in heating and lighting loads, with example results shown in
Figures 7 and 8. Although the reconstructed daily load profiles are not as accurate as if
all considered frequency components are used (e.g., these with positive correlations), the
Spearman correlation coefficients between the time series reconstructions using the combi-
nation of the selected frequency components with negative correlations are now −0.2210,
−0.9679, −0.4798 and −0.4568 in Figure 7a,b, Figure 8a,b, respectively, i.e., all feature
stronger negative correlations compared to the results using original/measured daily time
series (i.e., 0.2323, −0.0579, 0.1791 and 0.1168). As the starting assumption/hypothesis is
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that the combination of the selected demand frequency components with stronger negative
correlations with temperature and solar irradiance will contain significant portions of the
heating and lighting loads, respectively, the new time series of these negatively correlated
frequency components are used as additional information for the heating and lighting load
disaggregation models presented in the next section.
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3. Neural Network Load Disaggregation Model

This section presents the load disaggregation model used in this paper, which is a neu-
ral network (NN) model, combining two widely used NN approaches: (1) recurrent neural
network (RNN); and (2) convolutional neural network (CNN). However, before entering
the time series predictor variables into the model, the frequency domain information is
firstly extracted and analysed, following the Fourier series regression method in Section 2.
The NN model utilises the embedded patterns from both the time domain and frequency
domain, and it provides the final estimations for the disaggregated load. In addition, since
hyperparameters of the NN model usually have a strong impact on the performance, but
their optimal values are not known a priori, Bayesian optimisation is used to guide the
tuning of the model hyperparameters.



Energies 2021, 14, 4831 15 of 24

In available datasets, AMPds2 has actual measurements for total load and heating
load, while UK-DALE has measurements for total load and lighting load. Therefore, these
two datasets are used to test the load disaggregation NN model. Each dataset is divided
into training, validation, and test sub-sets. More specifically, in AMPds2, the measurements
between 23 February 2014 and 31 March 2014 are used as test sub-set, and in UK-DALE,
the recordings between 5 January 2016 and 17 March 2016 are used as test sub-set. For both
datasets, the rest of the available data are used as the training and validation sub-sets, in
the ratio of 90% to 10%.

The inputs of the NN models are (1) daily time series of the total active and reactive
power demands; (2) synchronous daily time series of temperature and solar irradiance;
(3) corresponding time and calendar variables, including month, day of the week, holiday
indicator (Boolean variable) and daylight-saving time indicator (Boolean variable); and
(4) synchronous daily time series of combinations of more negatively correlated frequency
components of demand, temperature, and solar irradiance. All individual input features
are treated as column vectors, i.e., columns that form the input data matrix. Adding of any
additional predictor variable (e.g., synchronous combinations of more negatively correlated
frequency components) is simply performed by appending a new column to the existing
input matrix. The outputs of the load disaggregation models are heating load profile and
lighting load profile on the considered day, which is the same day as the inputs for AMPds2
and UK-DALE, respectively. All continuous features are linearly scaled to a range between
0 and 1, and all categorical features are transformed using one-hot encoder [23].

3.1. CNN-BiLSTM Load Disaggregation Model

A convolutional neural network is a type of deep learning model commonly used
in image processing and computer vision applications. Compared to a more general NN
model architecture, e.g., a multilayer perceptron (MLP), CNN is less prone to overfitting
issues, as it does not use simple full-connections, but it embeds the complex data patterns
into the smaller and simpler filters through the convolution [31]. The convolution operation
is performed by a convolution matrix, i.e., kernel, which dot-multiplies the target matrix
from which the features are extracted as:

f m(i, j) = km ∗ tm(i, j) =
∆imax

∑
∆i=∆imin

∆jmax

∑
∆j=∆jmin

km(∆i, ∆j)gm(i + ∆i, j + ∆j) (5)

where: gm is the target matrix, km is the kernel matrix, and fm is the filtered matrix
after convolution; i and j are the row and column indices of the matrix, and ∆i and ∆j
indicate the shifting along the row and column of the matrix, respectively. In terms of
time series, the convolution operation is performed along the temporal dimension (a single
dimension), which is effectively a 1D convolution, and ReLu (rectified linear unit) is used
as the activation function [32].

In regression problems, RNN models, which are a type of deep learning models
specialised for data sequences, are widely researched, and reported to achieve satisfactory
accuracy. Unlike the MLP, the RNN is designed to have an internal state, where both the
previous internal state and the current predictors are inputted into the RNN cell to produce
the current output. The recursively updated internal state makes the RNN capable of
memorisation.

When handling the long time series, however, naïve RNN methods tend to have other
issues, such as “gradient vanishing” and “gradient exploding” in the backpropagation [33].
To overcome these problems, a long short-term memory (LSTM) method is developed, as
it is relatively insensitive to gap lengths between the important sequence events in time
series data [34]. Accordingly, every cell in the LSTM has three gates to control whether
to remember, or to forget certain information, and whether to output it in each recursion.
These three gates are trained, so that LSTM could remember important information and
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forget the irrelevant one, even in case of a long sequence. A general architecture of the
LSTM cell is illustrated in Figure 9.
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In Figure 9, st is the current input, and ht is the current output of the LSTM cell. State
c (ct) is the cell state that changes extremely slow, and in most cases, it is very similar to the
previous cell state (ct−1). State h (ht) stands for the hidden state, which varies a lot in the
recursion and usually depends on both the current input and previous hidden state (ht−1).
The computation can be summarised as:

ft = σ
(

W f · [ht−1, st] + b f

)
(6)


it = σ(Wi · [ht−1, st] + bi)
zt = tanh(Wz · [ht−1, st] + bz)
ct = ft × ct−1 + it × zt

(7)

{
ot = σ(Wo · [ht−1, st] + bo)
ht = ot × tanh(ct)

(8)

where: Wf, Wi, Wz, Wo are weights parameters and bf, bi, bz, and bo are bias parameters of
the LSTM cell; f t is the forget gate with ht−1 and st as inputs and it is activated by a sigmoid
activation function σ; the remember gate signal i is also activated by a sigmoid activation
function and another candidate vector z is activated by tanh function; the output gate
signal ot again has a sigmoid activation and uses ht−1 and st the inputs. A more detailed
discussion of LSTM cells can be found in [34]. The original LSTM architecture has only one
direction and a bidirectional structure is firstly introduced in [35], to allow the signal to
travel in both forward and backward directions. This is denoted as a bidirectional LSTM
(BiLSTM) method, which could further reduce the errors.

As previously mentioned, deep learning and BiLSTM models are increasingly used
for load disaggregation, as they can process long time series of data with complex patterns
and identify target load profiles. As these models are often approached as “black box”
modelling methods, the CNN-BiLSTM model proposed in this paper uses FSR-based
frequency component decomposition as the additional explanatory variable/feature, in
order to provide more accurate load disaggregation.

In the proposed CNN-BiLSTM load disaggregation model, the features in the predic-
tors are firstly extracted with the CNN architecture, and outputs are padded with zeros
evenly to the left and right, so that they have the same width dimension as the inputs before
they enter into the two stacked layers of BiLSTM. As discussed, the convolution operation
could reduce the variation in the input feature, which will then increase the temporal
learning accuracy of the BiLSTM model [36]. Every layer is followed by a dropout layer
to increase the generalisation ability and reduce overfitting, which refers to the random
dropping-out of hidden and visible neurons in a certain layer [37]. The architecture of
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the CNN-BiLSTM is depicted in Figure 10, which also shows the hyperparameters (HPs)
within the topology, which will be disused/optimised further in Section 3.2.
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3.2. Tuning of Model Hyperparameter: Bayesian Optimisation (BO)

The optimal values of the NN model parameters are usually unknown and may
change in different cases, even with only a small difference in the available training set.
Furthermore, the final results may also be sensitive to the selected hyperparameters. As
the hyperparameters cannot be optimised through the training process, an optimisation
algorithm should be implemented. In this paper, Adam optimiser [38]) is used to find the
best model (hyper)parameters (i.e., weight and bias values for every neuron) minimising
the error function, since they are fixed once the NN model is instantiated. There are many
types of hyperparameters in the proposed CNN-BiLSTM model, including the number of
neurons (neuron_num) for trainable layers (CNN and BiLSTM), size of the kernel in CNN
(kernel_size), and dropout rates for the dropout layer (dropout_rate), which represents the
probability of dropout for the neurons in the previous layer. In addition, the learning rate
for Adam optimiser (Adam learning rate) is also one of the model hyperparameters.

Random search or brute force looping for the combinations of different hyperpa-
rameter values can find the most appropriate hyperparameters in theory, but it requires
significant computational times, since it does not use the information of previous trials and
due to the “curse of dimensionality”. Instead, Bayesian optimisation (BO) is used, which is
a heuristic searching method that uses the Gaussian process (GP) as a surrogate model and
provides an exploitation-exploration trade-off through an acquisition function [39].

For the NN model hyperparameters denoted as x, and for the task of searching the best
x for the NN model denoted as f (x), where f (·) is an objective/cost black box function, its
evaluation requires actual training and validation of the NN model, and the optimisation
is to find x = argmaxx(f (x)). From the view of Bayesian optimisation, f (·) can be described
as a Gaussian process, i.e., a distribution over functions y = f (x)~GP, appreciating the
uncertainty, which can be formulated as:

P(yt+1|D1:t, xt+1) = N
(

µt(xt+1), σ2
t (xt+1)

)
(9)

µt(xt+1) = kTK−1y1:t (10)

σ2
t (xt+1) = k(xt+1, xt+1)− kTK−1k (11)
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K =


k(x1, x1) k(x1, x2) . . . k(x1, xt)
k(x2, x1) k(x2, x2) . . . k(x2, xt)

...
...

. . .
...

k(xt, x1) k(xt, x2) . . . k(xt, xt)

 (12)

k =
[

k(xt+1, x1) k(xt+1, x2) . . . k(xt+1, xt)
]T (13)

where: P(yt+1|D1:t, xt+1) is the posterior GP given observations D1:t = ((x1, y1), (x2, y2), . . . ,
(xt, yt)) and xt+1. Mt(·) and σt(·) are the mean and variance functions, respectively; k(·) is
the kernel function modelling the dependence among GP random variables, and K is the
kernel matrix (i.e., covariance matrix), which should be positive definite. The choice of the
kernel is not a trivial problem, as it determines almost all generalisation properties of a GP.
Commonly used kernel functions include squared exponential kernel, rational quadratic
kernel, and matern kernel (used in this paper), while further discussions and comparisons
can be found in [39]. The next trial of hyperparameters, xt+1, is desired to lead to yt+1 =
f (xt+1) to have both higher mean (exploitation) value and higher variance (exploration).
Since they may not be simultaneously improved, a balance is needed and an additional
criterion considering both µt and σt (known as acquisition function) is required. This paper
selects confidence bounds, UCB(µt, σt), criterion proposed in [40] to determine the next
trial of hyperparameters. In summary, Bayesian optimisation can be described iteratively
for t + 1 trials as:

1. Fit the GP using D1:t = ((x1, y1), (x2, y2), . . . , (xt, yt));
2. Determine xt+1 = argmaxxt+1 (UCB(µt(xt+1), σt(xt+1)));
3. Evaluate yt+1 = f (xt+1);
4. Insert (xt+1, yt+1) into D1:t and obtain D1:t+1.

The BO method is applied to four instances of load disaggregation models separately
and run 32 times each, which are: (1) AMPds2, heating load disaggregation, without FSR
and correlation analysis results (AMPds2, w/o FR); (2) same as (1), but with FSR and
correlation analysis results (AMPds2, w/FR); 3) UK-DALE, lighting load disaggregation,
without FSR and correlation analysis results (UK-DALE, w/o FR); (4) same as (3), but with
FSR and correlation analysis results (UK-DALE, w/FR). In every trial, the BO is executed
three times and an average of error metrics is used, which can reduce the uncertainty and
variance due to training and obtain a more reliable assessment of the considered settings
of hyperparameters (thus, there are a total of 32 × 3 = 96 times of BO executions for each
model instance). Each BO execution requires a maximum of 25,000 epochs on the training
set, with minimised mean-square error (MSE) as the objective function. It assesses model
performance with current hyperparameter settings on the validation set, which guides the
searching direction of BO, so that the next groups of hyperparameters could potentially
lead to a model with higher accuracy.

The set constraints of hyperparameters and the results of optimisation of hyperparame-
ters by BO for all model instances are listed in Table 6. The constraints format [start:step:stop]
means all values between start (inclusive) and stop (inclusive) with a distance of step, and
the format [ele1, ele2, ele3] represent predefined set of possible values. It can be seen that in
most cases, obtained optimised hyperparameters are different for different model instances.
In particular, there are notable differences in the numbers of neurons for the 1D convolution
layer. Even though the neuron numbers for two BiLSTM layers are quite different for two
AMPds2 heating load disaggregation models, the dropout rates of the followed dropout
layers are closer to each other, and similar analysis also applies to UK-DALE lighting load
disaggregation models. For all four model instances, the identified most proper kernel size
in the 1D convolution layer and the learning rate for Adam optimiser are the same, which
are 5 and 0.0005, respectively. The load disaggregation results based on the models with
the optimised hyperparameters are shown and compared in Section 3.3.
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Table 6. Selection of optimal settings of hyperparameters by BO for all load disaggregation models.

Constraints AMPds2, w/o FR AMPds2, w/FR UK-DALE, w/o FR UK-DALE, w/FR

Neuron-num-1 (8:1:16) 13 8 9 12
Kernel-size-1 (3:2:7) 5 5 5 5

Dropout-rate-1 (0.05:0.05:0.5) 0.2 0.15 0.25 0.4
Neuron-num-2 (48:8:128) 88 120 80 56
Dropout-rate-2 (0.05:0.05:0.5) 0.45 0.45 0.3 0.3
Neuron-num-3 (48:8:128) 64 80 128 120
Dropout-rate-3 (0.05:0.05:0.5) 0.2 0.2 0.1 0.35

Adam learning rate (0.0005, 0.001, 0.005) 0.0005 0.0005 0.0005 0.005

3.3. Load Disaggregation Results and the Benefits of Using Fourier Series Regression

As in previous comparisons of errors of time series reconstruction using conventional
Fourier transform and proposed Fourier series regression (see Tables 1–4), the same error
metrics are used to assess the load disaggregation models. The example results of load
disaggregation for AMPds2 and UK-DALE are shown in Figure 11, which are for the same
days as in Figures 3 and 6a (Monday, 24 March 2014) and Figures 5 and 8a (Monday, 11
January 2016), respectively. Figure 12 shows the results for the two corresponding weeks.
Tables 7 and 8 show calculated error indices for these days/weeks, while Table 9 shows the
overall model performance on the whole test set. In all comparisons, the results obtained by
the proposed frequency component-based CNN-BiLSTM model (denoted as “NN w/FR”)
are compared with a naïve CNN-BiLSTM model (without frequency components, denoted
as “NN w/o FR”) and additionally benchmarked against two other commonly used NILM
models from [41]: combinatorial optimisation (CO) and factorial hidden Markov model
(FHMM) algorithms (more detailed discussions about CO ad FHMM can be found in [41]).
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From examples in Figure 11, it is clear that the use of frequency components from
the FSR-stage as additional predictors in the load disaggregation model can increase the
accuracy of the estimations for both heating and lighting loads. Specifically, in the example
of AMPds2, the identified more negatively correlated frequency components of demand
capture peak during the morning time (Figure 7a), and this pattern helps the CNN-BiLSTM
model to assign more attention and weight to this period, thus leading to a more precise
capture of the heating load in this period (Figure 11a). Similar comparisons can be made
between Figures 8a and 11b for the lighting load disaggregation from the UK-DALE dataset,
wherein this case lighting load has been more accurately estimated in the model with FSR
results. In Figure 12, the weekly results for the CNN-BiLSTM model with correlated
frequency components are consistently better than the results without them.

The calculated error indices in Tables 7–9 also demonstrate the benefits of using
correlated frequency components, as these results have lower MAE and RMSE values
for the example days, weeks, and in the whole test sets. In terms of the energy-based
errors, although the overestimated and underestimated energy consumptions may not be
simultaneously improved, the total energy estimations are generally better. There are some
exceptions, e.g., in the week and whole test set comparisons for UK-DALE, where ET is
seemingly worse if correlated frequency components are used, than if they are not used.
This is because the EO and EU values increase or decrease by different levels, so the relative
difference between them may be larger; in the weekly and whole test sets, the absolute (and
percentage) EO and EU values are typically lower than in the cases when the correlated
frequency components are not used.

The errors of the two NN models (frequency component-based CNN-BiLSTM model
and naïve CNN-BiLSTM model) are all much smaller than the errors of CO and FHMM,
used for benchmarking. The CO and FHMM seemingly correctly capture the phases of both
morning and evening peaks, but the overall accuracy is not satisfactory. One reason is that
both algorithms only consider the correlations between the total demand and individual
appliances. Additionally, the performance of the CO model is impacted by treatment of
each timestamp independently. However, both the CO and FHMM may perform better in
the case of multiple appliance disaggregation, as they can analyse the combined demand of
individual appliances. The CO usually contains a set of individual appliance models and
aims to minimise the difference between the sum of estimations of all appliance demands
and observed aggregated total demand. In FHMM, the separate appliances are also jointly
considered, where each disaggregated load is modelled through one HMM and a hidden
component of the HMM is the state of the individual appliance. In that way, all HMMs are
combined to form one FHMM (or an equivalent HMM) in the final model to estimate the
demand of all appliances.

All models are implemented using Python 3.8.5 and NumPy 1.8.5. The FSR-based
decomposition and correlational analysis are built on Scikit-learn 0.23.2 and SciPy 1.5.4. The
Bayesian optimisations and final CNN-BiLSTM models are implemented with KerasTuner
1.0.2 and TensorFlow 2.4.1, respectively. The CO and FHMM models are obtained from
NILMTK 0.4.0. All calculations are done on a desktop running Microsoft Windows 10 21H1
operating system, with AMD Ryzen 1800X CPU, Nvidia GTX 1080ti GPU, and 32GB DDR4
RAM. The training times of all models are summarised and compared in Table 10. The
computational time for BO is very long, since there are 96 times of BO executions in each
case. The required times for BO and CNN-BiLSTM are given within square brackets, where
the first number is related to the case where the FSR results are not used as an additional
predictor, while the second number indicates the case where the model was run with the
FSR results. It can be seen that considering the frequency domain information can also
reduce the computation time in most cases.
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Table 10. Comparison of training time for all models.

FSR
(Minute) BO (Minute) CNN-BiLSTM

(Minute)
CO

(Second)
FHMM

(Second)

MV level dataset 59 - - - -
AMPds 2 15 (1097, 934) (15, 14) 5.4 5.1
UK-DALE 31 (1230, 750) (6, 12) 12.1 11.8

4. Conclusions

This paper introduces a novel Fourier series regression method to extract selected
frequency components (half-daily, daily, 2-daily, 5-daily, weekly, monthly, seasonal, and an-
nual) from periodically changing non-disaggregated time series of active power demands,
temperature, and solar irradiance. The presented method is illustrated on the three study
cases with actually measured demands, corresponding to two household-level and one
network substation-level datasets. The reconstructions by selected frequency components
show that the original time series can be reasonably accurately represented, i.e., that the
selected frequency components preserve the information on the total demand.

Afterwards, the paper presents the analysis of the correlations between different
frequency components and demonstrates that specific individual frequency components of
demands, temperature, and solar irradiance have stronger negative correlations than the
original non-disaggregated time series. As the heating and lighting loads are expected to
exhibit strong negative correlations with temperature and solar irradiance, the stronger
negatively correlated frequency components are combined and used as the additional
explanatory variables, i.e., as an additional feature of the CNN-BiLSTM load disaggregation
model. The obtained results and comparisons demonstrate that the CNN-BiLSTM model
in which correlated frequency components are used as the additional explanatory variables
is more accurate for load disaggregation than the conventional/naïve CNN-BiLSTM model
without frequency components (“black box model”).

The presented CNN-BiLSTM model adopts Bayesian optimisation to select the most
appropriate hyperparameters for the four separate load disaggregation models, showing
that the heating and lighting load are identified with higher accuracy when the correlated
frequency components are used as the additional information during the disaggregation.
The presented frequency component-based CNN-BiLSTM model is additionally bench-
marked against two other-widely used NILM models (CO and FHMM), which both achieve
lower accuracy of the load disaggregation than the presented model.

The methodologies and results presented in this paper are related to an initial investi-
gation of the benefits of using correlated frequency components for load disaggregation.
Further possible applications include, among the others, implementation in load forecast-
ing studies and identification of the individual contributions from the load and distributed
generation to the resulting/combined power flows when they are not separately metered.
These are subjects of the current work by the authors.
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