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Abstract: Bi-Fe oxides are stable materials with potential photocatalytic activity under solar light
photons. So far, however the photocatalytic potential of pure-phase nanosized mullite-Bi2Fe4O9

has not been studied. Usually, synthesis of pure-phase nanosized mullite-Bi2Fe4O9 is hampered
by co-formation with perovskite BiFeO3. Herein we demonstrate that pure-phase mullite-Bi2Fe4O9

nanoparticles prepared by Flame Spray Pyrolysis (FSP) technology are highly efficient O2 production
photocatalysts, achieving >1500 µmol g−1h−1. This outperforms all -so far reported- O2 production
Bi-Fe-O photocatalysts. We present an FSP-based process for production of a versatile Bi-Fe-O
platform, that can be easily optimized to obtain 100% mullite-Bi2Fe4O9 or 100% perovskite-BiFeO3 or
their heterojunctions. The phase-evolution of the Bi-Fe-O materials has been studied by XPS, Raman,
and EPR spectroscopies. Short post-FSP annealing process impacts the photoactivity of the BiFeO3

and Bi2Fe4O9 in distinct ways. Fe2+ centers in BiFeO3 can improve dramatically its O2 production
efficiency, while solid-melt formation in Bi2Fe4O9 is a limiting factor.

Keywords: Flame Spray Pyrolysis; photocatalysis; Bismuth Iron Oxide; mullite; perovskite; oxygen
evolution reaction; defects

1. Introduction

Exploitation of solar photons via photocatalysis is an established green technology
approach [1]. Achievement of efficient photocatalytic oxygen evolution reaction (OER)
using H2O as substrate is a challenging task [2,3]. In this context, bismuth-based nano
photocatalysts, such as BiVO4 [4,5] and Bi2WO6 [6] have emerged as promising Bi-based
materials for OER. Recently, BiFeO3 has been demonstrated as a potent O2 evolving
photocatalyst [7,8]. More generally, the perovskite-BiFeO3 phase is renowned for its
multiferroic attributes, which possess simultaneously ferroelectric and magnetic order
properties [9]. Its small band-gap in the range of 2.1–2.8 eV [10] renders BiFeO3 visible-
light active [7,8]. Interestingly, the mullite-phase Bi2Fe4O9 has also a bandgap in the
visible photons range of 2.1–2.3 eV [11]. In general, Bi-Fe oxides are stable materials, as
exemplified for BiFeO3 under photocatalytic conditions [12]. However, the efficiency of
mullite-Bi2Fe4O9 for photocatalytic O2 production from H2O has not been assessed so far.

On the other hand, both BiFeO3 and Bi2Fe4O9 materials have been reported to achieve
satisfactory photocatalytic degradation of organic pollutants, such as methylene blue
(MB), Rhodamine Blue (RhB) [13,14], and Bisphenol-A [15]. Yang et al. [16] have reported
[BiFeO3/Bi2Fe4O9] heterostructures with enhanced RhB photodegradation, which was at-
tributed to the alignment of their conduction and valence bands. Recently, Zhang et al. [17]
reported photocatalytic water-splitting by BiFeO3, while Humayun et al. [18] have reported
a porous BiFeO3/TiO2 nanohybrid with enhanced H2 production performance.
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Recently, we have developed a Flame Spray Pyrolysis (FSP) process for the synthesis
of BiFeO3 and Bi2Fe4O9 nanomaterials [19] which could be adjusted to consist of 100%
BiFeO3 nanophase or 100% Bi2Fe4O9 as well as the mixed-phase heterojunction BiFeO3:
Bi2Fe4O9.

In the present work, the FSP-made Bismuth Iron Oxide (BFO) nanophases were
optimized for enhanced photocatalytic O2-evolution from H2O. Our research revealed
that post-FSP annealing has a profound impact on the optimal OER-efficiency of the
FSP-made BFO nanophases. To understand the underlying mechanisms we have used
a combination of XRD, XPS, Raman, and EPR spectroscopies for a comprehensive study
of the OER efficiency vs. the lattice and electronic configuration of BFO materials. Our
strategy was based on two steps: first, the use of FSP for controllable synthesis of the pure
BFO nanophases i.e., 100% BiFeO3 or 100% Bi2Fe4O9 as reported in our recent work [19].
For completeness, a mixed-phase 50/50 BiFeO3/Bi2Fe4O9 was also prepared. Second,
each BFO nanophase was annealed under O2-atmosphere for various short-periods and
temperatures. As we show herein, these post-FSP annealing protocols, even for a very short
time such as 30-min, impact the photoactivity of the BiFeO3 and Bi2Fe4O9 in distinct ways.
Fe2+-centers formed in BiFeO3 can improve dramatically its O2 production efficiency. On
the other hand, Bi2Fe4O9 was sensitive to solid-melt formation, which was a limiting factor
in its photoactivity. Technology-wise, the present work shows that by diligent control of
the FSP parameters combined with short post-FSP annealing, can take advantage of the
versatility of FSP for scalable production of nanomaterials with controlled phase/size and
defects [20,21] to achieve highly efficient O2 evolving photocatalyst. Moreover, the present
research data reveal -for the first time in literature- that the optimized mullite-Bi2Fe4O9
phase is a highly efficient O2 evolving photocatalyst over performing BiFeO3. Together
with quantum chemical calculations, we use EPR and XPS data to analyze the underlying
mechanism which relates the energy level profile of the BFO phases with the h+ efficiency
in O2 production from H2O.

2. Materials and Methods
2.1. Flame Spray Pyrolysis (FSP) Synthesis of Nanocatalysts

The BFO nanomaterials were produced in a single-nozzle FSP reactor [19]. In brief,
the stock solutions contained Fe(III) acetylacetonate (97% Aldrich, St. Louis, MO, USA)
dissolved in xylene, and Bismuth(III) acetate (99.99% Aldrich) dissolved in 2-Ethylhexanoic
acid (EHA). The precursor solution for production of BiFeO3 phase had a molar ratio
of [Fe] = 0.1 M, and [Bi] = 0.1 M, while for production of Bi2Fe4O9 phase we have
used [Fe] = 0.134 M, [Bi] =0.066 M. In all cases, the total metal concentration was set
to [Fe] + [Bi] = 0.2 M and the solvents [xylene:EHA] volume ratio was (1:1). The parame-
ters of the FSP process consisted of a precursor flow rate of 3 mLmin−1 and a dispersion
oxygen flow rate of 7 Lmin−1 (Linde 99.999%). The flame was enclosed with two metallic
tubes of a total 44 cm height. With the assistance of a vacuum pump (Busch, Maulburg,
Germany), the produced particles were deposited on a glass microfiber filter with a binder
(Albet Labscience, Hahnemuehle, Dasen, Germany, GF 6 257) and collected by scraping the
powder from the filter. The produced nano photocatalysts were stored in glass vials under
an inert Argon atmosphere, until use.

Post-FSP annealing: Post-FSP annealing was performed in a Thermawatt furnace,
(Thermawatt, Athens, Greece) where a standard mass of 100 mg of nanomaterial was
inserted in the tubular compartment under atmospheric O2. We found that nano-BFO [19]
phase-transitions occur at temperatures ~130 ◦C lower than in bulk BFO [22]. Herein
after several screening experiments, we have found that post-FSP periods of tanneal = 5
to 120 min and Tanneal = 550–700 ◦C values allowed us to span the appropriate phase-
transitions in conjunction with the photocatalytic performance. Based on this, we discuss in
detail tanneal = 5, 30, 60, 120 min since these provide the full O2 performance variation, i.e.,
tanneal = 5 min was best for photocatalytic performance of BiFeO3 while tanneal = 60 min
was best for photocatalytic performance of Bi2Fe4O9.
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2.2. Characterization of the Nanomaterials
2.2.1. Material Morphology

Powder X-ray Diffraction (pXRD) was carried out on a D8 Advance Bruker diffrac-
tometer with a Cu source (Kα, λ = 1.5418 Å), with operation parameters to be 40 mA current
and 40 KV generator voltage. All structural parameters obtained from the pXRD data were
calculated via Rietveld analysis using the Profex software, to determine the percentage of
the BiFeO3/Bi2Fe4O9 crystal-phases for each BFO material.

Transmission Electron Microscopy (TEM) images were taken with a JEOL JEM-2100
electron microscope equipped with a LaB6 filament, operating at 200 kV accelerating voltage.

N2-Adsorption-desorption Brunauer–Emmett–Teller (BET) adsorption-desorption
isotherms were recorded at 77 K using a Quantachrome NOVA touch LX2. Outgassing was
performed at 150 ◦C for 16 h under vacuum. The absorption points in the relative pressure
P/Po range of 0.1–0.3 were used to calculate the specific surface area (SSA). The absorption
data points in the P/Po range = 0.35–0.99 were used for the pore radius analysis by the
BJH method, while the total pore volume was obtained at the P/Po = 0.99 data point. The
complete adsorption-desorption isotherm data are in Figure S1.

2.2.2. Optical Spectroscopy

Diffuse-Reflectance UV-Vis spectra (DRS-UV/Vis) were recorded with a Perkin Elmer
Lambda-35 spectrometer, operating at room temperature, using BaSO4 powder as a back-
ground standard.

Fourier Transformed Infrared (FTIR) spectra were collected using an-IR Nicolet
IS5 system equipped with the OMNIC software package, in the wavenumber range
400–4000 cm−1, for materials dispersed in KBr pellets.

Raman HORIBA-Xplora Plus spectrometer, equipped with an Olympus BX41 micro-
scope was used to record Raman spectra. A 785 nm diode laser was used as an excitation
source, and the laser beam was focused on the sample with the microscope. Before measure-
ment, each powder material was softly pressed between two glass plates to form a pellet. A
laser intensity of 15 mW was used, we found after trial-and-error that at this low-intensity,
the crystal phase remained unchanged. Typically, good signal-to-noise Raman spectra were
recorded for 15 accumulations at 30 s.

X-ray photoelectron spectroscopy (XPS) spectra were collected using a SPECS spec-
trometer equipped with a twin Al-Mg anode X-ray source and a multi-channel hemispheri-
cal sector electron analyzer (HSA-Phoibos 100). The base-pressure at the measurement was
2–5× 10−9 mbar. In all experiments, the monochromatized Mg Kα line was set at 1253.6 eV,
and the analyzer pass-energy at 20 eV. The binding energies were calculated vs. the en-
ergy of C1s carbon peak at 284.5 eV. The peak deconvolution for the Shirley background
and peak deconvolution was performed employing mixed Gaussian–Lorentzian functions
in the least-squares curve-fitting, using WinSpec software, developed at the Laboratoire
Interdisciplinaire de Spectroscopie Electronique, University of Namur, Belgium.

2.2.3. Theoretical Modeling (DFT) Calculations

Theoretical calculations were conducted for the BiFeO3-R3C [23] and Bi2Fe4O9-Pbam
structures [24], using DFT as implemented in the Quantum Espresso software [25]. The
projector augmented-wave (PAW) method was used to describe the core pseudopotential
and the generalized gradient approximation (GGA) as simplified by Perdew, Burke, and
Ernzerhof (PBE) and it was used for exchange-correlation effects. Pseudopotentials con-
taining 15 valence electrons were used for Bi (5d10,6s2,6p3), 16 valence electrons for Fe
(3s2,3p6,3d6,4s2) and 6 valence electrons for O (2s2,2p4). A plane-wave energy cutoff of
70.8 Ry was used for the BiFeO3-R3C structure and the Bi2Fe4O9-Pbam structure. Both struc-
tures were relaxed until the forces acting on each atom were <10−3 eV/Å. For geometry
optimization and electronic structure calculations, (3 × 3 × 3) and (9 × 9 × 9) Monkhorst-
Pack k-point grids were used respectively. Considering the strong correlations in transition
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metal oxides, we used the DFT+U approximation in the approach of Cococcioni and de
Gironcoli [26] with a U-value of 4 eV applied on both structures.

2.3. Photocatalytic O2 and •OH Generation
2.3.1. Electron Paramagnetic Resonance (EPR) Spectroscopy (•OH Generation)

A Bruker ER200D spectrometer equipped with an Agilent 5310A frequency counter
was used, operating at X-band (9.61 GHz). The spectrometer was running under homemade
software based on LabView. In situ illumination of the samples inside the EPR cavity was
performed using a 450 W Xe light lamp (Oriel model 66929), equipped with a 400 nm cut-off
filter. For determination of •OH, the reaction mixture was prepared using 1 mL of ultrapure
Milli-Q water (Millipore, Burlington, MA, USA) contained 0.4 mg of each BFO material and
0.12 mg of HAuCl4•3H2O, or 0.14 mg of H2Pt4Cl6•H2O, which mixed with 2 mM of spin
trap DMPO (5,5-dimethylpyrroline-(2)-oxyl, Aldrich). From this stock suspension, 20 µL
were inserted into glass capillaries. To avoid the interference of sulfate-hydroxyl radicals,
we have recorded EPR spectra without the presence of Na2S2O8. Irradiation was carried
out in-situ at the EPR cavity, for periods from 30 s up to 5 min. Quantitative analysis of the
•OH was done using DPPH (1,1-Diphenyl-2-Picrylhydrazyl, Alfa Aesar, Haverhill, MA,
USA) as a spin standard [27], and the double integral of the EPR signals.

2.3.2. Photocatalytic O2 Evolution Measurements

Experiments were performed into an immersion-well reactor (Photochemical Reactors
Ltd., Reading, UK, Model 3210), a total reaction volume of 300 mL, at temperature 25 ± 3 ◦C
being controlled by tap-water cooling. The light source was a medium-pressure mercury
lamp (Model Oriel 3010, 125 W, total light flux 7 × 1018 photons/s), inserted into the
glass-reactor. This irradiation set-up allowed only radiation with λ > 380 nm photons to
excite the photocatalysts. In each experiment, 50 mg of the catalyst was suspended into
150 mL Milli-Q water which contained 0.1M NaOH (pH~12.8) and 0.02 M Na2S2O8 as
an electron acceptor (final concentration of catalyst 0.33 g/L). Experiments with Pt0, Au0,
or Ag0 were realized using hydrogen hexachloroplatinate (IV) hydrate, (H2Pt4Cl6•H2O,
99.9 %, Alfa Aesar), hydrogen tetrachloro-aurate (III) trihydrate (HAuCl4•3H2O, 99.9 %,
Alfa Aesar), and Silver nitrate (I) (AgNO3, 99.9 %, Sigma Aldrich). In all experiments, the
cocatalytic noble-metal particles were photo deposited in-situ: after the addition of all
compounds in the reactor, an irradiation period of 15 min was necessary to achieve the
in-situ reduction of the Pt, Au, or Ag cations [28].

Before each catalytic run, the suspension was purged with Ar gas (99.9997%) for at least
1 h so as to remove atmospheric gases. Quantitative monitoring of produced O2 was done
via a continuous on-line Gas Chromatography System combined with a Thermo-conductive
Detector (TCD- Shimadzu GC-2014, Carboxen 1000 column, Ar carrier gas).

3. Results
3.1. Structure and Morphology
3.1.1. XRD and TEM Structures

According to XRD, Figure 1A, the material BFO1(5) obtained for Tanneal = 550 ◦C/
tanneal = 5 min material possesses the characteristic XRD peaks of the perovskite structure
of the BiFeO3 with an R3c space group [29], and the most distinct Miller planes {012},
{104}, {110}, discerned at the XRD figure. Longer tanneal resulted in sharper XRD diffrac-
tion peaks, indicating improved crystallinity of the BiFeO3 phase [30]. The as-prepared
BFO material, i.e., not-annealed, showed poor crystallinity (Figure S2). The short resi-
dence time of the particles in our FSP reactor i.e., milliseconds [20,21], does not allow
full-growth of the BFO crystal structure. Thus, for the Bi-based materials, a post-FSP
annealing step is necessary to obtain the fully crystalline particles [19]. The BFO3(60) ma-
terial obtained at Tanneal = 700 ◦C/tanneal = 60 min exhibits high-quality diffraction peaks
of the orthorhombic-Bi2Fe4O9 Pbam structure [31] with prominent peaks from the crystal
planes{001}, {121}, {211}, {130}. The annealing period of 60 min was the minimal required to
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achieve 100% pure Bi2Fe4O9 phase i.e., shorter annealing times at Tanneal = 700 ◦C, resulted
in mixed-phase Bi2Fe4O9/BiFeO3 with increasing BiFeO3 at shorter tanneal. At prolonged
tanneal = 120 min, a rapid decline of crystal quality was observed due to the formation of
solid melts [19]. Exemplifying this case, BFO3(120) has less sharp XRD peaks (Figure S3).
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Table 1. Structural Characteristics of the present FSP-made BFO materials.

Photocatalyst Annealing T/Time
(°C)/(Min)

%Crystalline Phase Fraction Crystallite Size (nm) SSA (m2

g−1)
Total Pore Volume

(cm3 g−1)
Band Gap

Eg (eV)BiFeO3 Bi2Fe4O9 dBET dTEM

BFO1(5) 550/5 100 0 48 55 14.1 4.01 × 10−2 2.1
BFO1(30) 550/30 100 0 64 - 12.1 2.83 × 10−2 2.1
BFO1(60) 550/60 100 0 67 - 10.7 2.81 × 10−2 2.1
BFO2(60) 625/60 52 48 75 130 9.5 2.11 × 10−2 2.08
BFO3(60) 700/60 0 100 268 240 2.7 0.56 × 10−2 2.05/1.55

BFO3(120) 700/120 0 100 336 - 2.1 0.46 × 10−2 2.05/1.55

Overall, the XRD data for BFO reveal that the FSP-made BFO undergoes phase-
evolutions from amorphous to BiFeO3, then to Bi2Fe4O9, and finally to solid-melt, increas-
ing Tanneal = 550→700 ◦C and tanneal. These trends can be better visualized in Figure 1C.
In order to gain insight into the relation of the BFO structures vs. the photocatalytic
performance, we focus on pure phase BiFeO3 & Bi2Fe4O9 with varying degrees of crys-
tallinity, quality, and defects. In this context, a ~1:1 mixed-phase material BFO2(60) that is
BiFeO3/Bi2Fe4O9 heterostructure, has been obtained by Tanneal = 625 ◦C/tanneal = 60 min
post-FSP annealing. Table 1 and Figure S3, provide the full set of all pertinent structures pro-
duced by the controlled [Tanneal, tanneal] protocols. In BFO1 or BFO2, at a given Tanneal, upon
prolonged tanneal, the particle crystallinity was increased. In contrast, the pure-Bi2Fe4O9
nanophases, showed a striking degradation in crystallinity at prolonged tanneal = 120 min,
due to solid-melt formation. It is underlined that, based on the Rietveld analysis of the
XRD data, the particles were found to have only the pure phases, i.e., without characteristic
peaks from impurities or secondary phases, such as Bismuth-oxides and the more troubling
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Bi25FeO40 or Fe2O3 that are usually difficult to eliminate in solid-state or wet synthesis
methods [32]. The Rietveld-XRD analysis of mixed-phase BFO2(60) (Figure S4), shows
that it consists of 52% BiFeO3/48% Bi2Fe4O9 phases. Thus, BFO2(60) represents a ~1:1
heterojunction BiFeO3: Bi2Fe4O9.

The TEM images of the catalysts, (Figure 1B), confirm the increase in particle size, upon
increase of Tanneal and tanneal. The annealed materials appear to retain rod-like morphology
with neck-sintering between neighboring particles, as observed originally for the FSP-BFO
particles [19]. FSP-made Bi-based perovskites such as BiVO4 nanoparticles [33] present
the same elongated morphology. The TEM size distribution, (Figure S5), reveals that
all materials had a size distribution with a 30% span of the mean dTEM value. The SSA
analysis and total pore volume (Figure S1), allow the dBET size calculation using the
empirical Equation (1):

dBET = 6000/SSA× density (1)

All materials had relatively low SSA ~14.1 m2 g−1 for BFO1(5), which dropped under
longer annealing time at 10.7 m2 g−1 for BFO1(60), and more severely at higher Tanneal i.e.,
2.7 m2 g−1 for BFO3(60).

3.1.2. Diffuse Reflectance Uv-Vis Spectroscopy: Band-Gap Estimates

All our BFO materials showed characteristic broad absorption from 200 nm to 600 nm,
with a maximum in visible wavelengths 400–480 nm, corresponding to their dark-brown
colors (inset photo in Figure 2A). The bandgap energy Eg calculated from the Tauc plot [34],
was derived using the Kübelka-Münk transformation (2):

αhv = K
(
hv− Eg

)p (2)

The value of the p-index signifies the direct or indirect band transitions in a semicon-
ductor [35]. i.e., p = 1/2 for a direct-band transition, p = 2 for indirect-band transition. So
far, there is not a clear agreement in the literature whether the optical transitions in BiFeO3
and Bi2Fe4O9 phases are direct or indirect [10].

Thus, herein the direct transitions are assumed (p = 1/2) for the main DRS-UV/Vis
absorbance peaks of BiFeO3 and Bi2Fe4O9 phases. In addition, a secondary transition was
consistently observed for Bi2Fe4O9, which is usually identified as an indirect transition,
marked by the dashed arrow in Figure 2A. The direct bandgap of the perovskite phase
BiFeO3 has been reported to be in the range of 2.1–2.8 eV [10]. For the mullite-type Bi2Fe4O9,
Eg is expected in the range of 2.1 to 2.3 eV [11]. Also, for the Bi2Fe4O9, a secondary smaller
bandgap 1.6 eV [36] is usually evident by the absorbance peak at ~700 nm, suggested to
originate from the d-d transition of Fe atoms [37]. Our data agree with the literature, with
Eg = 2.1 eV for BFO1(5), Eg = 2.08 eV for BFO2(60), while the BFO3(60) has Eg = 2.05 eV.
All other FSP-made catalysts prepared for various tanneal have Eg in the range 2.0–2.1 eV,
(Figure S6). The secondary bandgap of 1.6 eV is evidenced in the spectrum of BFO3(60) with
100% Bi2Fe4O9. In the BFO2(60) this absorbance-hump at 700 nm, is lower in accordance
with the lower 48% content in Bi2Fe4O9. The indirect-transitions have typically lower
absorbance cross-sections [2,35] since they require a transition of the photoactivated electron
between energy states with different lattice-vector k [35] between different Brillouin zones.
In the context of photocatalysis, an indirect transition can inhibit the recombination of the
photoexcited e−/h+ pairs [2,35], improving photocatalytic performance.
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3.1.3. FT-IR, Raman Spectroscopy

In all cases, the BiFeO3 phase can be discerned from two characteristic peaks at
445 cm−1 and 557 cm−1, due to the Fe-O bond stretching and bending vibrations from
octahedral FeO6 groups of BiFeO3 [38,39]. The Bi2Fe4O9 phase has a more complex struc-
ture and it contains both octahedral FeO6 and tetrahedral FeO4 units [40], thus its FT-IR
spectrum is characterized by several bands of lower intensity than BiFeO3 [41]. We can
identify the Bi2Fe4O9 phase by focusing on the bands at 441 cm−1, 609 cm−1, and the more
prevalent 814 cm−1. Noticeably, the FTIR spectrum for BFO1(5) shows weak peaks around
1250–1500 cm−1, (inset zoom of Figure 3A), which are indicative of traces of hydrocarbons
in BFO1(5). These peaks were also observed in the as-prepared materials (not shown).
These traces are eliminated upon longer tanneal and higher Tanneal (Figure S7). Such traces
of hydrocarbons are known to be potential leftovers from the FSP combustion process [42].
The short tanneal of 5 min in BFO1(5) is not enough to fully combust them. As we show
hereafter, these hydrocarbon traces cause reduction of some Fe-centers forming Fe2+ in
BFO1(5). The mixed-phase material BFO2(60) contains the characteristic peaks of both
BiFeO3 and Bi2Fe4O9 phases, in accordance with XRD results. The characteristic Raman
peaks are marked with the corresponding dotted lines. The BFO1(5) i.e., 100% BiFeO3 has
two characteristic Raman peaks at 136 cm−1 and 170 cm−1, accompanied by seven weaker
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peaks in the range of 260 cm−1 to 520 cm−1 [43,44], while the BFO3(60) i.e., Bi2Fe4O9,
exhibits multiple bands at 87, 207, 283, 331, 365, 430, and 552 cm−1 [45] (Figure S8).
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Thus, from the present FT-IR and Raman data, it is confirmed that BFO1(5) is a
100% BiFeO3, BFO3(60) is a 100% Bi2Fe4O9, while the BFO2(60) is a mixed phase. Our
XRD, FTIR, Raman data provide clear evidence that the BFO materials are devoid of any
secondary phase.

3.1.4. X-ray Photoelectron Spectroscopy

The XPS spectra for the Fe2p energy range, Figure 4, present two sets of doublets
corresponding to Fe3+: the doublet at 710 and 712 eV is assigned to Fe3+2p3/2, while the
723.5 and 725.5 eV are assigned to Fe3+2p1/2 [46]. The characteristic ∆E = 13.5 eV splitting
is typical for the spin-orbit coupling of the Fe3+2p [47]. The weak-peak at ~718 eV is the
satellite of the Fe3+2p3/2 at approximately 6 to 8 eV from the binding energies of the
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Fe3+2p1/2 [46]. In addition, the Fe-XPS spectrum of BFO1(5), Figure 4A, contains peaks at
706.2 eV that correspond to the Fe2+2p3/2 and the 719.7 eV at Fe2+2p1/2 [48], confirming
that BFO1(5) contains Fe2+ atoms (approximately 10–15%). This can be attributed to
the reduction of Fe3+ centers, by traces of small hydrocarbons, leftover during the FSP
process [42] i.e., as evidenced by the FT-IR data (Figure 3A). Noticeably, Fe2+ atoms were
not detected in the XPS spectra in the as-prepared BFO material, [19], nor in the other BFO
materials prepared at longer tanneal or higher Tanneal. The population of the Fe2+ centers was
maximum in the shortly-annealed BFO1(5) and declined rapidly upon longer tanneal = 30
or 60 min (Figure S9). Thus, the XPS data together with the FT-IR data, show that 5 min at
550 ◦C allowed the optimal formation of Fe2+ centers in BFO1(5) as a consequence of the
interaction with the hydrocarbon’s traces. Theoretical DFT calculations, discussed hereafter,
reveal that these Fe2+ atoms have a significant impact on the energy level positioning of the
CB and VB edge of BiFeO3, and this has a beneficial effect on photocatalytic O2 production.
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A complete set XPS data for all BFO materials Fe (Figure S9), Bi(Figure S10) and O
(Figure S11) show the characteristic peaks at 164.4 eV and 159 eV, with a spin-orbit splitting
value ~5.4 eV of the two states Bi 4f5/2 and Bi 4f7/2 in accordance with the literature [49].
The O-XPS spectra exhibit the characteristic peak at 532 eV due to oxygen adsorbed on
the surface of and hydroxyl groups, while the peak at 530.1 eV is due to O-Fe units of the
crystals structure [50,51].

3.2. Photocatalysis
3.2.1. Photocatalytic O2 Production from H2O

The Conduction Band (CB) energy position of BiFeO3 was found to be at +0.34 eV vs.
NHE, and the Valence Band (VB) position at 2.44 eV. Similarly, Bi2Fe4O9 has a CB-edge at
+0.36 eV and VB-edge at 2.41 eV (Table S1). These are in agreement with literature values of
CB-edge +0.51 eV for BiFeO3 and CB-edge +0.5 eV for Bi2Fe4O9 [52,53]. As the energy level
of O2/H2O is at +1.23 eV vs. NHE, both materials are suitable for oxidation of water. Using
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NaS2O8 as electron scavenger [7], the overall photocatalytic reaction proceeds according to
the reactions scheme Figure 5C, and reaction (3):

{BFO + hv}+ H2O + S2O2−
8 − > {BFO}+ 1/2O2 + 2H+ + 2SO2−

4 (3)
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The photocatalytic O2 production data (Figure 5) show that the as-prepared BFO
material achieved very low O2 evolution i.e., <151 µmol g−1 h−1. Annealing at short-time
Tanneal = 550 ◦C, tanneal = 5 min, had a dramatic effect on the O2 generation efficiency i.e.,
1150 µmol g−1 h−1 for BFO1(5). Prolongation of tanneal causes a drop in O2-production rates
i.e., to 900 µmol g−1 h−1 for tanneal = 30 min, and 780 µmol g−1 h−1 for tanneal = 60 min.
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The trend in BiFeO3 shown in Figure 5B, implies a key-optimization step occurring at short
tanneal = 5 min.

We have performed a screening of the optimal noble metal loading for the O2 evolution
of the BFO materials. By testing loadings of 0.1, 0.5, 1.0, 2.0, 5.0 % w/w (data not shown),
we concluded the 1.0% to be the best ratio. Lower noble metal loadings were not-adequate,
while higher loadings (2% w/w or 5% w/w) inhibited the O2 production due to coverage of
the BFO surface. For example, the 2% w/w Au0 or 5% w/w Au0 produced by 30% and 60%
less O2 as it is compared with the 1% Au0.

The mixed-phase BFO2(60), ~1:1 BiFeO3:Bi2Fe4O9, shows an improved O2 evolution
rate 1300 µmol g−1 h−1. This is higher than the performance of the best BiFeO3. Remarkably,
the pure Bi2Fe4O9 phase, achieved a significant O2 evolution rate of 1550 µmol g−1 h−1,
which is 35% higher than BiFeO3. In addition, the Bi2Fe4O9 catalyst is stable for 4 catalytic
cycles with a minor loss of 5% of its efficiency (inset of Figure 5A), while for all the materials
the XRD, Tauc plot and XPS after the photocatalysis are present in (Figure S12).

Overall, we can conclude that:

1. Photocatalytic O2-evolution is improved significantly on going from BiFeO3 towards
Bi2Fe4O9

2. For materials of the same phase, the annealing protocol parameters, Tanneal, tanneal,
allow modulation of the O2 evolution trend. In all cases, longer tanneal is detrimental

3. Bi2Fe4O9 is sensitive to prolonged tanneal, i.e., severe crystal quality deterioration
occurs in BFO3(120) and this causes severe deterioration of its photocatalytic activity.
In contrast, BiFeO3 shows less-pronounced effects upon prolonged annealing.

4. The XPS data reveal a correlation trend between the Fe2+ centers in BiFeO3 and
O2 production.

A comparison with literature data for photocatalytic OER vs. pertinent Fe, Bi catalysts,
is presented in Table S2 [7,8,54–56]. Our FSP-made BiFeO3 i.e., BFO1(5), supersede the per-
formance of Papadas et al. [7] which is comparable to our BFO1(60) catalyst. Among all BFO
photocatalysts in Table S2, the FSP made Bi2Fe4O9 (BFO3(60)) is a superior photocatalyst
for O2 production from H2O, over performing all so far known BFO materials.

3.2.2. Photogenerated Holes of the Photocatalytic Mechanism

In O2 evolution photocatalysis, oxidation of H2O by the photogenerated holes is a key-
step [2] via the formation of •OH. Herein we have used EPR spectroscopy to monitor in-situ
the photogeneration of •OH by the best performing BFO (BFO1(5), BFO2(60), BFO3(60)).

The EPR data show that all the studied BFO catalysts are very efficient in the pho-
togeneration of •OH (Figure 6A). Interestingly, the EPR spectral patterns, have a char-
acteristic 7 line pattern with intensity ratio [1:2:1:2:1:2:1] which is the fingerprint of two
•OH trapped/per/DMPO [57]. The so formed structure is known as DMPOX [58]. The
reaction path is shown on top of Figure 6. The formation of DMPOX reveals that a high
local concentration of •OH occurs [57] during the photoexcitation of the BFO particles.
Indeed, quantification of the •OH proves that the BFO creates very high concentrations of
•OH up to ~850 µmol/g for BFO3(60). For comparison, a reference P25-TiO2 irradiated
under the same conditions generated 300 µmol/g. Comparison between Figures 5B and
6B show a clear trend BFO3(60) > BFO2(60) > BFO1(5), in both •OH generation as well
as in O2 photogeneration efficiency. Accordingly, we conclude that the superior photo-
catalytic efficiency of BFO3(60) and pure Bi2Fe4O9, originates from the highly efficient
photogeneration of the holes in the valence band. To further peer into the band-positioning
of our BFO3(60) we have compared the effect of Au0, Pt0, Ag0 as electron acceptors on the
O2 generating efficiency. Interestingly, BFO3(60)/Au0 and BFO3(60)/Pt0 have almost the
same performance, while BFO3(60)/Ag0 shows a lower by 25% of the original efficiency
(Figure S13). According to the energy-level scheme in Figure 5C, the photocatalytic effi-
ciency can be correlated with the favorable positioning of the conduction-band edge of
Bi2Fe4O9 +5 eV vs. vacuum (+0.5 eV vs. NHE) [53] vs. the work function of Pt0 (ϕ = 5.6 eV)
and the work function of Au0 (ϕ = 5.1 eV vs. vacuum) [59]. Ag0 has a less favorable
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positioning work function (ϕ = 4.2 eV) [60] vs. the CB of Bi2Fe4O9 and this results in lower
O2 photogeneration.
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3.2.3. Insight into the Role of Fe2+ Centers in BiFeO3

The photocatalytic and XPS data indicate that the presence of Fe2+ atoms in BiFeO3,
i.e., BFO1(5) plays a key role in the photocatalytic activity. Intriguingly, no difference was
observed in the UV-Vis absorbance profile neither in the Eg value for the Fe2+ containing
BFO1(5) vs. Fe2+-free BFO(30, 60) materials. To better understand this phenomenon, we
have analyzed the energy levels of BiFeO3 including Fe2+ atoms.

For Fe2+ free BiFeO3 the calculated bandgap values are 2.0 eV (indirect, F/Γ→F) and
2.1 eV (indirect, F/Γ→Z, and F/Γ→L). In accordance with previous reports regarding
BiFeO3 [61], the spin-up and spin-down populations are symmetric, due to the antiferro-
magnetic arrangement of Fe3+ magnetic moments. As shown in the DOS plot in Figure 7A,
the maximum energy of the Valence-band VBmax of BiFeO3 is dominated by O-2p states,
while the CBmin by Fe-3d states. The VBmax of BiFeO3 is located between the F(0.5,0.5,0)
and Γ(0,0,0) points, and the CBmin at the F(0.5,0.5,0) point, in agreement with the previous
reports [62]. In Figure 7B one atom of Fe2+ has been introduced per unit cell i.e., for the
sake of the discussion we codename it {Fe2+}BiFeO3, comparing with the DOS for BiFeO3
(red vs. black lines) reveals that the introduction of Fe2+ atoms into the BiFeO3 lattice
causes a downshift of both CD and VB by 0.9 eV, without a change in the band-gap value.
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Figure 7. (A) Theoretical energy band-structure and DOS of BiFeO3. (B) DOS for {Fe2+}BiFeO3 (red lines) vs. BiFeO3 (black
lines). (C) Theoretical energy band-structure and DOS of ferromagnetic Bi2Fe4O9.

The theoretical result is in accordance with the experimental data, EPR, and photocatal-
ysis, which show that {Fe2+}BiFeO3 and BiFeO3 i.e., materials BFO1(5) and BFO1(30, 60),
have similar Eg values. [ii] the downshift of CB by +0.9 eV, towards more positive poten-
tials, enhances the oxidative capacity of the holes in {Fe2+}BiFeO3 vs. BiFeO3, which shows
the BFO1(5) being more photoactive than BFO1(30, 60). Thus, the present theoretical analy-
sis indicates the superior photocatalytic efficiency of BFO1(5) can be attributed to the more
positive potential of the CB induced by the presence of Fe2+ atoms in the BiFeO3 lattice.

For completeness, we present the energy-bands and DOS for Bi2Fe4O9 (Figure 7C). In
Bi2Fe4O9 the CBmin is mainly populated by Fe-3d states and the VBmax by O-2p states, as is
the case for BiFeO3. However, in Bi2Fe4O9 the DOS profile is fundamentally more complex
than BiFeO3 i.e., due to the ferromagnetic character Bi2Fe4O9 [45]. More specifically, various
transitions are allowed for combination of spin-up/spin-down configurations: a transition
with energy 2.1 eV (indirect, Uup → Xup), one with 1.1 eV (indirect, Uup → Xdown) and
1.6 eV (direct, Xdown → Xdown). These are in agreement with the DRS-UV/Vis data where
the bands at Eg~2.1 eV and ~1.6 eV are evidenced in the experimental spectra.

4. Conclusions

The present study shows that FSP-made BFO nanocatalysts can be optimized dramati-
cally for highly efficient photocatalytic O2 evolution from H2O, by easy-to-apply short-time
post-FSP annealing protocols. In this way, mullite-Bi2Fe4O9 is exemplified, for the first
time, to be a highly promising O2-evolving photocatalyst, outperforming all so far reported
BFO nanocatalysts. Spectroscopic and theoretical data show that the post-FSP annealing
allows detailed control of the structural and electronic features of Bismuth-Iron-Oxide
nanomaterials, however in a distinct manner for BiFeO3 vs. Bi2Fe4O9. The introduction
of Fe2+ centers in BiFeO3 can enhance dramatically the O2 production efficiency via a
downshift of the CB and VB edges. For Bi2Fe4O9, short annealing improves O2 evolution,
while prolonged annealing is detrimental, via deterioration of its crystallinity.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/en14175235/s1, Figure S1: N2 adsorption-desorption isotherms for the materials BFO1(5)-
BFO3(120). Figure S2: XRD, Tauc plot, and XPS spectra of the As-Prepared BFO material. Figure S3:
Powder XRD patterns for the annealing effect on BFO1 and BFO3 materials. Figure S4: Rietveld
analysis of the BFO2 material. Figure S5: TEM size distribution of the materials. Figure S6: Tauc plot
for the annealing effect on BFO1 and BFO3 materials. Figure S7: FT-IR for the annealing effect on
BFO1 and BFO3 materials. Figure S8: Raman for the annealing effect on BFO1 and BFO3 materials.
Figure S9: Fe XPS plots for all the materials. Figure S10: Bi XPS plots for all the materials. Figure S11:
O XPS plots for all the materials. Figure S12: XRD and Raman for the photo catalytically reused
BFO3(60). Figure S13: O2-photoproduction for Au0, Pt0, Ag0 as electron acceptors for the BFO3(60).
Table S1 electronegativity of the materials. Table S2 Literature comparison for the photocatalytic
abilities of the materials.
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