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Abstract: With the rapid development of society, the number of hydropower projects has increased.
During the construction of these projects, due to excavation-induced unloading, the high sidewalls of
the hydropower station are often subject to splitting failure, which produces many adverse effects on
the construction of the cavern. In order to reveal the formation mechanism of splitting failure of hy-
dropower stations, based on the strain gradient theory and elasto-plastic damage theory, we proposed
an elasto-plastic damage softening model. Using the ODE45 program in MATLAB, we solved the
numerical solution of displacement and stress of circular cavern based on our proposed elastoplastic
damage model. Then, we apply the complex function method and use the Schwarz–Christoffel
integral formula to obtain the mapping function from the outer domain of the high sidewall cavern to
the outer domain of the unit circle. Finally, the elastic-plastic region and displacement distribution of
the high sidewall cavern are obtained by mapping the obtained elastic-plastic solution of the circular
cavern under the axisymmetric condition. In future research, it is necessary to further study the
corresponding relationship between the internal length parameter of the material and its internal
microstructure in order to accurately determine the internal length parameter.

Keywords: hydropower station; high sidewall cavern; complex function; splitting failure; strain
gradient

1. Introduction and Background

With the rapid development of society, people’s demand for electric energy is increas-
ing, so there are a greater number of hydropower projects. However, with an increase in
hydropower projects, it was discovered that some nonlinear deformations and failures
occurred in the surrounding rock of caverns during the construction of these projects.
These deformations and damages are a serious threat to the construction safety and long-
term stability of underground caverns. Among them, the deformation failure mode of the
splitting failure of the hydropower projects with a high sidewall is quite different from
that of the shallow cavern, showing obvious discontinuity and nonlinear behavior. This
splitting failure has been widely recorded and described by many researchers [1–4], as
shown in Figure 1. However, there is no clear understanding of the formation mechanism
of splitting failure of high sidewall cavern, and the traditional continuum mechanics theory
cannot provide a satisfactory explanation.

Because the failure process of the rock is very complicated, it is difficult to obtain
the ideal result if only the classical continuity mechanics method is used to describe it.
Therefore, it is necessary to introduce the damage mechanics method in the study of
splitting failure of high-side caverns of hydropower stations. Damage mechanics can
well simulate the nonlinear behavior of rocks after the peak. In addition, it shows good
applicability in simulating the strain-softening characteristics of rocks. Li et al. [5] applied

Energies 2021, 14, 5870. https://doi.org/10.3390/en14185870 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en14185870
https://doi.org/10.3390/en14185870
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14185870
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14185870?type=check_update&version=2


Energies 2021, 14, 5870 2 of 25

elastic damage mechanics to model the softening behavior of rock masses. Then, they
proposed a numerical method based on the maximum tensile stress criterion and strain
energy density theory to simulate the zonal fracture phenomenon. Tao et al. [6] applied
a damage formulation to simulate softening and modulus reduction to propose a new
method to understand the mechanisms and behaviors of high initial stress rocks. Jia et al. [7]
studied the damage evolution around deep underground openings under multiaxial stress
through 3D numerical tests. The results showed that biaxial stress parallel to the free
surface constrained by zero or low confinement stress contributes to spalling or parallel
fracture of the slab.

Figure 1. Splitting failure of hydropower stations. (a) Jinping I Hydropower Station; (b) Jinping II
Hydropower Station; (c) Pubugou Hydropower Station.

In the compression test of rocks, as the load increases, the internal stress of the rock
will rapidly decrease to a lower level after reaching its peak strength, showing obvious
post-peak strain softening. At the same time, along with the decline in the bearing capacity
of the rock, the deformation and failure of the rocks are also concentrated in one or several
narrow-banded areas, which is the phenomenon of localization of the rock strain. In the
experimental research on the strain localization of rocks, many scholars [8–12] have given
strong evidence that there is an obvious strain gradient effect in the deformation localization
zone, and the strain gradient effect plays a controlling role in the localized deformation and
failure process of the rock. Fleck et al. [13–19] carried out a large number of studies related
to strain gradient. Based on the concepts of statistical storage and geometric asymmetric
dislocation, they introduced plasticity into the strain gradient theory and established a
phenomenological strain gradient plasticity theory. Menzel et al. [20] Established geometric
linear formulas for high-order gradient plasticity of single crystal and polycrystalline
materials based on dislocation and incompatible continuum theory. They found that due
to dislocations or incompatible stresses, higher-order strain gradients are introduced into
the yield conditions, which is similar to the structure of motion hardening in form, so
the back stress follows the law of nonlocal evolution. Therefore, if the strain gradient
effect is ignored in the post-peak localized deformation and failure analysis of rocks, it will
cause serious deviations between the analysis results and the real situation. Therefore, it
is very important to introduce strain gradient theory into the study of splitting failure of
hydropower station caverns.

The common tunnel section shape of an underground powerhouse of a hydropower
station is not circular, but high sidewall. For non-circular caverns, the commonly used
method is to equivalent them to circles with the same area for analysis, but results obtained
in this way will produce large errors. In order to reduce the error, some experts and scholars
introduce the complex function theory into the study of solving the analytical solutions of
stress and displacement of underground non-circular caverns. In order to reduce the error,
some scholars [21–24] have introduced the theory of complex variable function to solve the
analytical solution of the stress and displacement of underground non-circular caverns.
Deng et al. [25] used the complex variable function solution method to derive the analytical
solution of the stress and displacement of the surrounding rock of a highway tunnel of
arbitrary shape under the action of supporting pressure and remote site stress, and solved
the numerical solution by programming on the MATLAB platform. Lu et al. [26] used the
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conformal mapping method of the complex function theory to determine the optimal shape
of the closed concrete support. Yang et al. [27] used complex variable function theory and
a multipolar coordinate system to study the scattering problem of lining circular tunnels
in an anisotropic half-space, and gave typical numerical simulation results of surface
displacement amplitude under different anisotropic parameters.

Although great progress has been made in studying the microscopic mechanisms of
rock specimens [28–32], laboratory or field experiments [33–39], and numerical simula-
tions [40–43], so far, the theoretical method of splitting failure of surrounding rock of high
side wall caverns under high ground stress is not perfect, and there is no theoretical expla-
nation widely accepted by everyone. It is urgent to establish a more scientific mechanical
model to reveal the formation mechanism of splitting failure.

2. Objectives

In this paper, we propose an elasto-plastic damage softening model based on strain
gradient theory and elasto-plastic damage theory. Based on this elasto-plastic damage
model, the numerical solutions for the displacements and stresses in the circular cavern
were solved using the ODE45 program in MATLAB. Then, we applied the complex function
method and use the Schwarz–Christoffel integral formula to obtain the mapping function
from the outer domain of the high sidewall cavern to the outer domain of the unit circle.
Next, the elasto-plastic solution conformal mapping of the circular cavern under axisym-
metric conditions is used to obtain the elasto-plastic area and displacement distribution of
the cavern with a high sidewall. Taking Pubugou Hydropower Station (Figure 2) as the
engineering background, during the construction of the main powerhouse, several splitting
cracks appeared on the sidewall, which caused the cracking of the concrete shotcrete on
the sidewall. The maximum crack width was 20 mm. The numerical analysis results
are basically consistent with the on-site monitoring and model test results. Finally, the
variation of tangential stress of high side wall caverns with different height span ratios is
obtained by comparison, which provides a theoretical basis for the study of the formation
mechanism of splitting failure.

Figure 2. Schematic diagram of stratification and sectional cross-section of underground cavern
group in Pubugou Hydropower Station.

3. Establishment of Constitutive Model
3.1. Virtual Working Principle and Control Equation

In the Toupin–Mindlin strain gradient theory, in addition to the conventional strain
tensor εij and stress tensor σij, higher-order strain terms ηijk and higher-order stress tensors
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τijk that describe the state of the material are also required [11]. The expression of strain
and its strain gradient term is:

εij =
(
ui,j + uj,i

)
/2, ηijk =

(
uk,ij + uk,ji

)
/2 (1)

Not only strain and higher-order strain terms are symmetric tensors, their correspond-
ing stress and higher-order stress terms are also symmetric tensors. So, suppose that the
strain rate and higher-order strain rate are both decomposed into elastic and plastic parts:

.
εkl =

.
ε

e
kl +

.
ε

p
kl ,

.
ηlmn =

.
η

e
lmn

+
.
η

p
lmn

(2)

Similar to the strain gradient plasticity model proposed by previous scholars [17,20,44–47],
it is assumed that the plastic higher-order strain term contributes to the work per unit
volume. Since the principle of virtual work is divided into the work of elastic strain, the
work of plastic strain, and the work carried out by their higher-order terms, the virtual
work of its internal unit volume V can be expressed as:

δWi =
∫

V

(
σijδεe

ij + qijδε
p
ij + τijkδε

p
ij,k

)
dV (3)

where qij is called the micro stress tensor conjugated with plastic strain ε
p
ij work; τijk is the

higher-order stress tensor conjugated to the plastic strain gradient ε
p
ij,k work. Since the

influence of q′ij and τ′ijk on virtual work δWi are omitted in this paper, the above formula
can be expressed as:

δWi =
∫

V

(
σijδεij +

(
qij − σ′ij

)
δε

p
ij + τijkδε

p
ij,k

)
dV (4)

Using Gauss’s theorem to deal with the above formula, the following formula can
be obtained:

δWi =
∫

S

(
σijnjδui + τijknkδε

p
ij

)
dS−

∫
V

[
σij,jδui +

(
τijk,k + σ′ − qij

)
δε

p
ij

]
dV (5)

where ni is the normal vector outward in the direction of the surface S. Since Equation (3)
should be applied to any changes in plastic strain, and the second integral on the right
side of Equation (5) disappears with any change, two sets of equilibrium equations can
be determined: {

σij,j = 0
τijk,k + σ′ij − qij = 0 (6)

According to the principle of virtual work, the corresponding conventional Ti = σijnj
and high-order boundary conditions tij = τijknk are obtained.

3.2. The Establishment of the Yield Function

For materials that exhibit plasticity, the stress state σij reaches a certain yield condition
before it can enter the plastic state. The yield condition can be expressed by independent
stress components and hardening parameters:

f = f (σ, H) = 0 (7)

where H is the hardening parameter, which represents the relationship between yield stress
and plastic deformation. For the classical elastic-plastic theory, the yield of a point in the
material depends on its stress state and hardening parameters; for the theory of plastic
strain gradient, the yield of the point in the material is not only related to the stress state
and hardening parameters of the point itself, but also the influence of the surrounding
points on the hardening parameters. When considering the influence of surrounding points
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on hardening parameters, point P with coordinate (x, y) in the overall coordinate system is
selected, and the neighborhood with surrounding radius R is taken as the neighborhood
affecting point P, and the distance from any point in the neighborhood to the point is r, as
shown in Figure 3. In the local coordinate system, the rectangular coordinates and polar
coordinates of point P are (r, θ) and (ξ, η), respectively. Therefore, it is necessary to define
a weighted average of hardening parameters to represent the influence of each point in the
influence area on point P. The expression of the weighted average is:

H(x, y) =
∫
Ω

g(r)h(x, y)dΩ (8)

Figure 3. The area of influence at a point in the material.

Among them, g(r) is the material weight function, and the expression is selected as:

g(r) =
{

C
(
1− r2/R2 ), r < R

0, r ≥ R
(9)

where, R is the radius of influence, R = ρ0l; l is the internal length parameter of the
material, reflecting the length of the internal microstructure of the material; ρ0 is the
influence coefficient, for two-dimensional plane problems ρ0 == (3/4)1/3; C is the weight
function parameter, C = 3/

(
πR2); r is the distance from any point in the neighborhood to

that point. The weight function has the characteristics of a single point of decline and the
nature of normalization: ∫

Ω

g(r)dΩ = 1 (10)

Use the above weight function to weighted average the hardening parameters at a
certain point:

H(x, y) =
∫
Ω

g(r)h(x + ξ, y + η)dΩ (11)

From this, the h(x,y) value of the internal length parameter l of the material can be
obtained, which is expressed as the interaction between the microstructures. In order to
obtain h(x + ξ, y + η) worthy of specifically related expressions, perform Taylor expansion
of h(x,y) at this point:

h(x + ξ, y + η) = h(x, y) + (ξ ∂
∂x + η ∂

∂y )h(x, y) + 1
2 !(ξ ∂

∂x + η ∂
∂y )

2
h(x, y)

+ 1
3 ! (ξ ∂

∂x + η ∂
∂y )

3
h(x, y) + . . .

(12)
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For isotropic materials, the odd-order term is 0 after integration, use dξdη = rdrdθ to
transform the polar coordinates and rectangular coordinates in the integration and then
take the integration before two items get:

H(x, y) = ∑
n=0,2

x 1
n!

(
ξ

∂

∂x
+ η

∂

∂y

)2
h(x, y)dξdη (13)

Simplify the above formula to obtain:

H(x, y) = h(x, y) + C∇2h(x, y) (14)

where C is a constant; ∇2 is in Laplacian form, ∇2 = ∂2

∂x2 + ∂2

∂y2 . Equation (14) can be
understood as the hardening parameter expression considering the effect of strain gradient,
and H(x, y) is used to replace κ in the yield function of the classical plastic theory. The
plastic strain gradient is introduced as an internal variable into the yield function of classical
plastic theory. Introduce the hardening parameter considering the gradient term into the
yield function:

F(σ, H,∇2H) = 0 (15)

At the same time, in order to meet the constraints, the yield function should also
satisfy the following formula:

F(σ, H,∇2H) ≤ 0, λ ≥ 0, λF = 0 (16)

From this, the yield function of the plastic strain gradient theory is derived as:{
∂F
∂σ

}T
σ +

∂F
∂H

H +
∂F

∂∇2H
∇2H = 0 (17)

The hardening modulus is defined as:

κ(H,∇2H) = − 1
λ

∂F
∂H

H (18)

For further calculation, establish a certain relationship between the hardening function
and the plastic multiplier:

H = αλ (19)

where α is a relational constant. Further collation can be obtained:{
∂F
∂σ

}T
σ− κλ + α

∂F
∂∇2H

∇2λ = 0 (20)

Let α ∂F
∂∇2 H = −κl2, and further obtain the yield function of the plastic strain gradient

theory as: {
∂F
∂σ

}T
σ− κλ− κl2∇2λ = 0 (21)

In the plane problem, the strengthening parameter H can be expressed by the equiva-
lent plastic strain Ep, so the yield model including the strain gradient term can be obtained
from the formula:

F = F(σ)− σy(Ep,∇2Ep)

σy = σ0 + κEp + κl2∇2Ep (22)

where κl2∇2Ep reflects the influence of plastic strain gradient and material internal length
parameters on the yield function; κ is the hardening modulus, κ = 1

λ
∂ f
∂H H. Based on the
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Drucker–Prager strength criterion, the following yield function f and plastic potential
function g are constructed: f = f (σ, H) = αI1(σ) +

√
J2(s)− H

(
ε

p
ij

)
− σy(Ep,∇2Ep)

g = g(σ, H) = βI1(σ) +
√

J2(s)− H
(

ε
p
ij

)
− σy(Ep,∇2Ep)

(23)

where J2 is the second invariant of stress deviation; α and β are intensity parameters, and
their expressions are as follows:  α = 2 sin ϕ√

3(3−2 sin ϕ)

β = 2 sin ψ√
3(3−2 sin ψ)

(24)

where ϕ is the friction angle and ψ is expansion angle. When ϕ and ψ are equal, it is the
associated flow law.

3.3. Constitutive Equation

According to the strain gradient shaping theory, it is necessary to consider introducing
the high-order stress related to the strain increment into the dissipation work generated
by the high-order strain in a thermodynamically consistent manner [47,48]. The key to
constructing the plastic constitutive equation considering the strain gradient is to define the

effective stress Σ work conjugated with the effective plastic strain rate
.
E

p
of the gradient

enhancement to ensure the plastic work rate:

Σ
.
E

p
= qD

ij
.
ε

p
ij + τD

ijk
.
ε

p
ij,k (25)

Since Σ
.
E

p
≥ 0,

.
E

p
can be defined as:

.
E

p
=

√
2
3

.
ε

p
ij

.
ε

p
ij + L2 .

ε
p
ij,k

.
ε

p
ij,k (26)

where L is the dissipative length parameter. Thus, Σ can be defined as:

Σ =

√
2
3

qD
ij qD

ij + L−2τD
ijkτD

ijk (27)

From this, the dissipative plastic micro-stress tensor and the dissipative plastic high-
order stress tensor are obtained, respectively:

qD
ij =

2
3

Σ
.
E

p
.
ε

p
ij, τD

ijk =
Σ
.
E

p L2 .
ε

p
ij,k (28)

When there is damage in the material, the Helmholtz free energy function can be
defined as the following form with the dissipation potential function according to the first
law of thermodynamics:

W = Ψ−Φ =

1
2

(
εij − ε

p
ij

)
Ce

ijkl

(
εkl − ε

p
kl

)
+ 1

2 ηe
ijkΛijklmnηe

lmn +
1
2 ε

p
ijC

pd
ijklε

p
kl +

1
2 Gl2η

p
ijkη

p
ijk

−
√

2
3

.
ε

p
ij

.
ε

p
ij + L2 .

ε
p
ij,k

.
ε

p
ij,k

√
2
3 qD

ij qD
ij + L−2τD

ijkτD
ijk

(29)

where Ce
ijkl is fourth-order elastic tensor; Λijklmn is the sixth-order elastic strain gradient

damage tensor, Λijklmn = l2Ce
ijlmδkn; Cpd

ijkl is fourth-order plastic damage tensor,

Cpd
ijkl =

(
1− D + δijD/3

)
Cp

ijkl ; G is the shear modulus, G = (1− d)E/[2(1 + ν)]; l is the
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internal length parameter closely related to the micro-cracks and micro-defects in the rocks,
and is an inherent parameter of the material; δkn is a Kronecker symbol; D is the modified
damage variable, D = δd; δ is the correction parameter of the damage variable; d is the
damage variable. Generally speaking, there is no damage when a material is in elastic
state, and damage begins to appear when it enters plastic state. So, we define the following
expression of the damage evolution equation:

d = 1− κi
κ

[
(1− α) + αe−β(κ−κi)

]
(30)

where κi is the threshold for damage initiation; α and β are two material parameters; Ce
ijlm

is elastic tensor of the isotropic body, and its matrix expression is:

Ce
ijlm =



E(1−ν)
(1+ν)(1−2ν)

Eν
(1+ν)(1−2ν)

Eν
(1+ν)(1−2ν)

0 0 0

Eν
(1+ν)(1−2ν)

E(1−ν)
(1+ν)(1−2ν)

Eν
(1+ν)(1−2ν)

0 0 0

Eν
(1+ν)(1−2ν)

Eν
(1+ν)(1−2ν)

E(1−ν)
(1+ν)(1−2ν)

0 0 0

0 0 0 E
2(1+ν)

0 0

0 0 0 0 E
2(1+ν)

0

0 0 0 0 0 E
2(1+ν)


(31)

The plastic tensor Cp can take the following form according to the incremental theory
in the elastoplastic theory:

Cp =
Ce ∂g

∂σ

(
∂ f
∂σ

)T
Ce(

∂ f
∂σ

)T
Ce ∂g

∂σ −
∂ f
∂H

(
∂H
∂εp

)T ∂g
∂σ

(32)

where H is the hardening function. Since rocks have both plastic hardening and plastic
softening characteristics (Figure 4), its manifestation is defined as the following exponential
form:

H = H
(

ε
p
ij

)
= k1ε

p
ij exp

(
k2 I1 − k3ε

p
ij

)
(33)

where ki (i = 1, 2, 3) is the material parameter; I1 is the first stress invariant representing the
average stress or hydrostatic stress. The f and g in Equation (32) are the yield function and
plastic potential function defined in Section 3.2, respectively.

Figure 4. Stress–strain curve of rocks [8].
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The elastoplastic damage constitutive equation considering the strain gradient can be
derived from the free energy function strain and strain gradient according to the second
law of thermodynamics:

σij =

{
Ce

ijklε
e
kl(

1− D + δijD/3
)
Cp

ijklε
p
kl −

2
3

Σ
Ep ε

p
kl

(34)

τijk =


l2Ce

ijklδmnηlmn

(1−D+δijD/3)Cp
ijkl

2(1+ν)
l2np

ijk −
Σ
Ep l2ε

p
kl

(35)

4. Obtained Mapping Function
4.1. Basic Assumption

Some scholars [21–27] conducted preliminary research on the elastoplastic solution
of non-circular caverns, including elastoplastic boundary and displacement field. Like
these scholars, we apply the method of conformal function to solve the displacement and
stress of the high side wall cavity. The specific steps are as follows: For the unit circular
cavern with a radius of 1 in the physical z plane and the unit circle in the complex plane ζ,
the complex variable function method is used to conformally map the outer region of the
circular cavern in the z plane to the outer region of the unit circle in the complex plane ζ. In
this case, the elastoplastic solution of the circular cavern in the physical plane z is the same
as that of the unit circle in the complex plane ζ. They extended it to non-circular caverns,
and inversely mapped the plastic zone and displacement distribution on the complex plane
ζ to obtain the plastic zone and displacement distribution on the physical plane.

The result of conformal transformation is to change the singly connected domain to
be discussed on the z-plane into the inside or outside of the unit circle centered on the
origin on the complex plane ζ, and the boundary line of this area is transformed into the
circumference of the unit circle. The position of any point on the ζ plane is expressed in
polar coordinates as:

ζ = ρeiθ = ρ(cos θ + i sin θ) (36)

The coordinate lines are circumferential and radial. The circumferential line is repre-
sented by ρ = const, and the radial line is represented by θ = const. The two are always
orthogonal at each point (Figure 5). According to the nature of conformal transformation,
the curves corresponding to the two groups of lines on the z-plane are also orthogonal. The
curves on the two groups of z-planes can be regarded as the coordinate lines of the orthogo-
nal curve coordinate system on the z-plane. So we also use ρ = const and θ = const to sign,
but the ρ = const and θ = const lines on the z-plane are no longer circular and radial lines.
Through the rectangular coordinate system and orthogonal curvilinear coordinate system,
the coordinate transformation formulas of displacement and stress components between
the rectangular coordinate system in the physical plane and polar coordinate system in the
complex plane can be established.

4.2. Coordinate Transformation of Displacement Component

From Figure 5, it can be obtained that:{
ux = uρ cos α− uθ sin α
uy = uρ sin α + uθ cos α

(37)

where α is the angle between the ρ axis and the x axis in the z plane; ux and uy are the
displacements in x and y directions of a point in the cavern in the physical z plane, and uρ
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and uθ are the displacements in ρ and θ directions of a point in the complex plane ζ. The
points in two different planes are connected by conformal mapping function:

ux + iuy =
(
up cos α− uθ sin α

)
+ i
(
up sin α + uθ cos α

)
=
(
up + iuθ

)
(cos α + i sin α) = eiα(up + iuθ

) (38)

Figure 5. (a) Polar coordinates system in ζ plane; (b) orthogonal curvilinear coordinates in z plane.

It can be seen from the above formula that the corresponding relationship between
the displacement components in two coordinate systems can be obtained only when eiα is
calculated. Since the ρ = const and θ = const curve families on the z-plane are connected
by the ρ = const and θ = const curve families on the ζ plane through z = ω(ζ), eiα should
start from this. Assuming that point B is given an infinitesimal increment dz along the ρ
axis on the z-plane, corresponding to the infinitely small increment dζ of point A on the ζ
plane along the radial direction, then dz and dζ are, respectively:

dz = eiα|dz|, dζ = eiθ |dζ| (39)

Because of z = ω(ζ), we can obtain:

dz = ω′(ζ)dζ, |dz| =
∣∣ω′(ζ)dζ

∣∣ = ∣∣ω′(ζ)∣∣|dζ| (40)

Then, we can obtain the following results:

eiα =
dz
|dz| =

ω′(ζ)dζ

|ω′(ζ)||dζ| = eiθ ω′(ζ)

|ω′(ζ)| =
ζ

ρ

ω′(ζ)

|ω′(ζ)| (41)

Therefore, the corresponding relationship between the rectangular coordinate system
in the physical plane and the displacement component in the polar coordinate system in
the complex plane is:

ux + iuy =
ζ

ρ

ω′(ζ)

|ω′(ζ)|
(
up + iuθ

)
(42)

4.3. Coordinate Transformation of Stress Component

According to the axis formula in elastoplastic mechanics, the coordinate transforma-
tion formulas of the stress components in the following two different coordinate systems
can be obtained: 

σρ = 1
2
(
σx + σy

)
+ 1

2
(
σx − σy

)
cos 2α + τxy sin 2α

σθ = 1
2
(
σx + σy

)
− 1

2
(
σx − σy

)
cos 2α− τxy sin 2α

τρθ = 1
2
(
σy − σx

)
sin 2α + τxy cos 2α

(43)
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It is obvious from the above equation that there is σx + σy = σρ + σθ , and it follows that:

σρ − σθ + 2iτρθ =
(
σy − σx

)
cos 2α− τxy sin 2α + 2i

[
1
2
(
σy − σx

)
sin 2α + τxy cos 2α

]
=
(
σy − σx

)
(cos 2α + i sin 2α) + 2iτxy(cos 2α + i sin 2α)

=
(
σy − σx + 2iτxy

)
e2iα

(44)

According to the previous expression of eiα (Equation (25)), e2iα can be determined as:

e2iα ==
ζ2

ρ2
[ω′(ζ)]2

|ω′(ζ)|2
=

ζ2

ρ2
[ω′(ζ)]2

ω′(ζ)ω′(ζ)
=

ζ2

ρ2
ω′(ζ)

ω′(ζ)
(45)

Thus, the following corresponding relations of stress components in the two coordinate
systems are obtained:

σy − σx + 2iτxy =
ρ2

ζ2
ω′(ζ)

ω′(ζ)

(
σθ − σρ + 2iτρθ

)
(46)

4.4. Approximate Solution of the Mapping Function

For high sidewall cavern, the mapping function from the outer domain of the cavern
to the outer domain of the unit circle often takes the following form:

Z = ω(ζ) = c
(

ζ − a1

ζ
− a2i

2ζ2 − · · · −
an−1

(n− 1)ζn−1 −
ani
nζn

)
(47)

In the physical plane, the sidewall and bottom plate of the high sidewall cavern have
a tendency to curve toward the inside of the cavern. That is, for the straight-line boundary
part, when the number of mapping items is small, the boundary of the cavern determined
by the mapping function is a curved edge. As the number of terms increases, the accuracy
of the mapping becomes higher and higher, and the boundary of the cavity obtained by
the mapping function gets closer to a straight line. Usually n = 4, that is, taking 5 terms has
sufficient accuracy, so the integral function is taken as:

Z = ω(ζ) = c
(

ζ − a1

ζ
− a2i

2ζ2 −
a3

3ζ3 −
a4i
4ζ4

)
(48)

where, ai(i = 1, 2, 3, 4) is a real constant, and there is a corresponding real constant a for hole
shapes with different height span ratios ai, c. Based on the FORTRAN language, a mapping
function parameter solving program was written according to the Schwarz–Christoffel
formula. The parameters of the mapping function are shown in Table 1.

Table 1. The parameters of the mapping function.

c a1 a2 a3 a4

1.512308 0.269926 0.029007 0.366010 −0.158103

5. Numerical Results and Discussions
5.1. Basic Assumption

Considering the mechanical calculation model, when the length of the deep-buried
horizontal cavern is large, it can be treated as a plane strain problem. Meanwhile, in
classical elasto-plastic mechanics, a circular cavern under pressure and regardless of a
body force is considered as a cylinder buried in an infinite elastoplastic body subjected to a
uniform pressure q. Therefore, we define the following basic assumptions (Figure 6):

a. R0 is the radius of the circular cavern, Rp is the radius of the plastic zone.
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b. The cavern is a deep buried cavern with infinite longitudinal length, and the uniform
geostress p0 is applied at the infinite distance of the cross section, regardless of
body force.

c. The surrounding rock of the cavern is isotropic elastic-plastic material.
d. The compressive stress is positive and the tensile stress is negative.

Figure 6. Mechanical state diagram of the surrounding rock of circular cavern.

5.2. Derivation of Balance Equation

Based on the basic assumptions, the cavern is an axisymmetric plane strain problem,
ignoring body force. Due to the axial symmetry of the mechanical state of the surround-
ing rock of the deep cavern, it can be known that the displacement of any point in the
surrounding rock is only a function of r, so the simplified geometric equation is:

εrr =
du
dr , εθθ = u

r

ηrrr =
d2u
dr2 , ηθθr =

1
r2

(
r du

dr − u
)

ηrθθ = ηθrθ = 1
r

(
du
dr −

u
2r

) (49)

According to the basic assumptions ignoring physical strength, the balance equation
in the plane strain problem can be simplified to:

∂σ∗rr
∂r

+
1
r
(σ∗rr − σ∗θθ) = 0 (50)

In the above equation, σ∗rr and σ∗θθ are the generalized radial and tangential stresses in
the surrounding rock after considering the higher order stress terms, respectively, and their
expressions are as follows: σ∗rr = σrr −

[
∂τrrr

∂r + 1
r (τrrr − τθθr − τrθθ)

]
σ∗θθ = σθθ −

[
∂τrrr

∂r + 1
r (τθrθ + τθθr + τrθθ)

] (51)
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Substituting Equation (50) into Equation (49), the static equilibrium equation with
higher-order stress terms can be obtained:

∂σrr

∂r
+

σrr − σθθ

r
− ∂2τrrr

∂r2 +
1
r

∂(τθrθ + τθθr + τrθθ − 2τrrr)

∂r
+

τθrθ + τθθr + τrθθ

r
= 0 (52)

For the problem of thick-walled cylinders, the internal and external boundary condi-
tions are: {

Tr = −σrr +
∂τrrr

∂r −
1
r (τrrr + τθθr)

∣∣r=R0 = 0
Rr = τrrr

∣∣r=R0 = 0 (53)

{
Tr = σrr − ∂τrrr

∂r + 1
r (τθθr − τrrr + 2τrθθ)|r=Re = p0

Rr = τrrr|r=Re = 0
(54)

where Tr and Rr are surface traction and high-order surface traction, respectively.

5.3. Derivation of Related Equations for Surrounding Rock of Deep Circular Cavern

The damage is not considered when the surrounding rock is in an elastic state. Com-
bining the previous constitutive equations (Equations (34) and (35)) and the equilibrium
equation (Equation (52)) together, the equilibrium equation for the elastic stage of the
surrounding rock of the cavern can be obtained:

.
u,rrrr −

11
5r

.
u,rrr −

(
61

20r2 +
λ + 2G

5cl2

)
.
u,rr +

(
51

20r3 +
λ + 2G
5crl2

)
.
u,r −

(
51

20r4 +
λ + 2G
5crl2

)
.
u = 0 (55)

In order to solve the above-mentioned fourth-order ordinary differential equation
and transform the higher-order ordinary differential equilibrium equation into a system of
first-order differential equations, the following auxiliary variables need to be defined first:

y1(r) =
.
u

y2(r) =
dy1
dr

y3(r) =
dy2
dr

y4(r) =
dy3
dr

(56)

The following expression can be obtained:

f (Y, r) =
d
dr


y1
y2
y3
y4

 =


y2
y3
y4

k1y1 + k2y2 + k3y3 + k4y4

 (57)

The corresponding coefficients in the above formula are: k1 = 51
20r4 − λ+2G

5cr2l2 ,
k2 = λ+2G

5crl2 − 51
20r3 , k3 = 61

20r2 + λ+2G
5cl2 , k4 = 11

5r . The boundary conditions at the bound-
ary of the elastic zone (r = Re) can also be obtained:

[
−5cl2y4 − 5cl2

2r y3 −
(

λ + 2G + 59cl2

4r2

)
y2 +

(
25cl2

2r3 − λ
r

)
y1

]
|r=Re = 0

cl2
(

5y3 +
4
r y2 − 13

4r2 y1

)
|r=Re = 0

(58)

From the previously assumed yield function (Equation (16)), using the method of
calculating the stress and displacement of the surrounding rock plastic zone used [49], we
can obtain:

σrr − σθθ = −
6ασrr

[(
1− D + δijD/3

)
Cp

ijkl −
2Σ
3Ep

]
+ 2k1σrr exp

[
k2 I1 − k3σrr/

((
1− D + δijD/3

)
Cp

ijkl

)
− 2Σ

3Ep

]
(√

1− 3α2 + 3α
)[(

1− D + δijD/3
)
Cp

ijkl −
2Σ
3Ep

] (59)
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Then, the equation of the plastic damage state of the surrounding rock of the cavern
can be obtained:[(

1− D + δijD/3
)
Cp

ijkl −
2Σ
3Ep

](
−5cl2) .

u,rrrr +
[(

1− D + δijD/3
)
Cp

ijkl −
2Σ
3Ep

](
− 11cl2

r

) .
u,rrr

+
[(

1− D + δijD/3
)
Cp

ijkl −
2Σ
3Ep

](
λ + 2G− 2G

r2 + 19cl2

2r2

) .
u,rr +

[(
1− D + δijD/3

)
Cp

ijkl −
2Σ
3Ep

](
λ+2G

r + 21cl2

4r3

) .
u,r

+
[(

1− D + δijD/3
)
Cp

ijkl −
2Σ
3Ep

](
51cl2

4r4 − λ
r2

) .
u +

[(
1− D + δijD/3

)
Cp

ijkl −
2Σ
3Ep

]′(
−10cl2) .

u,rrr

+
[(

1− D + δijD/3
)
Cp

ijkl −
2Σ
3Ep

]′(
− 15cl2

r

) .
u,rr +

[(
1− D + δijD/3

)
Cp

ijkl −
2Σ
3Ep

]′(
λ + 2G + 8cl2

r2

) .
u,r

+
[(

1− D + δijD/3
)
Cp

ijkl −
2Σ
3Ep

]′(
λ
r −

51cl2

4r3

) .
u +

[(
1− D + δijD/3

)
Cp

ijkl −
2Σ
3Ep

]′′ (
−5cl2) .

u,rr

+
[(

1− D + δijD/3
)
Cp

ijkl −
2Σ
3Ep

]′′(
− 4cl2

r

) .
u,r +

[(
1− D + δijD/3

)
Cp

ijkl −
2Σ
3Ep

]′′( 13cl2

4r2

) .
u = 0

(60)

Substituting the previous static balance equation (Equation (36)) can obtain:

∂σrr
∂r −

6ασrr

[
(1−D+δijD/3)Cp

ijkl−
2Σ

3Ep

]
+2k1σrr exp

[
k2 I1−k3σrr/

(
(1−D+δijD/3)Cp

ijkl

)
− 2Σ

3Ep

]
(
√

1−3α2+3α)
[
(1−D+δijD/3)Cp

ijkl−
2Σ

3Ep

]
r

− ∂2τrrr
∂r2 + 1

r
∂(τθrθ+τθθr+τrθθ−2τrrr)

∂r + τθrθ+τθθr+τrθθ
r = 0

(61)

Define the same auxiliary variable as the elastic segment (Equation (56)), but the
expression should be written as follows:

f (Y, r) =
d
dr


y1
y2
y3
y4

 =



y2
y3
y4
(g1 Ay4 + g2 Ay3 + g3 Ay2 + g4 Ay1
+g5 A′y4 + g6 A′y3 + g7 A′y2 + g8 A′y1
+g9 A′′ y3 + g10 A′′ y2 + g11 A′′ y1)/B

 (62)

The corresponding coefficients in the above formula are: g1 = − 11cl2

r ,
g2 = λ + 2G − 2G

r2 + 19cl2

2r2 , g3 = λ+2G
r + 21cl2

4r3 , g4 = 51cl2

4r4 − λ
r2 , g5 = −10cl2, g6 = − 15cl2

r ,

g7 = λ + 2G + 8cl2

r2 , g8 = λ
r −

51cl2

4r3 , g9 = −5cl2, g10 = − 4cl2

r , g11 = 13cl2

4r2 . The expressions
of A, B and E are as follows:

A =
(
1− D + δijD/3

)
Cp

ijkl −
2Σ
3Ep

B =
[(

5cl2)A−
(

13cl2

4r2

)
Ey1 +

(
4cl2

r

)
Ey2 +

(
5cl2)Ey3

]
E =

l2y3

[
1− κi

κ

[
(1−α)+αe−β(κ−κi)

]]
[√

4
3 y2

2+
4
9 ε2

0+l2
(

y2
3+3

y2
2

r2 +
3
2

y2
1

r4 −4 y2y1
r3

)]3

(63)

The boundary conditions at the inner boundary (r = R0) of the post peak strain
softening zone can be obtained:

(
5cl2)Ay4 +

(
− 5cl2

2r

)
Ay3 +

(
− 11cl2

r2 − λ− 2G
)

Ay2 +
(
− cl2

2r3 − λ
)

Ay1

+
(
5cl2)A′y3 +

(
4cl2

r

)
A′y2 +

(
− 13cl2

4r2

)
A′y1

∣∣∣
r=R0

= 0(
5cl2)Ay3 +

(
4cl2

r

)
Ay2 +

(
− 13cl2

4r2

)
Ay1

∣∣∣
r=R0

= 0

(64)

5.4. Solution Method for Displacement and Stress

The equilibrium equation (Equation (55)) in the elastic state and the equilibrium equa-
tion (Equation (61)) in the plastic damage state are both fourth-order ordinary differential
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equations (ODE), and the corresponding boundary conditions (Equation (57)) and (Equa-
tion (64)) are third-order ordinary differential equations. It is almost impossible to obtain
analytical solutions to the above problems. Therefore, the numerical solutions of the above
problems are solved by using MATLAB numerical analysis software.

The boundary conditions given in the above problems belong to boundary value
problems at the inner and outer boundaries of surrounding rock; when the ODE45 function
is used in MATLAB numerical analysis software, it should be first transformed into initial
value problems. ODE45 is a special function for solving differential equations in MATLAB
numerical analysis software, which adopts the fourth-fifth order Runge–Kutta algorithm.
Its fourth-order algorithm provides candidate solutions, and the fifth-order algorithm
controls errors. It is an adaptive step size numerical solution of ordinary differential
equations and solves Nonstiff ordinary differential equations.

When applying the ODE45 function to solve high-order ordinary differential equations,
it is necessary to provide initial solutions for calculation intervals and differential equa-
tions, and it is also necessary to convert high-order differential equations into first-order
differential equations. The first-order differential equations transformed by higher-order
differential equations have been given in the previous section. In order to solve the differ-
ential equation, it is still necessary to give the initial solution of the differential equation on
the boundary. In the above problem, the surrounding rock in the range of A is in an elastic
state. It is required to solve the fourth-order ordinary differential equation in the elastic
zone (Equation (55)), and the initial solution on the outer boundary (Equation (58)) must
be given, that is, the derivative values of each order of displacement at r = Re (y1(Re) = u,
y2(Re) = u,r, y3(Re) = u,rr and y4(Re) = u,rrr).

From the calculation and analysis of Zhao et al. (2007), it can be seen that the dis-
placement value obtained by applying two different theories (classical theory and strain
gradient theory) in the elastic stage is not much different from its first derivative value.
Therefore, the displacement value (u|Re ) and the displacement first derivative value (u,r|Re )
at E can be roughly estimated from the analytical solution of the thick-walled cylinder
in the classical elastic theory, and then u|Re and u,r|Re are substituted into the boundary
conditions (Equation (58)) to obtain u,rr|Re and u,rrr|Re . In this way, the initial solution
on the boundary required to solve the higher-order differential equation is obtained. The
analytical solution of the thick-walled cylinder in the classical elastic theory is as follows: u = 1−υ

E
paa2−pbb2

b2−a2 r + 1+υ
E

(pa−pb)a2b2

b2−a2
1
r

u′ = 1−υ
E

paa2−pbb2

b2−a2 − 1+υ
E

(pa−pb)a2b2

b2−a2
1
r2

(65)

In the above equation, E and ν are the elastic modulus and Poisson’s ratio of the
surrounding rock respectively, a and b are the inner and outer diameters of the cylin-
der respectively, and pa and pb are the pressures on the inner and outer walls of the
cylinder, respectively.

Due to the continuity of the deformation of the surrounding rock of the cavern, r = Rp
is both the inner boundary of the elastic zone and the outer boundary of the plastic damage
zone, that is to say, the surrounding rock conforms to the equilibrium equation of the elastic
zone (Equation (39)) and plastic damage zone (Equation (45)). Therefore, the following
method is used to determine the size of Rp: first, the calculation interval is set as r ∈ [R0, Re];
combined with the initial values of the displacement derivatives u|Re , u,r|Re , u,rr|Re and
u,rrr|Re on the outer boundary of the elastic zone are estimated and determined; the ODE45
function in MATLAB is used to solve the differential equations (Equation (57)), and the
numerical solution of each point in the range of R0 ≤ r ≤ Re can be obtained. According to
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the research of Gao et al. [8], find a point that satisfies the Equation (66), and the distance
between this point and the center of the roadway is the size of Rp.

ε̃ =

√√√√4
3

u′2 +
4
9

ε2
0 + l2

(
u′′ 2 + 3

u′2

r2 +
3
2

u2

r4 − 4
u′u
r3

)
= ε f (66)

After the boundary between the elastic zone and plastic damage zone is determined,
the displacement derivatives (u|Re , u,r|Re , u,rr|Re and u,rrr|Re ) on the inner boundary of
the elastic zone can be calculated; it is taken as the initial value on the outer boundary of
the plastic damage zone, and the calculation interval is set as r ∈

[
R0, Rp

]
; the numerical

solution (u, u,r, u,rr and u,rrr) of each point in the range of R0 ≤ r ≤ Rp can be obtained by
solving the differential equations (Equation (62)) with ODE45 function in MATLAB.

Take the derivative values of the displacements (u
∣∣R0 , u,r

∣∣R0 , u,rr
∣∣R0 and u,rrr

∣∣R0 ) on
the boundary of the plastic damage zone and substitute them into Equations (67) and (68)
to check the calculation errors. This calculation error is caused by the estimated initial
value (u|Re , u,r|Re , u,rr|Re and u,rrr|Re ) on the outer boundary of the elastic zone. If the error
meets the requirements (F0 ≤ TOL), the calculation ends to obtain the numerical solution
of the entire calculation area; if the error does not meet the requirements (F0 > TOL), adjust
the initial value on the outer boundary of the elastic zone and repeat the above calculation
steps until the error meets the requirements, and obtain the numerical solution of the entire
calculation area. The calculation flowchart of the solution process is shown in Figure 7.

f 0
T =

(
5cl2)Au,rrr +

(
− 5cl2

2r

)
Au,rr +

(
− 11cl2

r2 − λ− 2G
)

Au,r

+
(
− cl2

2r3 − λ
)

Au +
(
5cl2)A′u,rr +

(
4cl2

r

)
A′u,r +

(
− 13cl2

4r2

)
Du
∣∣∣
r=R0

f 0
R =

(
5cl2)Au,rr +

(
4cl2

r

)
Au,r +

(
− 13cl2

4r2

)
Au
∣∣∣
r=R0

(67)

F0 =

√(
f 0
T
)2

+
(

f 0
R
)2 (68)

5.5. Analysis of Theoretical Calculation Results

In this paper, the radial displacement, radial stress, and tangential stress distribution
of the high sidewall cavern are obtained using rock parameters (Table 2) of the Pubugou
Hydropower Station as calculation parameters. The top of the main powerhouse is 360 m
from the ground surface and the cross-section size of the cavern cross-section is measures
26.8 m × 70.1 m. Then, the theoretical calculation results are compared and analyzed with
the geomechanical model test results [50] to initially verify the applicability of the splitting
failure elastic-plastic damage model in the study of splitting damage in a deep cavern. The
geomechanical model test program and results are shown in Figures 8 and 9, respectively.

Table 2. Rock parameters in theoretical calculation.

Initial Elastic
Modulus/GPa

Unit
Weight/(KN·m−3)

Compressive
Strength/MPa

Tensile
Strength/MPa Peak Strain Ultimate

Strain
Poisson’s

Ratio
Lame

Constant/GPa

Internal
Length

Parameter/m

41.50 26.60 128.80 8.00 9.38× 10−3 16.68× 10−3 0.27 16.34 0.01

Using the above calculation parameters, the numerical solution of the radial displace-
ment, radial stress, and tangential stress of the rock of the high sidewall cavern is calculated
according to the solution process shown in Figure 7. In this section, in order to facilitate the
comparison between theoretical calculation results and model test results, all model test
results are converted into prototypes based on the principles of similitude. Figure 10 shows
the radial displacement distribution diagram of the surrounding rock of the high sidewall
cavern. The theoretically calculated values and experimentally measured values of the
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radial displacement, radial stress, and tangential stress at the corresponding positions of
the measuring points around the cavern are listed in Table 3.

Figure 7. The calculation flow chart of the solution process.
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Figure 8. (a) Model dimensions of surrounding rock (Unit: mm); (b) geo-mechanical model test
loading scheme.

Figure 9. The fracture mode of the splitting failure model test of the high sidewall cavern. (a) 100 mm from the front
boundary of the model; (b) 200 mm from the front boundary of the model; (c) 300 mm from the front boundary of
the model [50].

It can be seen from Figure 10 that the radial displacement at the high sidewall of the
cavern obtained by using the elastic-plastic damage model of splitting failure shows an
oscillating attenuation, and the oscillation amplitude gradually decreases with an increase
in the distance from the sidewall, which is consistent with the variation measured by the
model test. Because the theoretical model ignores the influence of excavation damage, the
calculated displacement value is less than the displacement value of the model test. The
difference close to the sidewall is as small as no more than 13%, and the value at the trough
of the oscillating change is quite different, with the maximum difference being 12.66 mm.
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Comparing the measured values in Table 3 with the calculated values, it can be seen that
they are very close in most positions. It is preliminarily confirmed that the elasto-plastic
damage model of splitting failure is applicable to the study of splitting failure of high
sidewall cavern.

Figure 10. Variation of the radial displacement around the cavern.

Table 3. Radial displacement around the cavern.

Location Category
Radial Displacement Value/mm

0.1 L 0.5 L L 1.5 L 2 L 3 L

Right sidewall Model test 63.0 27.0 36.0 9.0 18.0 3.0
Theoretical calculation 58.30 14.34 30.82 4.82 10.94 0.30

Right hance Model test 57.0 24.0 30.0 7.5 15.0 3.0
Theoretical calculation 49.92 12.98 25.48 3.50 9.71 0.30

Vault
Model test 42.0 30.0 24.0 15.0 9.0

Theoretical calculation 32.75 12.81 10.17 3.24 0.14

Left hance
Model test 57.0 18.0 33.0 7.5 15.0 1.5

Theoretical calculation 49.92 12.98 25.48 3.50 9.71 0.30

Left sidewall
Model test 64.5 21.0 34.5 6.0 16.5 1.5

Theoretical calculation 58.30 14.34 30.82 4.82 10.94 0.30

The stress distribution of rock of the high sidewall cavern was also obtained by
using the splitting failure elastoplastic damage model, as shown in Figures 11 and 12.
Tables 4 and 5 present the radial and tangential stresses of theoretical calculations and
model tests, respectively. Figure 11 shows the comparison of the radial stress distribution
between theoretical calculation and model test. We find that the distribution of radial
stresses is similar to that of displacements. The calculated radial stress value is relatively
close to the test monitoring result, and the maximum difference does not exceed 2 MPa.
As shown in Figure 12, the theoretically calculated tangential stress distribution is also
consistent with the model test. When the distance from the sidewall is less than L, the rock
is in a plastic state and the tangential stress is released; when the distance from the sidewall
is greater than L, the tangential stress is concentrated and the rock is in an elastic state.
The tangential stresses at the vault are all greater than the in-suit value (σθ = 15.25 MPa).
Due to ignoring the excavation disturbance, the calculated value of the tangential stress
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is generally greater than the test value. When the tangential stress just appears to be
concentrated, the gap is large, and the maximum gap between the two is 28.83%.

Figure 11. Variation of the radial stress around the cavern.
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Table 4. Radial stress around the cavern.

Location Category
Radial Stress Value/MPa

0.1 L 0.5 L L 1.5 L 2 L 3 L

Right sidewall Model test −1.32 −6.20 −4.90 −8.61 −7.96 −11.77
Theoretical calculation −2.62 −8.33 −4.90 −9.68 −9.13 −12.76

Right hance Model test −1.22 −7.24 −4.79 −9.59 −8.89 −12.57
Theoretical calculation −3.82 −8.53 −7.07 −10.67 −10.31 −13.45

Vault
Model test −2.08 −6.94 −8.21 −10.39 −12.63

Theoretical calculation −4.50 −8.36 −10.41 −12.41 −14.08

Left hance
Model test −1.38 −7.57 −4.90 −9.12 −8.21 −11.93

Theoretical calculation −3.82 −8.53 −7.07 −10.67 −10.31 −13.45

Left sidewall
Model test −1.82 −6.60 −4.88 −8.17 −7.98 −11.85

Theoretical calculation −2.62 −8.33 −4.90 −9.68 −9.13 −12.76

Table 5. Tangential stress around the cavern.

Location Category
Tangential Stress Value/MPa

0.1 L 0.5 L L 1.5 L 2 L 3 L

Right sidewall Model test −3.83 −6.94 −20.36 −17.48 −19.38 −16.08
Theoretical calculation −4.82 −12.13 −26.29 −22.34 −23.51 −17.28

Right hance Model test −2.09 −8.39 −19.91 −16.99 −18.68 −16.39
Theoretical calculation −5.33 −12.77 −24.16 −21.16 −22.75 −16.79

Vault
Model test −23.39 −19.83 −16.4 −15.88 −15.12

Theoretical calculation −26.59 −23.49 −20.46 −19.55 −17.62

Left hance
Model test −2.92 −9.24 −19.35 −17.72 −19.55 −16.18

Theoretical calculation −5.33 −12.77 −24.16 −21.16 −22.75 −16.79

Left sidewall
Model test −2.07 −8.58 −18.71 −17.95 −19.29 −16.97

Theoretical calculation −4.82 −12.13 −26.29 −22.34 −23.51 −17.28

The numerical solution of the radial displacement and radial stress of the surrounding
rock of the high side wall cavern using the splitting failure elastoplastic damage softening
model for theoretical calculations shows that the oscillation attenuation occurs alternately
with wave crests and wave troughs. This is completely different from the monotonic
attenuation obtained by using the classic continuous elastoplastic model and is consistent
with the change rule obtained by the geomechanical model test. This indicates that the split
failure elastoplastic damage model can explain the split failure of high side wall caverns
under high ground stress conditions.

In order to study the formation mechanism of splitting failure of high sidewall caverns
of hydropower stations, we compared the distribution of tangential stress around the high
sidewall caverns under different height–span ratios, as shown in Figure 13. We find that
the stress distribution of the surrounding rock of the high side wall cavern is significantly
affected by the height–span ratio. The tangential stress is unevenly distributed along the
boundary of the cavern and is symmetrically distributed along the central axis of the
cavern. There are obvious stress fluctuations in surrounding rock near the vault, arch toe,
and lower corner of the side wall. With an increase in the height–span ratio of the cavern,
the tangential stress of the vault and the lower corner becomes larger and larger. The
maximum tangential stress at the midpoint of the side wall shows a decreasing trend. The
release of the tangential stress increases gradually, and the damage of the surrounding rock
increases gradually.
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Figure 13. Variation of tangential stress of high side wall caverns with different height–span ratios.

6. Conclusions

Based on the strain gradient theory and continuum damage mechanics, the splitting
failure elasto-plastic damage model is established. By using complex variable function
mapping, the variations of radial displacement, radial stress, and tangential stress of
surrounding rock of high sidewall cavern are obtained. The theoretical calculation results
and model test results are compared and analyzed, and the following research conclusions
are obtained:

(1) A yield function with strain gradient is established, which can describe the plastic
hardening and softening of quasi-brittle materials such as rock at the same time.
Based on this, an elastic-plastic damage softening constitutive model considering
strain gradient is established.

(2) The calculation program is compiled by MATLAB software, and the variations of
radial displacement, radial stress, and tangential stress of surrounding rock of circular
cavern are calculated. Then, the variations of high side wall cavern under high ground
stress are mapped by using the obtained mapping function.

(3) The theoretical calculation value and the measured value of the model test are in good
agreement in both the value and the variations, which confirms the applicability of
the splitting failure elasto-plastic damage model.

(4) Through comparison, the variations of tangential stress in high side wall caverns with
different height–span ratios are obtained: as the height-to-span ratio of the cavern
increases, the tangential stress release at the sidewall gradually increases, and the
damage to the surrounding rock also gradually increases.

7. Recommendations for Future Research

In this paper, an elastoplastic damage softening constitutive model that can simultane-
ously describe the plastic hardening and softening processes of rock and other quasi-brittle
materials considering the strain gradient is established. In addition, we use the model
to calculate the displacement and stress values of the split failure of the high side wall
cavity. Among them, the internal length parameter of the material is related to the in-
ternal microstructure of the rock material and is a key parameter in the strain gradient
theory. At present, the method of determining the internal length parameters of materials
by measuring the width of the shear band can only be applied to specific models and
materials and does not have broad significance. Therefore, it is necessary to further study
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the corresponding relationship between the internal length parameters and their internal
microstructure in order to accurately determine the internal length parameters.
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Nomenclature

εij Euler strain tensor
σij Cauchy stress tensor
ηijk Higher-order strain terms
τijk Higher-order stress tensors
εe

ij Elastic strain tensor
ε

p
ij Plastic strain tensor

ηe
ijk Elastic higher-order strain terms

η
p
ijk Plastic higher-order strain terms

δWi Virtual work
V Internal unit volume
qij Micro stress tensor
ni Normal vector
Ti Traction
tij Higher-order external force
f , F Yield function
H Hardening parameter
g(r) Material weight function
R Radius
ρ0 Influence coefficient
l Internal length parameter of the material
C, λ, α, β, ai, c Constant
κ Hardening modulus
J2 Second invariant of stress deviation
Ep Equivalent plastic strain
ϕ Friction angle
ψ Expansion angle
Σ Effective stress
L Dissipative length parameter
qD

ij Dissipative plastic micro-stress tensor
τD

ijk Dissipative plastic high-order stress tensor
Ce

ijkl Fourth-order elastic tensor
Λijklmn Sixth-order elastic strain gradient damage tensor

Cpd
ijkl Fourth-order plastic damage tensor
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G Shear modulus
δkn Kronecker symbol
D Modified damage variable
δ Correction parameter of the damage variable
d Damage variable
Cp Fourth-order plastic tensor
ζ Complex plane
z Physical plane
ux Displacements
R0 Radius of the circular cavern
Rp Radius of the plastic zone
p0 Uniform geostress
σ∗rr Generalized radial stresses
σ∗θθ Generalized tangential stresses
ε̃ Equivalent strain
ε f Yield strain
F0 Error vector
TOL Tolerance
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