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Abstract: Groundwater quality monitoring in the vicinity of drilling sites is crucial for the protection
of water resources. Selected physicochemical parameters of waters were marked in the study. The
water was collected from 19 wells located close to a shale gas extraction site. The water quality
index was determined from the obtained parameters. A secondary objective of the study was
to test the capacity of the artificial neural network (ANN) methods to model the water quality
index in groundwater. The number of ANN input parameters was optimized and limited to seven,
which was derived using a multiple regression model. Subsequently, using the stepwise regression
method, models with ever fewer variables were tested. The best parameters were obtained for a
network with five input neurons (electrical conductivity, pH as well as calcium, magnesium and
sodium ions), in addition to five neurons in the hidden layer. The results showed that the use of
the parameters is a convenient approach to modeling water quality index with satisfactory and
appropriate accuracy. Artificial neural network methods exhibited the capacity to predict water
quality index at the desirable level of accuracy (RMSE = 0.651258, R = 0.9992 and R2 = 0.9984). Neural
network models can thus be used to directly predict the quality of groundwater, particularly in
industrial areas. This proposed method, using advanced artificial intelligence, can aid in water
treatment and management. The novelty of these studies is the use of the ANN network to forecast
WQI groundwater in an area in eastern Poland that was not previously studied—in Lublin.

Keywords: artificial neural network; prediction; regressions; groundwater; water quality index

1. Introduction

Groundwater is one of the key water supply sources for people worldwide. Its quality
is an issue of grave importance, as it is directly related to human health [1]. Consumption
of contaminated water leads to health problems, as well as increased morbidity and
mortality [2].

Industrial activities present a dire threat to the quality of groundwater [3]. The accel-
erated technological development of our civilization, which is fueled by the energy from
crude oil and gas, has contributed to significant pollution of waters with oil derivatives
among others [4].

Water quality indices (WQI) facilitate the water quality assessment. In some countries,
they have been introduced into legal acts and are often used by the authorities supervising
water quality [5]. One of such indicators is the water quality index (WQI), which is
an established and one of the most effective tools for assessing water quality [6]. It is a
stable, accurate unit of measure that informs about water quality [7]. No single parameter
that characterizes the chemical, physical or biological properties of water can adequately
express the WQI. WQI is typically assessed by measuring a wide range of parameters
(e.g., temperature, pH, electrical conductivity (EC), turbidity, organic matter, metals).
The advantage that WQI has over other assessment methods is that it determines the
overall state of water quality without performing an individual interpretation of particular
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parameters [8]. However, computing the WQI may prove both time and effort-intensive, as
well as occasionally involve unintended errors, which tend to occur when computing sub-
indices. Therefore, mathematical models, especially those based on neural networks, are
worth considering as water quality assessment tools [9]. The application of mathematical
models for modeling water quality can aid in solving the problems with the management
of its quality. Models can simulate the water quality conditions. Such an approach has
numerous advantages, including the reduction in cost and time investment in analyses,
lower demand for laboratory equipment and apparatus, ability to generate large amounts
of synthesized data for analyses, and regeneration of missing data [10]. Mathematical
models have the unique capacity for handling information deficit and unavailability of data,
in addition to the flexibility with respect to limiting the scope of data for the assessment or
prediction of the state of analyzed objects, if necessary.

Currently, an increase in the use of ANNs for predicting the value of the WQI from
the applicable water quality parameters can be observed. ANNs constitute an alternative
method for understanding and monitoring the quality of groundwater as well as the water
in rivers and lakes. They are successfully used as a tool for calculating and predicting the
water quality in various bodies of water.

Various studies examining the water quality index were presented. Hatzikos et al.
(2008) used neural networks with active neurons as a tool to predict the future (daily)
indicators of seawater quality, such as water temperature, pH, dissolved oxygen (DO), and
turbidity. Experimental results yielded interesting information on the target variables and
algorithm efficiency [11]. Yesilnacar et al. (2008) predicted the nitrate concentration in
groundwater using four parameters of temperature, electrical conductivity, groundwater
level, and pH as input parameters in the ANN. The model tracked the experimental
data very closely (R = 0.93). Hence, with the proposed model application, it is possible to
manage groundwater resources in a more cost-effective and easier way [12]. Hore proposed
an ANN for predicting WQI the input parameters of which were seasonal and positional
variability of wastewater parameters under natural conditions [13]. In turn, the ANN-based
model developed by Salman et al. used monthly datasets on turbidity, total hardness, total
dissolved solids, and electrical conductivity of the Shatt Al Arab River [14]. The results
obtained by Chen et al. indicate that ANN models exhibit very high efficiency in predicting
the quality of groundwater, as well as the water in rivers, lakes, and wastewater treatment
plants (WWTP) [15].

The issues which may be encountered during ANN implementation include, e.g.,
inappropriate network structure, selection of an appropriate number of inputs and outputs,
as well as the number of cases used for modeling. Correct network structures are obtained
using past experience as well as the trial-and-error method. Moreover, overlearning of
the network constitutes another problem; however, it can be avoided by analyzing the
appropriate network quality indices [16]. Other frequent issues encountered by researchers
during ANN modeling include the length of the training process and processing of the
model itself, especially in the case of dynamic objects, when real-time results are expected.
However, this problem does not concern the case investigated in this paper.

Reduction in the number of input parameters while maintaining high model efficiency
constitutes a challenge in devising new ANN models for predicting WQI. Moreover, there
are only a few works in which optimal input factors affecting WQI are found.

Therefore, the main motivation of this research was to examine the water quality
based on the ANN approach with a two-layer feed-forward network with sigmoid hidden
neurons and linear output neurons. This study demonstrates the values of the ANN model
for selected water quality variables in various wells found in the direct vicinity of a Natural
Gas Processing Plant, where shale gas is being extracted (Syczyn, Lublin Province, Poland).
During the analytical calculations of WQI, the following physicochemical parameters were
taken into account: pH, EC, TDS, TH, Ca2+, Mg2+, Na+, K+, Cl−, HCO3

−, SO4
2−, NO3

− and
PO4

3−. Reduction in the number of parameters for WQI determination and optimization
of their number and quality of prediction model were assumed.
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Prediction of the water quality in rivers [17], lakes [18], as well as the quality of
seawater [19], and drinking water [20] has been investigated by numerous researchers.
However, the research gap defined there was no research conducted, the groundwater
WQI prediction in drilling areas in Poland is conducted for the first time.

The aim of the research was to optimize the ANN regarding the selection of input
variables for the prediction of groundwater quality index in mining areas. The first step
of the research was to determine the variables that have a significant impact on the WQI
values. For this purpose, it was the multiple regression model that provided the basis for
subsequent analyses, as well as enabled determining key variables and network validation.

The main research contribution is as follows:

1. assessment of the groundwater quality in the vicinity of the shale gas drilling rig by
calculating the WQI;

2. demonstration of the computational prowess of ANNs to create the models capable
of effectively predicting WQI;

3. defining the general framework of the ANN model (selection of the network type; se-
lection of appropriate input data from multiple regression, selection of the number of
hidden neurons; specification of the optimal setting of network learning parameters);

4. optimizing the number of parameters and the quality of the WQI prediction model;
5. creating a neural network model that can be used to directly predict the groundwater

quality status and, thus, provide an alternative to the existing WQI calculation methods.

2. Materials and Methods
2.1. Research Object

The analyzed water samples were taken from 17 dug wells located in the village of
Syczyn and two deepwater wells, which constitute drinking water intakes for the Wierzbica
commune in the Lubelskie Voivodeship in Poland (Figure 1). The sampling area is flattened
and its height is in the range of 178–181 m above sea level. The study covered a rural area
where agricultural activities are carried out. The dug wells are located in the immediate
vicinity of the Natural Gas Processing Plant, where the shale gas well is located.
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The closest of the wells is 220 m and the farthest is 600 m away from the plant site.
The two deepwater wells are located 4.9 km and 6.75 km away on the opposite sides of
the gas drilling rig. The groundwater samples were stored in a laboratory refrigerator at
4 ◦C until subjected to the standard analysis procedures in accordance with the American
Public Health Association [21]. Table 1 specifies the methods and standards followed in
the water quality parameters testing.

Table 1. Testing methods employed in the well water analysis.

Parameter Device Norm

pH

ORION multimeter
model: VERSA STAR (TermoFisher Scientific, London,

United Kingdom; The Orion Navigator Pro
computer software)

PN-EN 10390:1997

Electrical conductivity (EC)

ORION multimeter
model: VERSA STAR (TermoFisher Scientific, London,

United Kingdom; The Orion Navigator Pro
computer software)

PN-EN 27888:1999

Total dissolved solids (TD)
and total hardness (TH) Titration kit PN-C-04554-01:1971

Na, K, Ca and Mg
concentrations

ICP-OES JY 238 Ultrace
(Jobin Yvon-Horriba, France, Analyst software) PN-EN ISO 17294-2:2016-11

Bicarbonate (IV) ions (HCO3
−) Titration kit PN-C-04540-01:1990

Nitrates (V) (NO3
−) Foss FIAstar 5000 flow analyzer with photometric

detection (Foss, Hillerod, Denmark, software SoFIA) ISO 13395

Phosphates (V) (PO4
3−)

Foss FIAstar 5000 flow analyzer with photometric
detection (Foss, Hillerod, Denmark, software SoFIA) ISO/FDIS 15681-1

Cl concentration Titration kit Mohr’s method

Sulfates concentration
HACH 8051

Spectrophotometer (Hach Company; AMES, USA,
Application Software Drinking Water DOC022.98.90372)

Testing method
PBL/CH/28/06 edition 02 of

07.11.2011 based on HACH 8051

The methodology for the development of the WQI, MLR and ANN models is shown
in the flowchart (Figure 2).
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2.2. Water Quality Index

The Water Quality Index (WQI) is an assessment technique that reflects the complex
impact of individual water quality parameters on the overall quality of water [22]. Typ-
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ically, for the calculation of WQI, 10 important water quality parameters were selected,
according to the drinking water quality standard recommended by the World Health
Organization [23].

In this study, the physicochemical parameters in the three-step analysis of WQI were
pH, EC, TDS, TH, Ca2+, Mg2+, Na+, K+, Cl−, HCO3

−, SO4
2−, NO3

− and PO4
3−.

In the first step, weights (wi) were assigned to each parameter on a 1–5 scale, reflecting
their relative importance for drinking water quality. The weights for individual water
parameters are presented in Table 2 [24].

Table 2. The weights and relative weight of physicochemical parameters.

Parameters Weight (wi) Relative Weight (Wi)

pH 4 0.093
EC 4 0.093

TDS 5 0.116
TH 3 0.070

Ca2+ 3 0.070
Mg2+ 3 0.070
Na+ 2 0.047
K+ 2 0.047
Cl− 5 0.116

HCO3
− 1 0.023

SO4
2− 5 0.116

NO3
− 5 0.116

PO4
3− 1 0.023

In the second step, relative weights (Wi) were calculated from Equation (1):

Wi = wi/ ∑n
i=1 wi (1)

where Wi is the relative weight, wi is the weight of each parameter, n is the number
of parameters.

Thirdly, from the Formula (2) below, a quality rating scale (qi) was assigned to each
parameter, by dividing its concentration in the water samples by its respective standard as
per the WHO guidelines [23]

qi =
Ci
Si
·100 (2)

where qi is the quality rating, Ci is the concentration of each chemical parameter in each
water sample in milligrams per liter; Si is the drinking water standard for each chemical
parameter in milligrams per liter accordingly.

WQI was derived from Equations (3) and (4)

SIi = Wi·qi (3)

WQI = ∑ SIi (4)

where SIi is the subindex of i-th parameter, qi is the rating based on the concentration of
i—the parameter, n is the number of parameters.

Table 3 presents the results from laboratory tests of physicochemical parameters of
well water, whereas Table 4 shows the classification according to the range and type of
WQI of the water in question.
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Table 3. Physicochemical parameter of water.

Well No.
pH EC Cl− SO42− PO43− NO3− Ca2+ Mg2+ Na+ K+ TDS TH HCO32−

µS/cm mg/L

10 7.55 375.05 17.75 84 6.52 9.13 65.16 2.65 13.45 15.8 240.00 166.19 300.01
13 7.08 762.56 28.40 79 6.33 10.24 107.57 9.49 31.01 75.27 487.68 295.35 251.52
15 8.07 578.73 28.40 85 2.81 0 101.62 6.18 16.79 45.52 369.92 267.58 243.13
16 7.06 775.46 35.50 64 0.44 2.73 195.11 3.42 20.92 4.60 496.00 479.07 30.05
17 6.95 1063.67 78.80 75 7.27 10.88 97.07 12.47 48.05 112.76 680.32 282.57 57.14
18 6.34 1153.35 106.50 240 0.47 11.65 161.02 17.42 70.72 46.89 737.92 455.31 111.21
19 6.80 712.58 46.15 53 0.58 12.14 94.45 9.74 43.55 27.45 455.68 265.11 164.17
20 6.97 875.94 31.95 63 6.91 8.63 84.79 10.92 46.97 100.69 560.00 246.93 267.35
21 7.25 762.24 10.65 81 0.28 12.26 170.84 10.03 21.92 14.70 487.68 448.37 221.33
22 7.12 487.51 28.40 14.4 0.10 11.18 108.15 7.39 5.82 3.99 311.68 288.11 287.46
23 6.99 529.26 3.55 5.4 0.14 7.78 128.15 12.05 7.72 5.48 338.56 354.92 134.52
24 6.95 356.78 0 29.3 0.16 6.67 72.84 2.95 9.59 8.61 227.84 185.72 93.31
25 7.42 581.92 14.20 38.1 1.08 10.31 88.02 4.99 23.75 39.8 371.84 230.28 84.57
26 6.89 779.26 21.30 63.6 0 12.50 88.24 8.37 25.38 95.09 498.56 244.68 154.28
27 6.73 1127.58 74.55 201 1.64 10.80 145.55 18.03 69.87 39.91 721.28 420.95 201.56
28 6.81 705.24 24.85 77.6 7.12 11.52 74.87 9.39 40.59 54.85 451.20 217.01 76.37
30 6.86 537.55 0 5.2 0.02 6.37 290.5 8.28 3.23 4.13 343.68 726.38 25.42
31 7.03 1290.18 53.25 201 1.93 11.94 169.31 16.51 44.85 132.40 825.60 471.33 47.68
32 7.11 949.68 35.5 57 1.09 11.06 100.45 10.46 59.45 88.11 607.36 282.37 46.79

WHO limit 6.5–8 500 250 250 0,5 45 75 50 200 10 500 100 500

Table 4. The range and type of water for WQI [25].

WQI Range Water Types

<50 Excellent water
50–100 Good water

100.1–200 Poor water
200.1–300 Very poor water

>300.1 Water unsuitable for drinking purposes

2.3. Selection of the ANN Input Parameters

Multiple regression was employed to establish the input parameters of the ANN
model. The ANN was modeled in the R environment in the RStudio 1.0.153 program
(Rstudio, Boston, MA, USA). The quality of the models was verified using the residual
normality distribution with the application of the Shapiro–Wilk test. On the basis of the di-
agnostic plots of residues distribution against the predicted residues, the homoscedasticity
of the residues and the absence of autocorrelation of residues were tested. Cook’s distance
checked the existence of outliers in the regression model.

The multiple regression model allows examining the influence of a number of in-
dependent variables, i.e., water quality parameters (X1, X2, . . . , Xn) on the dependent
variable WQI (Y). The Multiple Regression Model (5) is given below:

Y = β0 + β1X1 + β2X2 + . . . + βkXk + ε (5)

where:
β j—model parameters (regression coefficients) describing the influence of the j-th

variable,
ε—random component (model residuals).
The measure of the model fitness is the multiple determination coefficient R2, the

value of which is in the range <0;1>, calculated from the Formula (6):

R2 =
∑n

i=1(ŷi − y)2

∑n
i=1(yi − y)2 (6)

where:
ŷi—the value of water quality index for the i-th observation received from the model
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yi—the actual value of water quality index for the i-th observation
The coefficient involves comparing the variance of model residuals with the total

variance of data. The closer it is to one, the better the fit to data. Conversely, the closer it is
to zero, the worse the fit to data [26].

2.4. Modeling of the ANN

WQI prediction with the application of ANNs was performed using the Neural
Network library in MatLab and Simulink computing environments (MathWorks, Mas-
sachusetts, USA). The number of input parameters was derived from the multiple regres-
sion analysis. The input parameters of the model were the physicochemical parameters
EC, pH, Ca, Mg, PO4-P, K, SO4

2− (7 input neurons), and the output neuron—WQI. Sub-
sequently, using the stepwise regression method, the models with ever fewer variables
were tested. Modeling was performed using the Neural Network Fitting app, and the
Levenberg–Marquardt algorithm for training. A two-layer feed-forward network with
sigmoid hidden neurons and linear output neurons was used. The networks included one
hidden layer. According to the literature, networks with a higher number of hidden layers
are better fitting for higher complexity cases [27]. The number of neurons in the hidden
layer (2 ÷ 10) was selected experimentally, as well as reflected the mean square error and
the regression value R scores. The training set was 70%, and the test and validation sets
were 15% each. A schematic representation of the ANN for the first model is shown in
Figure 3.
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Two measures of network quality were employed—mean square error (MSE) and
regression R-value. MSE was calculated from the Equation below (7):

MSE =
1
n ∑n

i=1

(
y′i − y∗i

)2 (7)

where n—number of cases in a given set; y′i—the actual value of water quality index for the
i-th observation; y∗i —a predicted value of water quality index for the i-th observation.

The regression coefficient R measures the correlation between outputs and inputs and
is derived from (8):

R
(
y′, y∗

)
=

cov(y′, y∗)
σy′σy∗

Rε〈0, 1〉 (8)

where σy′—standard deviation of reference values, σy*—standard deviation of predicted values.
The higher the regression coefficient R and the lower the MSE, the better quality of

the generated network is.
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In order to compare the quality of WQI predictions for individual models, the root
mean square error (RMSE) indicator will be used (9), calculated as:

RMSE =
√

MSE (9)

where MSE—mean square error.

3. Results
3.1. Water Quality Index

The parameters of groundwater samples from the studied wells (Table 2) were juxta-
posed with the drinking water quality guidelines defined by the WHO [23]. The contents
of nitrate (V), chloride, magnesium, sodium, and bicarbonate (IV) ions did not exceed the
limits in any of the tested wells. On the other hand, total hardness was several times higher
than the value of TH specified in the WHO guidelines. Water pH was increased exclusively
in well 15, and the concentration of sulfate (VI) in wells 18 and 19. The WHO standards
were exceeded in the majority of wells for the following parameters: calcium concentration
(except for wells 24 and 27—below 75 mg/L); potassium concentration (except for wells 16,
21–22, 28—below 10 mg/L); total dissolved solids (TDS) (except: 19, 21–26, 28, 30—below
500 mg/L) and for the phosphate (V) value (except wells 16, 18, 22–24, 30).

The calculated WQI is presented in Table 5. Wells 10, 15, 22, 24, 25, 28 are characterized
by WQI < 50, which denotes water of excellent quality. The WQI value of the remaining
wells was between 50.30 and 84.93, indicative of good water quality. None of the examined
wells showed poor water quality.

Table 5. WQI values for samples of waters.

Well No. WQI Well No. WQI Well No. WQI

10 33.22 20 55.38 26 51.48
13 54.98 21 65.34 27 75.30
15 47.62 22 44.69 28 47.04
16 67.49 23 50.50 30 76.66
17 64.07 24 32.75 31 84.93
18 78.10 25 44.13 32 59.98
19 50.30

In the first step, the correlation matrix between the variables was analyzed. Due to the
singular form of the matrix with a set of variables, the variables were reduced.

3.2. WQI Modeling and Prediction
3.2.1. Multiple Regression Model

Given the high correlation coefficient between the variables of interest, i.e., EC (1.0)
and TDS as well as TH and Ca (0.99), variables TDS and TH were removed. The remaining
correlation coefficients between the independent variables were lower than 0.85 (the abso-
lute value), which did not indicate an excessively strong correlation of the independent
variables in the regression model.

After TDS and TH variables had been removed, it emerged that Cl−, SO4
2−, NO3

−N,
Na were insignificant in the regression model. Despite the high R2 of the model, 0.99, after
verifying the assumptions, it was found that with a complete set of variables in the model,
there is one outlier (Map 30) and no normal distribution of the residuals, for which reason,
the model was rejected. The stepwise progressive regression produced a model that met
the assumptions of the correct multiple regression: normal distribution of residuals, no
residual autocorrelation, residual homoscedasticity, and no outliers. The coefficients in
the model are shown in Table 6; the value of SO4

2− emerged as an insignificant variable,
most likely owing to redundancy associated with high correlation with other variables.
The determination coefficient R2 = 0.99 indicates a very good fit to the data model.
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Table 6. Multiple regression model coefficients.

b Standard Error of b p

Constant −0.313745 0.539090 0.572308
EC 0.033302 0.000239 <0.000001
Ca 0.167108 0.000460 <0.000001
Mg 0.301765 0.008489 <0.000001
pH 1.171858 0.069464 <0.000001

PO4
3− 0.053240 0.008371 0.000054

K 0.004032 0.001003 0.002023
SO4

2− 0.000869 0.000538 0.134578

The model takes the following form:

WQI = −0.313745 + 0.033302 EC + 0.167108 Ca + 0.301765 Mg + 1.171858 pH

+0.05324 PO3−
4 + 0.004032 K + 0.000869 SO2−

4

(10)

Positive values of the model coefficients indicate a positive relationship between the
dependent variables and the WQI score, while the negative ones denote the contrary. The
results show that all the coefficients for the dependent variables are positive; hence, when
the physicochemical parameters, EC, pH, Ca, Mg, PO4

3−, K, SO4
2− increase, the WQI value

increases accordingly, thereby signifying an increase in water pollution.

3.2.2. ANN Modeling and WQI Prediction

In accordance with the results from the multiple regression model, the WQI variable
was modeled by means of ANNs using EC, pH, Ca, Mg, PO4

3−, K, SO4
2− as input variables.

From the executed ANN modeling, the best results were obtained for the network with
five neurons, after 14 iterations. Other data, including performance validation and the
rate of error decrease (gradient), are shown in Figure 4. The ANN performance was vali-
dated with MSE. The best validation result was exhibited by the network’s tenth iteration
(Figure 5). In general, the error was found to decrease over successive training periods,
but it is likely that it would start to increase in the validation dataset in the case when the
network began to overfit the training data. The training was designed to stop after six
consecutive increases in the validation error (or no decrease), and the best results were
obtained from the iteration with the lowest validation error. Table 7 shows the network
training results (MSE and Regression R-value) categorized into training, validation, and
testing subsets.
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Table 7. Training ANN results.

Data Subset Mean Square Error (MSE) Regression (R) Value

Training set (70%) 0.56852 0.9984
Validation set (15%) 2.62182 0.9984

Testing set (15%) 4.93038 0.9786
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The regression value (R) for training data is 0.9984, for validation data—0.9984 and the
test data—0.9786, thus, in each case R > 0.95, which is typical of a good fit of the network.
The overall regression coefficient was 0.9966, which confirms the high degree of overlap
between the measurement points and the fit line with the ideal Y = T prediction line.

Subsequently, using the stepwise regression method, the models with ever fewer
variables were tested. In the first step, the models with one variable removed were created.
The best-performing model, i.e., the one with the minimal error, was the model with the
rejected SO4

2− variable—Table 8. For comparison, the worst performance was delivered
when Ca had been rejected (also Table 8). Having established that rejecting the SO4

2−

variable improves the quality of the model, another variable was removed from the model
in question and the models were compared. This time, the best model was the model with
SO4

2− and PO4
3− variables rejected, where the mean square error is 0.651358, compared to

the full model—1.25755. After the next variable was rejected, the mean square error started
to increase, which proved that the quality of the model was deteriorating.

Table 8. Models with the best and worst parameters obtained in subsequent iterations.

Step ANN model Rejected Variables RMSE Maximum Error Compared with WQI R R2

0 Full model 1.25755 6.02% 0.9966 0.9932

I
Best SO4

2− 0.93944 6.44% 0.9996 0.9992
Worst Ca 7.370503 35.72% 0.8818 0.7775

II
Best SO4

2−, PO4
3− 0.651358 2.98% 0.9992 0.9984

Worst SO4
2−, Ca 9.891332 39.17% 0.7995 0.6392

III
Best SO4

2−, PO4
3−, K 0.856993 3.34% 0.9990 0.9980

Worst SO4
2−, PO4

3−, Ca 8.834689 41.91% 0.7593 0.5765

IV
Best SO4

2−, PO4
3−, K, pH 0.90788 3.56% 0.9990 0.9980

Worst SO4
2−, PO4

3−, K, Ca 8.376916 38.13% 0.7678 0.5895

The optimization of the number of parameters and the quality of the network consisted
in minimizing RMSE and the maximum error (%) relative to the WQI value. Table 8 shows
two versions of the models. The models with one rejected variable were tested each
time. The model with the best and worst parameters is presented. It can be seen that
up to a point, the models have lower RMSE values when rejecting variables. The best
network was obtained for the network with the following parameters: EC, pH, Ca, Mg, K,
for which RMSE = 0.651258 and max% error (2.98%). The RMSE value obtained for this
network was of a similar magnitude as in the case of the original multiple regression model
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(RMSE = 0.06167). Moreover, the good quality of this network is proven by R = 0.9992
and R2 = 0.9984. Next, after discarding the subsequent variables, the RMSE values began
to increase and the properties of models deteriorated. Figure 6 presents a comparison of
the experimental data and the data obtained from WQI prediction for the networks with
optimal input parameters (EC, pH, Ca, Mg, K).
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Figure 6. Comparison between models and real data for WQI.

Despite the small discrepancies (RMSE = 0.06167), it can be concluded that the pre-
sented ANN models display an acceptable level of error and, therefore, emerge as reliable
predictors supporting the decision-making processes [17].

4. Discussion

The drilling processes constitute a real threat involving the pollution of groundwa-
ter [28]. In accordance with legal regulations, the assessment of water quality in drilling
areas must be controlled and constantly monitored. In the first part of this paper, the
assessment of water quality indicators (Table 4) was performed according to the criteria
defined by Sahu and Sikdar [25]. The results indicated that in 11 wells the water quality is
good, and in 8, it is excellent (WQI < 50).

In the paper, an attempt was made to prove that ANN models are efficient tools
for predicting the water quality, which can be employed for planning integrated water
protection systems, while implementing good environmental management practices.

There are several advantages of employing the ANN method for predicting WQI
over the computational approach. The latter method requires calculating the values of at
least twelve water quality parameters (Table 1), which should be converted into partial
indicators (Table 2). The formula for calculating the WQI is basically performed on sub-
indices. Therefore, it is much easier to apply an existing ANN model that uses raw data
without the need for additional recalculation. As few as five water quality parameters
are required to build the model, which, among other things, reduces the cost of water
quality monitoring.

The water quality prediction models are largely focused on rivers. The research object
in this study involved the wells located in Poland, in the vicinity of a shale gas drilling rig.
Thus far, no ANN models of water quality in drilling areas have been created in Poland.
The presented modeling method can be adjusted for application in other drilling areas
(coal, kerosene, gas). The authors believe that the application of artificial neural networks
in various aspects of the environment constitutes a new approach to implementing good
environmental management practices.

On the basis of results obtained via empirical studies on 19 wells located in the vicinity
of a shale gas drilling rig, an ANN model of WQI was created for the water intakes located
in shale gas drilling areas. Table 9 presents the results of the existing WQI models, including
the one created by the authors.
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Table 9. Comparison of the proposed system with the existing models.

Year Test Object Inputs (Variables) Network Quality Source

2021 Groundwater from wells located
close to a shale gas extraction site EC, pH, Ca, Mg, K

R = 0.9992
R2 = 0.9984

RMSE = 0.651258
Proposed model

2021 Drinking water pH, T-Alk, T-Hard, DO, TS, MPN R = 0.999
MRE = 0.775 Patki [29]

2021 Drinking water (India) DO, pH, EC, BOD, N-NO3, Fecal
Coliform, Total Coliform

R = 0.961
RMSE = 0.0029 Al-Adhaileh [30]

2021 Drinking water distribution (India)
TDS, N-NO2

+, N-NO3
−, Ca, Mg,

Na, K, Cl−, SO4
2−, CO3

2−, HCO3
−,

F−, pH, TH, SAR, RSC

Testing data
RMSE = 0.057

R—no data
Training data
RMSE = 0.066

R—no data

Vijay [31]

2021 River (India) pH, DO, BOD, Turbidity, TS

Training data
MSE = 2.08
R = 0.997

Validation data
MSE = 1.59
R = 0.997

Testing data
MSE = 1.11
R—0.998

Nayak [32]

2020 River (Algeria) pH, WT, OS, TDS, NTU, N-NO3,
P-PO4, BOD5, COD, Cl−

Testing data
RMSE = 0.007

R2 = 0.811
Training data RMSE = 0.009

R2 = 0.929

Sakaa [33]

2020 River (Malaysia) TSS, BOD, COD, AN, DO, pH

Training data
RMSE = 0.7001

R = 0.9964
Validation data
RMSE = 2.174

R = 0.9829
Testing data

RMSE = 1.186
R—0.9948

Jian [34]

2019 Lake (India) EC, TDS, Na, SSP, SAR, RSC, B RMSE = 0.00617
R = 0.9907 Vasanthi [35]

2018 River (Ethiopia) TSS, NO3, NO2, T-N. T-Alk, TOC,
COD, BOD, DO, T, EC, pH

RMSE = 1.97
R = 0,9993 Yilma [36]

2017 River (Malaysia) DO, BOD, COD, NH3-N, SS, pH R2 = 0.9872
RMSE = 0.0157

Hameed [37]

2016 Groundwater (Iran)
EC, TDS, NTU, pH, TH, Ca, Mg,

SO4
2−, N-NO3, N-NO2, F−, P-PO4,

Fe, Mn, Cu, Cr

Testing data
RMSE = 7.71

R = 0.77
Training data
RMSE = 0.01

R = 0.94

Sakizadeh [38]

2016 Water river (Malaysia) DO, BOD, COD, pH, SS, N-NH3 R2 = 0.981
RMSE = 1.598

Zali [17]

2012 River (Malaysia)

pH, EC, TDS, NTU, WT, BOD, DO,
N-NH3, Mg, Cl, F, TH, Fe, Zn, As,

Total caliform bacteria, E coli
bacteria, SS, N-NO3,

RMSE = 1.633
R = 0.977 Gazzaz [39]

EC—electrical conductivity; pH—pondus hydrogenii; Ca—calcium, Mg—magnesium, K—potassium, TDS—total dissolved solids; N-
NO2

+, N-NO3—sum nitrite and nitrate; Cl−—chloride; SO4
2−—sulphate; CO3

2−—carbonate; HCO3
−—bicarbonate; F−—fluorides;

TH—total hardness; SAR—sodium absorption ratio; RSC—residual sodium carbonate; WT—water temperature; OS—oxygen saturation;
NTU—turbidity; N-NO3,—nitrate; P-PO4—phosphate; BOD—biochemical oxygen demand; COD—chemical oxygen demand; B—boron;
SSP—soluble sodium percent; DO—dissolved oxygen; N-NH3—ammonium; SS—sodium soluble percentage; Fe—iron; Mn—manganese;
Cu—copper; Cr—chromium, Zn—zinc; As—arsenic.
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The set of input variables in the model for WQI assessment can be composed in various
ways. According to Nordin et al. (2021), the most common variable used for ANN modeling
of the groundwater quality is SO4

2−, followed by Cl−, Mg, Ca, pH, TDS, and TH [19].
The analysis indicated that the above-mentioned parameters are strongly correlated with
each other and were frequently selected as input parameters for the groundwater quality
evaluation [40]. Input parameters accurately verify the groundwater quality, both for
drinking and irrigation. The correlation analysis conducted in the paper indicated a strong
correlation between the selected input data.

The presented model structure was optimized in order to minimize the number of
input variables to the model while not compromising the quality of predictions. The input
factors for building the neural network model were selected from the results of multiple
regression. ANN validation with the use of linear regression analysis was proposed, e.g.,
by Flavelle (1992) [41]. Schenker and Agarwal (1996) proved that comparing regression
models should be based on the closest adjustment of R-value [42]. The regression coefficient
of the developed model reached R2 = 0.99, which indicates a very good fit to the data
model. The multiple regression model showed that EC, pH, Ca, Mg, PO4

3−, K, SO4
2− are

significant variables in the prognosis of WQI.
On the basis of the regression model, optimal input data for ANN model creation

were selected. On the basis of network quality indicators, R, R2 and MSE, a network with
five neurons in the hidden layer was selected as the best performer.

In order to develop a well-fitted and efficient ANN model (used for WQI prediction),
it is necessary to appropriately select, i.e.,

• the number of neurons in the hidden layer
• dataset division: training, validation, test
• appropriate variables.

In the literature, there are various ways of dividing the dataset into training, testing,
and validation data: Jian et al. (2020) created and optima WQI prediction model in the
river using 70% training set as well as 15% test and 15% validation sets [34]; Nayayk et al.
(2020), obtained an optimal WQI prediction model for the Godavari river using a training,
validation, and testing set of 75%:15%:10%, respectively [32]. In turn, Al-Adhaileh and
Alsaade created a WQI prediction model for selected rivers and lakes of India, using 70%
for the training phase and 30% for the testing phase [30].

While creating the investigating model, the authors assumed the training, validation,
and testing data ratio used by Jian et al. [34].

The number of neurons in the hidden layer constitutes another parameter used in
developing a well-fitted model. The optimal number of neurons is determined using the
trial-and-error method. It is expected that the number of hidden neurons should range from
11 to 11 [43]. In the presented studies, the model comprised five hidden neurons. Patki
et al. (2021) developed an ANN model for WQI prediction in municipal distribution using
the same number of neurons as in the model developed by the authors of this paper [30].
In turn, Yilma et al. (2018) obtained the most optimal model architecture using 15 hidden
neurons that resulted in an R2 value of 0.93 [36].

The authors focused on selecting the least number of input data. The table shows that
the number of input data for predicting the water quality differs, ranging from 6 [28] to 23
variables [39]. Moreover, the input data are rarely optimized for network creation, as in the
case of the ANN model presented by Hore [14].

The models with a decreasing number of variables were tested using the backward
stepwise regression method. First, the models with one variable removed were constructed
to select the one with the minimum RMSE and the minimum percentage error in relation
to the WQI value. In subsequent steps, other variables were removed until the WQI values
began to increase in two subsequent iterations. From RMSE minimization and minimization
of the maximum % error in relation to the WQI value, the optimal number of network
parameters (EC, pH, Ca, Mg, K) was determined, under the constraint of maintaining
the appropriate quality of this network (RMSE = 0.651258, max % error—2.98%). It was
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possible to create a model using only five types of input data, which showed an R = 0.9992,
R2 = 0.9984; RMSE for the training set 0.0292, test set 0.2131, and validation set 1.3244.
While analyzing the fit of the model to the actual data (comparing R and R2), the superior
quality of the network was obtained in comparison to other presented models, even though
fewer input parameters were used in the research (compared to other studies—Table 9).

The WQI predictions computed using the 5-5-1 network and trained by the Levenberg–
Marquardt algorithm are strongly and positively correlated with WQI values of interest
(r = 0.999, p < 0.05). This is further confirmed in Figure 6, delivering the comparison of the
ANN-predicted WQI and the values of the models calculated on the basis of real data. On
its basis, it can be concluded that the overall agreement between the real and simulated
data is satisfactory. In turn, in the studies by Gazz et al. (2012), the relationship between
the measured and simulated WQI of rivers (R = 0.977, p < 0.01; R2 = 95.4%; RMSE = 1.663)
was obtained using the ANN model.

Koudari et al. (2021) created a WQIANN model for a region in south-east Algeria,
characterized by the R2 value of 0.997 [43].

While comparing the created model with others (Table 9—values of R, R2, and RMSE),
it can be stated that the general goodness of fit between the measured and simulated data
is satisfactory.

Artificial neural network models should be used more frequently for predicting the
quality of waters, as well as in other aspects of environmental protection.

The use of neural network models is possible even in the case of data deficiency, e.g.,
due to the unavailability, difficulty or high-cost expense of obtaining the actual figures.
It also allows for the reconstruction of missing data, reducing costs and saving time for
otherwise indispensable analyses, which can be a strong economic factor in science.

The obtained findings and drawn conclusions should encourage authorities and
water quality management bodies to invest in the use of neural network modeling as a
comprehensive and high-quality alternative to the standard WQI calculation methods.

5. Conclusions

The paper presented an alternative to an analytical method of water quality index
determination, i.e., artificial neural network modeling for WQI prediction. The data used
for conducting the study involved the results of empirical studies from 19 wells located in
the vicinity of a shale gas drilling rig in Poland.

An ANN model was created based on the ANN approach with a two-layer feed-
forward network with sigmoid hidden neurons and linear output neurons. The model was
created using only five input parameters: EC, pH, Ca, Mg, and K. Optimal input data for
ANN modeling were selected based on the results of multiple regression.

The ANN model was characterized by the correlation coefficient of 0.9992, as well as
MSE equal to 0.0292, 0.2131, and 1.3244 for the training, testing and validating set, respec-
tively. These results were obtained with the following set division: training (70%), valida-
tion (15%), and testing (15%), using the Neural Network Fitting app, and the Levenberg–
Marquardt algorithm for training.

The advantage of using the ANN model proposed in this paper is the easy assessment
of groundwater pollution levels; in addition, it enables the avoidance of lengthy calculations
involved in prevalent conventional WQI.

In future works, the authors will attempt to effectively forecast water quality, using
indicators that would depend on the proximity of pollution sources.

In future works, the authors are planning to employ other machine learning methods
for groundwater quality assessment, including: deep neural network, Logistic Regression
(LogR), Random Forest (RF). Decision Tree (DT) and K Nearest Neighbor (KNN). The
results obtained using these methods will be compared and their impact on prediction
quality will be investigated.
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Moreover, forecasting of air pollution is within the scope of interest for the authors.
The authors want to find out if the machine method learning can yield new information
about air quality and the factors that have the greatest impact on this parameter.
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