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Abstract: Since the triboelectric nanogenerator (TENG) was invented, it has received extensive
attention from researchers. Among the many pieces of research based on TENG, the research of
hybridized generators is progressing rapidly. In recent years, the research and application of the
electromagnetic–triboelectric hybridized nanogenerator (EMG-TENG) have made great progress.
This review mainly focuses on the latest research development of EMG-TENG and elaborates on
the principles, materials, structure, and applications of EMG-TENG. In this paper, the microscopic
charge transfer mechanism of TENG is explained by the most primitive friction electrification
phenomenon and electrostatic induction phenomenon. The commonly used materials for fabricating
TENG and the selection and modification methods of the materials are introduced. According to
the difference in structure, EMG-TENG is divided into two categories: vibratory EMG-TENG and
rotating EMG-TENG. The summary explains the application of EMG-TENG, including the energy
supply and self-powered system of small electronic devices, EMG-TENG as a sensor, and EMG-TENG
in wearable devices. Finally, based on summarizing previous studies, the author puts forward new
views on the development direction of EMG-TENG.

Keywords: energy harvesting; electromagnetic generator; triboelectric nanogenerator; hybridized
nanogenerator; sensor; wearable devices

1. Introduction

Electrical energy has become indispensable energy in human production and life since
Michael Faraday invented the phenomenon of electromagnetic induction in 1831. Mankind
invented a large number of electrical appliances in the Second Industrial Revolution, such
as electric light, telephones, and so on. After less than 200 years of development, today,
electricity is used in all aspects of our lives [1–3]. There is a growing need for electric
energy in many aspects with the development of human society, such as the daily life of
humans, industrial production, scientific research, and more. Human beings are eager to
find more effective ways of power generation in order to supply the electricity demand
due to the depletion of fossil energy and the pollution of thermal power generation to
the environment [4,5]. Through the efforts of researchers, great progress has been made
in the use of wind energy, tidal energy, solar energy, geothermal energy, nuclear energy,
and biomass energy to produce electricity [6–11]. Many physical phenomena, such as the
photoelectric effect, piezoelectric effect, thermoelectric effect, pyroelectric effect, and so on,
which are converted from other forms of energy into electric energy, have been invented
and utilized by human beings [12–20]. According to the Global Electricity Review 2020 by
Ember, global wind and solar power generation increased by 15% in 2019, accounting for 8%
of global electricity generation. Europe, the United States, and other developed countries
are actively promoting the transformation from thermal power generation to wind and
solar power generation, and developing countries such as China are also making great
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efforts to develop the photovoltaic industry. However, the harvesting and utilization of
low-frequency micro-mechanical energy common in daily life have only just begun [21–25].
According to the Handbook of Wind Resource Assessment of America, the power density
of the wind, with an average wind speed of 6 m/s, is approximately 200–300 W/m2.
The power of human walking is approximately 50–100 W. The power of a wave with an
amplitude of 80 mm and a frequency of 0.3 Hz is approximately 228 W [26]. If these energies
can be efficiently converted into electricity, it will further stimulate the development of
clean energy.

In 2006, Zhong Lin Wang and others used zinc oxide nanowires to convert nanoscale
mechanical energy generated by atomic force microscopy into electrical energy. This
invention converts tiny mechanical energy into electrical energy for the first time, opening
the door for human beings to understand micro-nano energy [27]. However, this kind
of generator can only obtain an output power of ~0.5 pW. Obviously, this kind of power
output is difficult to use in both production and life, and we cannot even use it to light
up a simple LED light. We need to obtain more output power in order to drive electronic
devices. In 2012, Zhong lin Wang’s research team gave a surprising answer [28]. They
invented a flexible triboelectric generator with a sandwich structure. The generator uses
the triboelectric effect between a PET (polyester) substrate and a Kapton film with a nano-
surface to accumulate an electric charge, and through the electrostatic induction between
the friction material and the metal electrode on its back, the generator successfully harvests
mechanical energy and outputs it into electric energy. This generator can provide a 3.3 V
output voltage and ~10.4 mW power density. They successfully lit a red LED. This study
opens a new chapter for the collection and utilization of micromechanical energy.

The invention of the first triboelectric generator aroused great interest among re-
searchers, and a large number of researchers have followed up on this study [29–31]. The
researchers are mainly divided into two research directions in the follow-up research. On
the one hand, the researchers optimize the friction materials, electrode materials, and
generator structure of the triboelectric generator in order to improve its electrical perfor-
mance [32–36]. On the other hand, the researchers hope to enhance the output performance
of the generator by coupling and hybridization triboelectric generators and other genera-
tors, such as the piezoelectric nano-generator and electromagnetic generator [37–41]. With
the improvement of the electrical performance of the friction generator, the stability of its
output, and the durability and reliability of the equipment, the researchers use the genera-
tor to drive small electronic devices, sensors, wearable electronic devices, scavenging sea
wave energy, and so on [42–46]. Extremely promising research results have been obtained.
Among all of the research results, the electromagnetic generator of Faraday and the tribo-
electric generator of Zhong lin Wang are undoubtedly an indelible part. This review will
focus on electromagnetic–triboelectric hybridized nanogenerators (EMG-TENG), including
its mechanism, material selection, structural design, performance, and applications. A
variety of application scenarios of EMG-TENG are shown in Figure 1. The collation of
literature on EMG-TENG from 2014 to 2020 based on the Scopus database is depicted in
Figure 2. It can be seen that, since 2014, the number of papers on EMG-TENG has increased
year by year, from 4 in 2014 to 58 in 2020. Among them, research papers account for ~75%.
The research on EMG-TENG is still in its infancy. It is believed that more researchers will
make efforts toward the research of EMG-TENG. This review will summarize the work
of predecessors, find out the advantages and disadvantages, and provide a reference for
later researchers.
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Figure 1. Multiple application scenarios of EMG-TENG. The inset picture on the upper left side is the application scenario 
of EMG-TENG for environmental monitoring (reproduced with permission [42]. Copyright 2019, ACS). The inset picture 
on the bottom left side is a thermohygrometer driven by EMG-TENG (reproduced with permission [43]. Copyright 2020, 
Elsevier). The inset picture on the upper-middle side is a self-powered heart rate sensing system constructed by EMG-
TENG (reproduced with permission [44]. Copyright 2018, Elsevier). The inset picture on the upper right side is EMG-
TENG for scavenging human mechanical energy (reproduced with permission [45]. Copyright 2017, Elsevier). The inset 
picture on the bottom right side is EMG-TENG to scavenge the mechanical energy generated when the car passes through 
the speed bump (reproduced with permission [46]. Copyright 2017, Elsevier). 
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2. The Principle of Electromagnetic–Triboelectric Hybridized Generators

This section is divided into three parts, which introduce the mechanism of the elec-
tromagnetic generator (EMG), the mechanism of the triboelectric nano-generator (TENG),
and the advantages and performance of EMG-TENG.

2.1. The Principle of Triboelectric Nano-Generator

The triboelectric nano-generator (TENG) is a device for scavenging tiny mechanical
energy invented based on the phenomenon of friction electrification and electrostatic
induction. Triboelectrification is the phenomenon of the friction electrification of two
different materials. When two kinds of materials come into contact and produce friction,
because the electronegativity of the different materials is different, the charge transfer
occurs at the material interface, the material with a high electronegativity has a positive
charge, and the material with a low electronegativity has a negative charge, which is the
phenomenon of friction electrification. Electrostatic induction refers to the phenomenon
that an electrically neutral object produces an induced charge due to its proximity to a
charged object. There are four types of TENGs invented based on these two phenomena:
vertical contact–separation mode, in-plane sliding mode, freestanding-triboelectric-layer
mode, and single-electrode mode.

The vertical contact–separation mode of TENGs is illustrated in Figure 3a. The
electrodes are closely attached to the back of each of the two different dielectric materials,
and the two electrodes are connected via an external circuit. The alternating current
is produced by the contact-separated generator. When the two dielectric materials are
contacted by external forces, we take FEP (fluorinated ethylene propylene) and nylon as
examples. Charge transfer occurs at the material interface due to the triboelectric effect,
the high electronegativity of nylon leads to the positive charge on the surface, the surface
of FEP has a negative charge, owing to a low electronegativity, and the contact surface
of the nylon and FEP achieves charge balance. The nylon and FEP are separated when
subjected to external forces or because of the elasticity of the dielectric materials used.
The friction charge on the surface of the dielectric material is capable of being maintained
for ages because of the characteristics of dielectric materials, which causes the separated
nylon and FEP and the electrode on the back to have an electrostatic induction effect. In
this electrostatic induction, the back electrode of nylon, the back electrode of FEP, and the
external circuit are collectively regarded as a conductor. The positive charge on the surface
of the nylon attracts the negative charge to move to the back electrode of the nylon, and the
negative charge on the surface of the FEP attracts the positive charge in the current to move
to the back electrode of the FEP. This phenomenon can be regarded as electrons transfer
from the back electrode of FEP to the back electrode of the nylon. This process generates a
current from the nylon terminal to the FEP terminal in the external circuit. At the same
time, electrons accumulate on the nylon terminal due to electron transfer. When nylon
and FEP are contacted again by an external force, the charge on the surface reaches an
equilibrium on the contact surface, and the electrostatic induction phenomenon disappears.
Since the back electrode of the nylon accumulates electrons, the potential of the nylon
terminal is lower than that of the FEP terminal. The potential difference drives the electrons
to transfer from the back electrode of the nylon to the back electrode of the FEP, generating
a current from the FEP terminal to the nylon terminal in the external circuit. Repeatedly, a
periodic alternating current is formed. The typical electrical output performance of vertical
contact–separation mode TENGs is shown in Table 1 [47].

The working principle of an in-plane sliding mode of TENGs is shown in Figure 3b,
and we take nylon and FEP as examples in order to illustrate. Nylon and FEP move
laterally along their contact surface. When nylon and FEP are in a completely overlapping
state, the charge generated by the contact reaches a charge balance on the contact surface,
and no current is generated. When nylon and FEP produce a lateral displacement along
the contact surface under the action of an external force, they are in a state of incomplete
overlap at this time, and there is still a charge balance in their overlapping part. In the
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non-overlapping part, the positive charge accumulated on the surface of the nylon attracts
the negative charge in the conductor to gather on the back electrode of the nylon; on
the contrary, the back electrode of the FEP accumulates a positive charge. This can be
regarded as the electrons flowing from the FEP terminal to the nylon terminal in the
external circuit, generating a current from the nylon terminal to the FEP terminal, and
accumulating electrons on the back electrode of the nylon. When nylon and FEP continue
to shift along their contact surfaces and reach a completely non-overlapping state, the
potential difference between the two back electrodes reaches the maximum. When nylon
and FEP return from the completely non-overlapping state to the completely overlapping
state, the contact area between them continues to increase, the electrostatic induction
continues to weaken, and the accumulation of positive and negative charges generated by
electrostatic induction continues to decrease. The positive and negative electrodes return
to the initial charge balance state. This can be understood as the electrons accumulated on
the back electrode of the nylon return to the back electrode of the FEP to achieve charge
balance, and the current from the FEP terminal to the nylon terminal is generated in the
process. The whole process is repeated to form an alternating current. Table 1 shows the
typical electrical output performance of in-plane sliding mode TENGs [48].

Table 1. Typical electrical properties of various modes of TENG.

Modes of TENG Article Short-Circuit
Current

Open-Circuit
Voltage Peak Power

vertical
contact–separation

mode

Rolling friction contact–separation mode
hybrid triboelectric nanogenerator for

mechanical energy harvesting and
self-powered multifunctional sensors

1.94 µA/cm2 32 V 0.15 mW/cm2

in-plane sliding mode
High performance floating self-excited
sliding triboelectric nanogenerator for
micro-mechanical energy harvesting

76 µA 470 V 34.68 mW

freestanding-
triboelectric-layer

mode

Multi-grating triboelectric nanogenerator
for harvesting low-frequency ocean wave

energy
60 µA 140 V 4.2 mW/m2

single-electrode
mode

Water-dielectric single electrode mode
triboelectric nanogenerators for ocean

wave impact energy harvesting
5 µA 7.3 V 19.12 µW

The principle of the freestanding-triboelectric-layer mode of TENGs is revealed in
Figure 3c. We take FEP as an example. When the FEP and the electrode are in contact
at their interface, negative charges accumulate on the surface of the FEP, and positive
charges accumulate on the surface of the electrode. When FEP is between the electrode
L and the electrode R, the electric potential of the two electrodes is equal and there is no
current. Assuming that the FEP moves to the left, on account of electrostatic induction,
positive charges accumulate toward electrode L and negative charges accumulate toward
electrode R. This process can be understood as the electrons moving from electrode L to
electrode R in the external circuit, resulting in a current from electrode R to electrode L.
When the FEP moves to the left and completely overlaps with electrode L, the potential
difference between the two electrodes reaches the maximum. Then, the FEP moves to the
right, the electrostatic induction in the circuit is weakened, and the positive and negative
charges gradually return to the initial state. It can be seen that the electrons accumulated
on electrode R are transferred to electrode L due to the lack of the binding of the potential,
and the current from electrode L to electrode R is generated in the wire. The alternating
current is produced by the periodic movement of FEP from left to right. Table 1 depicts the
electrical properties of the freestanding-triboelectric-layer mode of TENGs [49].
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Figure 3d gives the principle of the single-electrode mode of TENGs. We take FEP as
an example. When FEP is in contact with the metal electrode, the electrons on the surface of
the metal electrode are transferred to the surface of FEP due to the electrification by friction.
Positive and negative charges accumulate at the interface of the electrode and the interface
of FEP, respectively. On the contact surface between the FEP and the electrode, the charge
is balanced and there is no current. When the FEP is separated from the electrode, because
the electrons in the metal electrode are transferred to the FEP, the metal electrode has a
positive charge, and the electrons at the grounding terminal flow to the metal electrode to
achieve a charge balance, resulting in a current from the electrode terminal to the ground
terminal in the circuit. When the charge in the electrode is balanced and electrically neutral,
the metal conductor is induced by the negative charge on the surface of the FEP, and the
positive charge accumulates at the electrode terminal. This process can be seen as electrons
flowing from the electrode terminal to the ground terminal, generating a current from the
ground terminal to the electrode terminal. Table 1 illustrates the electrical properties of the
single-electrode mode of TENGs [50].

2.2. The Principle of Electromagnetic Generator

The electromagnetic generator is invented based on the electromagnetic induction
phenomenon discovered by Faraday, and it is the most frequently used method of power
generation at present. The phenomenon of electromagnetic induction can be expressed
as: when the magnetic flux in a closed circuit changes, an induced electromotive force is
generated in the circuit, thereby forming an induced current in the circuit, which can be
represented as:

E= n
∆Φ
∆t

(1)

where E is the induction electromotive force and ∆Φ is the rate of change in magnetic
flux. In order to obtain a greater induced electromotive force, a coil with multiple turns is
usually used, and n is the number of turns of the coil.

Figure 3e can describe the electromagnetic induction phenomenon more intuitively.
When the conductor in the closed circuit cuts the magnetic line of induction in a magnetic
field, an induced electromotive force will be generated in the conductor, and the electrons
in the drive circuit will move directionally to generate an induced current. The expression
of the induced electromotive force is:

E = BLv sin θ (2)

where B is the magnetic flux density, L is the length of the conductor that cuts the magnetic
induction line, v is the moving speed of the conductor in the magnetic field, and θ is the
angle between the speed direction of the conductor and the magnetic field [51].

Equations (1) and (2) are the essential equations of Faraday’s law of electromagnetic
induction. They reveal the fundamental principles and laws of a battery generated by
a magnetic field. Faraday’s law of electromagnetic induction is the theoretical basis of
thermal power, wind power, nuclear power, and many other methods of power generation.

2.3. Theoretical Basis and Advantages of Hybridized Nanogenerator

A hybridized generator refers to a device that combines two or more generators based
on different power generation principles with a mechanical structure to generate elec-
tricity [52–54]. The common hybridized generators include electromagnetic–triboelectric
hybridized nano-generators, triboelectric–piezoelectric hybridized nano-generators, and so
on [55,56]. Hybridized generators have many advantages over traditional generators based
on a single principle. The hybridized generator can convert the energy in the environment
into electric energy to the greatest extent compared with generators based on a single princi-
ple [57–59]. In short, hybridized generators have a higher energy conversion efficiency than
traditional generators. Hybridized generators also have a better environmental adaptability
than traditional generators. For example, hybridized solar cells and triboelectric nanogen-
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erators can be used as reliable power sources whethere there is light or no light [60–62].
Among the numerous hybridized generators, the electromagnetic–triboelectric hybridized
nanogenerator has unique advantages and has been extensively studied [63–66].

The electromagnetic–triboelectric hybridized nanogenerator (EMG-TENG) is a device
for scavenging mechanical energy invented by combining an electromagnetic generator
and a triboelectric nanogenerator. As the research on electromagnetic generators has ma-
tured, the research on the hybridization of electromagnetic generators and triboelectric
nanogenerators has progressed very rapidly [67–69]. In 2014, Chi Zhang et al. summed up
the theories of EMG and TENG, demonstrated the possibility and advantages of the hy-
bridization of these two generators, and verified them through experiments [51]. The study
pointed out that the electrical output characteristics of TENG can be equivalently regarded
as a current source with a large internal resistance, and that the output characteristics of
EMG can be regarded as a voltage source with a small internal resistance. Therefore, a
higher output power can hopefully be obtained by combining the high voltage output
characteristic of TENG with the high current output characteristic of EMG. This conclusion
was verified in experiments that worked EMG-TENG in series and obtained a maximum
power of 209.7 nW, whereas the power of EMG and TENG tested separately was 118.1 nW
and 105.4 nW, respectively. This shows that the hybridized generator effectively improves
the efficiency of the power generation device in scavenging mechanical energy. In 2015,
Kewei Zhang and others conducted a detailed study on the electrical performance and
application of EMG-TENG [70]. They studied the electrical performance of an independent
TENG and ENG. Figure 3f shows that the open-circuit voltage of the TENG part of the
hybridized generator they invented can reach 268 V. When a resistor is connected in series
with TENG, the output current can be ~55 µA, and the maximum output power is 4.9 mW,
as revealed in Figure 3h. It should be noted that the load resistance corresponding to the
highest output power reaches 6 MΩ, which shows that TENG has great internal resistance.
A separate test of the EMG part shows that its open-circuit voltage is 4.9 V, as revealed in
Figure 3g. The maximum output current in the circuit is ~3.2 mA, and the maximum power
is 3.5 mW, as depicted in Figure 3i. When they paralleled TENG and EMG through the
rectifier bridge for composite power generation, they found that the current and voltage
of this generator did not increase as a result. The analysis of the authors pointed out that
this is caused by the different phases of the output current and voltage of two kinds of
generators. Afterwards, they performed charge and discharge tests on capacitors and
lithium ion batteries. The experimental results fully proved that the energy conversion
efficiency of EMG-TENG is higher than using EMG or TENG alone. The EMG-TENG they
invented can light up multiple light-emitting diodes and power wearable devices, which
will be described in more detail later. The above research shows that EMG-TENG has great
advantages and a great potential utilization value in scavenging mechanical energy.
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3. Structure Design and Device Fabrication of EMG-TENG

This section mainly introduces the design and production of EMG-TENG. The fabrica-
tion of EMG-TENG mainly needs to consider four elements: the selection and modification
of the friction material of TENG [71], the structural design of EMG-TENG, the design of the
circuit, and the power output. Among them, the circuit design and electric energy output
generally use rectifier bridge rectification, and after charging the capacitor, the output
is stable and the current is usable. The output of TENG is characterized by a short AC
pulse output, which cannot be directly used to power electronic devices. Hence, the use
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of rectifiers, capacitors, transformers, diodes, and other electronic components to design
necessary output circuits will help to improve the electrical performance of TENG. Based
on the output characteristics of TENG, Wuqi Yu et al. designed a new circuit for TENG [72].
They abandoned the utilization of transformers due to the fact that the output of the TENG
is a high-voltage short pulse AC signal. They chose rectifier bridges, filter capacitors,
large-capacity energy storage electrolytic capacitors, control chips, and other electronic
components, and used lithium ion batteries as energy storage components. In the case
of no charging circuit, the voltage will no longer increase when the capacitor is charged
to 5 V, but, when there is a charging circuit, the charging voltage of the capacitor can be
increased all of the time. The result is due to the fact that the charging circuit suppresses the
discharge of the capacitor during the charging process when the capacitor voltage exceeds
5 V. The circuit design for TENG will not be described in detail here. This section mainly
introduces two aspects of the material and structural design.

3.1. Positive and Negative Electrode Material of EMG-TENG

The material selection, fabrication, and optimization of EMG-TENG mainly refer to
the materials of the TENG part. The parts of the materials of EMG are permanent magnets
and coils [73–75]. TENG is generated by the friction and electrostatic induction of materials,
so the selection of friction materials is the most significant factor affecting the performance
of TENG [76,77]. As the working mode of TENG often requires high-frequency contact and
friction, the positive and negative materials of TENG must choose materials with a low
mass and wear resistance to ensure the output performance and service life of TENG [78].
Common positive electrode materials are nylon and aluminum, and common negative
electrode materials are polydimethylsiloxane (PDMS) [79], Kapton, and polyvinyl chloride
(PVC) [80]. The research on the electronegativity of friction materials can refer to the
study of D. K. Davies et al. in 1969 [81]. Here, we will introduce several typical TENG
positive and negative materials and surface modification methods. In 2018, P. Maharjan
and others designed a TENG based on the single-electrode mode [44]. They designed a
TENG that can be worn on the human wrist by observing the movement of the human
body during walking. They used polytetrafluoroethylene (PTFE) as the negative electrode
material and modified the surface of PTFE. They used inductive coupled plasma reactive
ion etching technology to form nanowire-like structures on a 50 µm-thick PTFE film, as
shown in Figure 4a. This method of introducing nanostructures on the surface of the PTFE
can increase the amount of charge generated on the surface of the PTFE due to friction,
thereby increasing the output performance of TENG. This method is also applicable to
other materials. Ji Wan et al. invented a flexible EMG-TENG [82]. The key material used
in the generator is PDMS. PDMS is silicone rubber with a good biocompatibility and
is often used to prepare wearable devices or medical devices. They mixed PDMS with
neodymium magnet (NdFeB) powders and multi-walled carbon nanotubes and fabricated
a magnetic and conductive polydimethylsiloxane for the negative electrode material of
TENG, as revealed in Figure 4b. The negative electrode material prepared by this method
has magnetism due to the doping of NdFeB, and has good conductivity due to the doping
of the multi-walled carbon nanotubes. There is no doubt that materials with flexibility,
magnetism, and electrical conductivity are ideal materials for the fabrication of EMG-TENG.
It is a common and practical material design method to change the properties of materials
by doping. The EMG-TENG fabricated by Xiaohu Ren et al. also mixes dielectric and
magnetic materials in order to fabricate negative electrode materials [45]. They used the
electrospinning method to make composite fiber films from the mixture of Fe3O4 nanopar-
ticles (Figure 4c) and PVDF (Figure 4d), which has both good magnetic and electrical
properties. This composite fiber membrane is used as the negative electrode of TENG
and forms the vertical contact–separation mode TENG with the aluminum foil positive
electrode. Figure 4e shows the full-space EMG-TENG invented by Jian He et al. [43]. They
use RTV (room temperature vulcanized silicone rubber) as the negative electrode material
of TENG. Both RTV materials and PDMS materials belong to silicone rubber and have
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similar triboelectric properties. They modified the pyramid structure on the RTV material
to increase the performance of TENG. The above three types of EMG-TENG only modify
the negative electrode. The TENG based on the vertical contact–separation mode and the
horizontal sliding mode often requires the selection and modification of both the positive
electrode and the negative electrode material. In 2020, four kinds of materials were used
in the triboelectric part of the EMG-TENG invented by Pukar Maharjan et al. [83]. In this
study, two modes of TENG were used: the vertical contact–separation mode TENG used
nylon 6/6 as the positive electrode and PVDF as the negative electrode, and the in-plane
sliding mode TENG used aluminum as the positive electrode and PTFE as the negative
electrode. The electrospinning method is used to fabricate PVDF nanofiber membranes,
and the ICP (inductively coupled plasma) technology is used to construct nanostructures on
the PTFE. Figure 4f shows the SEM images of these four materials. According to the above
research, it can be concluded that using materials with nanostructures on the surface of the
positive and negative electrodes of TENG can obtain a good electrical output performance.
Using the doping method to obtain materials with both magnetic and good triboelectric
properties is an ideal method for preparing EMG-TENG electrode materials [84].

Improving the energy conversion efficiency of TENG can effectively improve the
output performance of EMG-TENG. There are two common methods to improve the
energy conversion efficiency of TENG. One is to design the output management circuit for
TENG, which has been explained in the previous article. Another method is to improve
the energy efficiency of TENG. In addition to improving the energy efficiency of TENG by
modifying the surface of friction materials, researchers have also explored other ways to
improve the energy efficiency of TENG. Choosing a suitable electrode is an ideal method
to improve the energy utilization efficiency of TENG. The electrode material of TENG is
usually a solid material, and the contact mode between the electrode material and friction
material is a solid–solid contact. This contact mode must both reduce the contact efficiency
between the electrode material and friction material and affect the energy conversion
efficiency of TENG. In 2015, Wei Tang et al. reported a TENG based on a liquid–metal
electrode contact mode [85]. They greatly increased the contact area between the electrode
and the friction material by using the liquid–solid interface contact mode, which made
the energy conversion efficiency of TENG reach 70.6%. There are also researchers who
improved the energy utilization efficiency of TENG by changing the friction mode. The
rolling triboelectric nanogenerator invented by Long Lin et al. is composed of multiple steel
rods sandwiched by FEP films [86]. Owing to the low friction of the rolling friction, the
instantaneous energy conversion efficiency of the TENG is as high as 55%. The design of
the multi-layer structure for TENG is an effective scheme to improve the energy conversion
efficiency of TENG. Regarding the TENG based on a double-electron layer structure
designed by Jinsung Chun et al. in 2016 [87], the output current of the TENG reaches
1.22 mA under a low-frequency mechanical energy of 3 Hz, and the peak power can
reach 46.8 mW/cm2. The TENG consists of three layers: the top layer is composed of a
mesoporous polymer film and Al electrode, the middle layer is composed of an aluminum
film coated with Au nanoparticles, and the bottom layer is an aluminum electrode. When
the contact separation occurs in the top layer under the action of an external force, the
grounding middle layer and the bottom layer form a double-electron layer. This structure
design improves the output performance of the TENG. In 2019, the TENG invented by
Jin Pyo Lee et al. adopted a similar three-tier structure [88]. The top layer is a dielectric
and ABS (acrylonitrile butadiene styrene) plate, the middle layer uses an aluminum film
wrapped by Au nanoparticles, and the bottom layer is an Au nanoparticle-decorated
stretchable film that was attached on an acryl plate. The TENG generates the output power
of 3 mW/cm2 under the low frequency mechanical energy of the 3 Hz.
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tructured polytetrafluoroethylene film etched by inductive coupled plasma reactive ion etching
technology (reproduced with permission [44]. Copyright 2018, Elsevier); (b) photograph and SEM
image of the magnetic and conductive polydimethylsiloxane. From top to bottom, the scale bar is
2 cm, 2 cm, 5 µm, and 1 µm, respectively (reproduced with permission [82]. Copyright 2020, Else-
vier); (c) photograph and SEM image of Fe3O4 nanoparticles; (d) SEM image of Fe3O4 nanoparticles
embedded PVDF fibers (reproduced with permission [45]. Copyright 2017, Elsevier); (e) schematic
diagrams of the full-space EMG-TENG and SEM image of surface microstructure (reproduced with
permission [43]. Copyright 2020, Elsevier); (f) from left to right are SEM images of nanostructured
PTFE surface, nano-grassed Al surface, electro-spun PVDF nanofiber mat, and electro-spun nylon
6/6 nanofiber mat. The scale bar is 1 µm (reproduced with permission [83]. Copyright 2020, Wiley).
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3.2. Vibratory Electromagnetic–Triboelectric Hybridized Nanogenerator

EMG-TENG can be classified in many ways. According to the output characteristics,
it can be divided into DC generators and AC generators. We try to classify it into vibratory
EMG-TENG and rotating EMG-TENG according to the mode of mechanical motion that
generates electricity. Some EMG-TENGs include these two mechanical motion methods
at the same time. The vibratory and rotating EMG-TENG have their own advantages in
different application scenarios [89–93]. Recently, researchers from Chongqing University
invented an EMG-TENG to convert water wave energy into electricity [94]. The structure
of this EMG-TENG is illustrated in Figure 5a. They use a spring to fix a magnet on the
bottom of the cylindrical housing, and install the coil on the top of the cylindrical housing
to form the EMG part. They use springs to connect the magnet to the bottom of the
cylindrical shell and secure the coil at the top of the cylindrical shell to fabricate the EMG
part. The cylindrical shell will oscillate irregularly in the waves, which will drive the
magnet to vibrate to produce changes in the magnetic flux in the circuit and generate
current. Meanwhile, the vibration of the magnet will hit the four single-electrode mode
TENG attached to the inner wall of the cylindrical shell to generate electricity. The negative
electrode of the TENG is FEP (fluorinated ethylene propylene) and the positive electrode
is copper. This kind of EMG-TENG proposes an effective solution for the conversion
of low-frequency water wave energy into electrical energy. EMG-TENG has significant
advantages in the harvesting of low-frequency energy. The mechanical energy generated
during human walking is a kind of low-frequency energy that is convenient to be harvested.
In 2020, Elaijah Islam and others invented energy harvesting tiles. This device is used
for scavenging the mechanical energy generated during human walking [95]. They chose
a vertical contact–separation mode TENG, as depicted in Figure 5b. They added foam
between the upper tile and the lower tile to create elasticity and achieve the process of
contact and separation. Nd2Fe14B was used as the permanent magnet to fabricate the
EMG part. The rectifier circuit was used to integrate the output current of TENG and
EMG into the DC output. It is worth mentioning that they used Kapton and MoS2 as
the negative electrode to prepare TENG with a multilayer structure, and the material of
the positive electrode was aluminum. Kapton and aluminum are widely used positive
and negative electrode materials for fabricating TENG. The MoS2 layer is located on the
back of the Kapton layer. It takes advantage of the high electron capture ability of MoS2
so that the electrons generated by contact friction are retained in the MoS2 layer, which
increases the output power of the TENG by 120 times. The output of the TENG is increased
by introducing a multilayer structure to keep the electrons produced by friction, which
provides a new method to enhance the output performance of the TENG. The EMG and
TENG parts of the above two kinds of hybridized generators are relatively independent.
Below, we introduce a kind of hybridized generator in which the EMG part is closely
related to the TENG part. Ji Wan et al. invented an EMG-TENG [82]. They doped NdFeB
and multi-walled carbon nanotubes in PDMS, and the doped materials have triboelectric
properties, magnetic properties, and electrical conductivity at the same time. The doped
PDMS acts as the negative electrode of the TENG and provides a magnetic field for the EMG.
The positive pole of the TENG is a Kapton-encapsulated copper coil. When the doped
PDMS and Kapton slip motion, the TENG and EMG simultaneously generate current,
as illustrated in Figure 5c,d. There is no doubt that this method saves space, reduces
weight, improves efficiency, and is suitable for scavenging mechanical energy generated by
human activities. EMG-TENG is not limited to the harvesting of low-frequency mechanical
energy, but also has the ability to harvest high-frequency mechanical energy; for instance,
wind energy. In 2015, Xue Wang et al. invented a hybridized generator to harvest wind
energy [96]. As shown in Figure 5e, they made two EMGs and two TENGs in a rectangular
acrylic tube. They fixed a magnet on the Kapton film and then installed a PTFE film and
coils on the top and bottom of the rectangular acrylic tube in a mirror image. When the
Kapton film vibrates up and down under the action of airflow, it forms an EMG and a
TENG with the upper and lower sides of the rectangular acrylic tube, respectively. This
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EMG-TENG skillfully harvests high-frequency mechanical energy generated by high wind
speeds. There are also some very classic studies on the harvesting of mechanical energy
using vibrating mechanical structures. As revealed in Figure 5f, the vibration of the small
ball in the confined space is used to harvest energy [97]. Figure 5g,h illustrates using the
vibration of the spring to collect mechanical energy [70,98]. The vibrating mechanical
structure is a simple, efficient, and widely adaptable method for making an EMG-TENG.
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for frequency blue energy harvesting (reproduced with permission [94]. Copyright 2021, Science
and Technology Review Publishing House); (b) the internal structure of the energy harvesting
tile (reproduced with permission [95]. Copyright 2020, Elsevier); (c) a schematic illustrating a
magnetic PDMS obtained by pulsed magnetization; (d) structural schematic of the EMG-TENG
invented by Ji Wan at al. (reproduced with permission [82]. Copyright 2020, Elsevier); (e) schematic
diagrams of the EMG-TENG for scavenging air-flow energy (reproduced with permission [96].
Copyright 2015, ACS); (f) schematic diagram of the EMG-TENG for a self-powered electronic watch
(reproduced with permission [97]. Copyright 2015, ACS); (g) schematic diagram of the hybridized
nanogenerator invented by Kewei Zhang et al. (reproduced with permission [70]. Copyright 2015,
ACS); (h) schematic diagram of the EMG-TENG invented by Ting Quan at al. (reproduced with
permission [98]. Copyright 2015, Springer Nature).



Energies 2021, 14, 6219 14 of 27

3.3. Rotating Electromagnetic-Triboelectric Hybridized Nanogenerator

Compared with the vibratory EMG-TENG, the rotating EMG-TENG is limited in its
application scenarios. Since the rotating EMG-TENG must be used in the scene where the
rotating structure can be rotated, it is different from the vibratory EMG-TENG, which can
work through simple contact or sliding. However, the rotating EMG-TENG has its own
unique advantages. The rotating structure can often enable the hybridized generator to
generate a larger output power, which has advantages in collecting wind energy and ocean
energy [99]. The rotating EMG-TENG usually has a stationary part and a rotating part,
which are similar to the stator and rotor of the traditional EMG. The EMG-TENG recently
reported by M. Toyabur Rahman et al. is shown in Figure 6a. It is divided into three
parts according to the structure: the rotating wind blade, rotating EMG, and stationary
TENG [100]. Its EMG part is relatively simple and consists of a rotating magnet and a fixed
coil. The TENG part of it is related to the EMG part. When the magnet of the EMG part
rotates, it will attract the magnetic rubber on the upper surface of the TENG (the green part
in the picture) and cause the TENG to come into contact. When rotating, the magnet of the
EMG part will attract the magnetic rubber on the upper surface of the TENG (the green
part in the picture) to cause the TENG to come into contact, and the elasticity generated
by the Kapton in the middle of the TENG can make the upper part of the TENG bounce
back and puts the TENG in a separated state, thus completing a vertical contact–separation
mode TENG. The rotating wind blade can drive the EMG-TENG to generate electricity by
rotating in wind or water, and the maximum power can reach 40.65 mW. The EMG-TENG
invented by Qinkai Han and others also uses a rotating structure. It consists of a stator
part and a rotor part, as illustrated in Figure 6b. The EMG part is composed of a rotating
magnet and a fixed coil. The structure of the TENG part is similar to a ball bearing [101].
When the generator rotates, a single-electrode mode TENG is formed between the PTFE
ball and the copper-plated electrode on the inner wall. The wind energy can be converted
into electricity by installing the wind cup to the hybridized generator. Some EMG-TENGs
can work in either rotation mode or vibration mode. For example, in 2016, Zhen Wen et al.
reported a rotating EMG-TENG, as revealed in Figure 6c,d. The hybridized generator has a
three-layer structure: the inner layer is an acrylic tube with a magnet on the inner wall and
a copper electrode on the outer wall, the middle layer is an acrylic tube where the outer
wall is affixed with a coil and the inner wall is affixed with an FEP with a copper electrode,
and the outer layer is an acrylic tube with a copper electrode on the inner wall and a magnet
on the outer wall [102]. The copper electrode on the outer wall of the inner layer and the
FEP on the inner wall of the middle layer constitute the TENG. The negative electrode of
the TENG is FEP, and the positive electrode is copper. The outer acrylic tube is equipped
with 12 blades to form a rotor structure, which is used to harvest water energy to drive the
generator. The rotating EMG-TENG is mainly used to collect wind energy and water energy
in the environment, which requires that the hybridized generator must have a waterproof
performance and the ability to work in a bad environment. Hengyu Guo et al. reported an
EMG-TENG with a good environmental adaptability, as illustrated in Figure 6e. The EMG
part and TENG part of the hybridized generator are relatively independent. The stator part
of the TENG is glued with a nano-structured FEP film (the green part in Figure 6e) as the
negative electrode of the TENG, and the rotor part of the TENG is composed of a sponge
with a copper film deposited on the surface. The stator part of the EMG is an acrylic plate
attached with coils, and the rotor part is an acrylic plate attached with magnets. A PTFE
ball is added between the stator part and the rotor part to reduce friction [103]. Wind blades
are installed on the outer wall of the generator to harvest wind energy or water flow energy.
This ENG-TENG can convert wind energy into electrical energy in rainy environments,
and can also harvest water flow energy underwater. A Tesla turbine is an ideal device to
convert a low-frequency tangential force into rotating high-frequency mechanical energy.
This mechanical structure is suitable for high- and low-frequency energy conversion in the
fabrication of EMG-TENG. In 2021, researchers from South Korea invented an EMG-TENG
based on a Tesla turbine structure. They used aluminum as the cathode material and PTFE
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as the negative material to construct the TENG part. The output voltage of the EMG-TENG
can reach 332 V and the output current is 3.5 mA. This device can efficiently harvest air
kinetic energy and convert it into electricity [104]. In summary, the rotating EMG-TENG is
suitable for the conversion of wind energy and water flow energy, etc., and can obtain a
better electrical power output.
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3.4. Others Hybridization of Electromagnetic Induction and TENG

In addition to the above-mentioned EMG-TENG, there are other ways to combine
electromagnetic induction and TENG. In 2020, Chi Zhang et al. reported a new technology
combining TENG and electromagnetic induction [105]. First, they used PDMS as the
negative electrode and nylon 6 as the positive electrode to fabricate the TENG. Then, two
inductors are used to transmit and receive the electricity generated by TENG. The energy
transmission efficiency of the inductance coil 5 cm apart can reach 73%, as depicted in
Figure 6f. The electricity generated by using a 40 × 50 mm2 TENG can still power 70 LEDs
after being transmitted remotely. This new combination of electromagnetic induction
and TENG provides new ideas for subsequent research. Researchers can use TENG for
power generation and electromagnetic induction for energy transfer, or they can use EMG
for power generation and TENG for sensing. The combination of TENG technology and
electromagnetic induction technology will not only be limited to EMG-TENG but is also
expected to expand to a wider range of fields. A series of new research directions need to
be developed by researchers.

4. Performance and Application of EMG-TENG

EMG-TENG has been used in many fields due to its excellent electrical properties.
Table 2 shows the magnitude of input power, output power, energy conversion efficiency,
and the volume of EMG-TENG. The researchers initially hoped to use EMG-TENG to
generate electricity, which is the most direct application. Later, researchers developed more
application scenarios, including powering small electronic devices, sensors, and wearable
devices [106–109]. We will sum up the performance and application of EMG-TENG to
clarify the application value of EMG-TENG in human life in this section.

4.1. EMG-TENG for Small Electronic Devices

EMG-TENG can harvest tiny amounts of energy in the environment, which determines
that EMG-TENG has the characteristics of portability and low electrical energy [110,111].
According to the characteristics of EMG-TENG, it is very suitable for powering small
electronic devices [112], and it is expected to realize a self-powered system in a small area.
The self-chargeable power module based on a hybridized generator invented by Korean
researchers has a mass of only 130 g and can generate a DC output power of 34.11 mW [83].
This device is suitable for scavenging energy that is generated by human motion. This
electrical energy is convenient for driving portable electronic devices to form a self-powered
system. As illustrated in Figure 7a, this device can light up 10 LEDs (Figure 7(ai)), charge a
wireless headset (Figure 7(aii)), charge a smart phone (Figure 7(aiii)), and charge a smart
band (Figure 7(aiv)). The device can also harvest water wave energy to power the wireless
water quality monitoring system, as shown in Figure 7b. Researchers have a great research
interest in the self-powered system formed by EMG-TENG for powering small electronic
devices. Figure 7c shows the composite nano generator and self-powered electronic watch
invented by Ting Quan et al. in 2015 [97]. The maximum output power of this hybridized
generator is 8.051 mW. Using the generator to charge the lithium ion battery, the lithium
ion battery can power the electronic watch for 218 min after 32 min of charging. It is
commendable that the EMG-TENG and self-powered electronic watches invented by the
institute are small enough to be easily worn on human wrists. This research shows the
possibility of commercial application of EMG-TENG. In 2019, Xin Chen et al. reported an
EMG-TENG based on the chaotic pendulum model, as schematically depicted in Figure 7d.
This hybridized generator can be used to harvest water wave energy [113]. In waves,
the TENG part can provide a 15.21 µW output power, and the EMG part can provide
a 1.23 µW output power. The EMG-TENG can effectively collect water wave energy to
power the marine environment monitoring system. As depicted in Figure 7e, a wireless
self-powered ocean monitoring system is constructed by EMG-TENG. EMG-TENG can
not only drive small electronic devices to achieve a self-powered system, but some EMG-
TENGs themselves can also be used as a wireless sensor. For example, an EMG-TENG
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invented by Hongmei Yang et al. can charge a mobile phone [114], as shown in Figure 7f.
Meanwhile, the electrical performance of the device has a high responsiveness to speed
and frequency, and the device can be used to directly realize the flow velocity sensing of
water flow, as illustrated in Figure 7f,g. Next, we will focus on the application research of
sensing using the output signal of EMG-TENG itself.
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illustration of the universal self-chargeable power module for self-powered wireless water pH monitoring system by
harvesting blue energy (reproduced with permission [83]. Copyright 2020, Wiley); (c) EMG-TENG for an electronic watch
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4.2. EMG-TENG for Sensing

EMG-TENG is usually used in a sensing system in two situations. The first situation
is to use EMG-TENG as an energy supply module and connect it with existing sensors
to build a self-powered sensing system [94], as illustrated in Figure 8a. This situation is
essentially also EMG-TENG’s power supply for small electronic devices, so we will not go
into detail here. We mainly discuss the second situation. As mentioned in the previous
section, EMG-TENG can utilize its own output signal as a sensor [17,115]. This is due to the
fact that EMG-TENG is used to convert tiny amounts of mechanical energy into electrical
energy, so it has a high sensitivity to changes in environmental parameters, especially the
parameters of force and motion. For example, changes in the water velocity, wind speed,
human movement frequency, and so on. Using this advantage of EMG-TENG, a variety of
sensors with high sensitivities can be invented. Figure 8b shows the EMG-TENG invented
by Ji Wan et al. [82]. The hybridized generator can charge a 10 µF capacitor to 3 V in
110 s. They used the principle that the EMG part of the hybridized generator can generate
electrical signals without contact, and invented an EMG-TENG that can sense motion in
three-dimensional space. They put the magnetic and conductive polydimethylsiloxane
(this material has been introduced in Figure 4b) tightly on the finger (Figure 8b), and the
three-dimensional motion on the 3 × 3 array coil can be sensed by the electromagnetic
induction of the magnetic and conductive polydimethylsiloxane and EMG. Figure 8c,d,
respectively, show that the trajectory of the letter P written on the plane and the letter P
written in the three-dimensional space is captured by the EMG of the array. There are
different induced current signals in the plane and in the three-dimensional space. This
electrical signal can realize the human–computer interaction through machine learning.
EMG-TENG can also be used for wind speed detection. In 2020, researchers from Tsinghua
University in China reported a rotating EMG-TENG, as revealed in Figure 6b. When the
wind speed is 300 r/min, the power density of the TENG part is 3 µW/g, and the power
density of the EMG part is 10 µW/g [101]. They used this EMG-TENG to achieve the
real-time detection of wind speed, as revealed in Figure 8e. They compared the wind
speed measured by the EMG-TENG with the wind speed measured by a commercial hot
wire anemometer and discovered that the results are in good agreement, as depicted in
Figure 8f. Woo Joong Kim and others from South Korea reported an EMG-TENG that can
monitor oil leakage in seawater [116]. The output voltage of this generator is 7 V, and the
output current is 20 mA. They formed a closed circuit, bypassing the current output by
the EMG-TENG through seawater. When the EMG-TENG is in the sea, the LED in the
circuit emits light due to the high conductivity of the seawater. In the event of an oil spill,
the spilled oil floats in the upper layer of the sea. When the EMG-TENG floats to the oil
spill area, the LED does not emit light due to the poor conductivity of the oil. Through the
difference in conductivity between the seawater and petroleum, a self-powered petroleum
leakage monitoring system based on EMG-TENG is realized, as schematically depicted in
Figure 8g. There are numerous applications of EMG-TENGs in sensors. For example, the
amplitude sensor made by EMG-TENG (Figure 8h) [117], the wind speed sensor made by
EMG-TENG (Figure 8i) [118], and the sensors based on EMG-TENG to detect the triggering
of mechanical devices (Figure 8j,k), and so on [119].
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Figure 8. EMG-TENG for sensing: (a) construction flow chart of self-powered wireless temperature sensing system
(reproduced with permission [94]. Copyright 2021, Science and Technology Review Publishing House); (b) a flexible EMG-
TENG for 3D trajectory sensing; (c) sensing of letters on a two-dimensional plane; (d) sensing of letters in three-dimensional
space (reproduced with permission [82]. Copyright 2020, Elsevier); (e) self-powered wind detection using an EMG-TENG;
(f) wind speed data measured by commercial equipment and EMG-TENG (reproduced with permission [101]. Copyright
2020, Elsevier); (g) EMG-TENG for self-powered oil spill detection (reproduced with permission [116]. Copyright 2020,
ACS); (h) EMG-TENG for amplitude sensing (reproduced with permission [117]. Copyright 2015, ACS); (i) EMG-TENG for
self-powered wind speed sensor (reproduced with permission [118]. Copyright 2020, Elsevier); (j) EMG-TENG for detecting
multiple mechanical triggering; (k) the optical photograph of the assembled hybridized sensor, where the scale bar is 5 mm.
Demonstration for recording the pressing force and velocity from a keystroke (reproduced with permission [119]. Copyright
2018, Wiley).
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Table 2. The magnitude of input power, output power, energy conversion efficiency, and the volume of EMG-TENG.

Mechanical Energy
Source Types Article Maximum Output

Power (TENG/EMG)
Hybrized Peak

Power Volume
Energy

Conversion
Efficiency

human motions Appl. Energy 2020,
279, 115799 [119]

171.13 µW
102.12 mW 102.29 mW Ø: ~26 mm

h: ~50.5 mm -

winds ACS Nano 2015, 9,
4553–4562 [95]

3.5 mW
1.8 mW 14.6 kW/m3 6.7 × 4.5 × 2 cm

wave energy Research 2021, 2021,
5963293 [93]

470 µW
523 mW - Ø: ~86 mm

h: ~80 mm ~48.48%

wind and water-flow
energies

Nano Energy 2021, 85,
105974 [99]

1568 mW kg−1

386 mW kg−1 40.65 mW Ø: ~80 mm
h: ~65 mm -

Ø is diameter, and h is height.

4.3. EMG-TENG for Wearable Devices

EMG-TENG has the characteristics of a small size and good portability and is suitable
for preparing wearable devices. Generally, there are two types of wearable devices prepared
by EMG-TENG. One is the use of EMG-TENG to scavenge mechanical energy generated
by human activities as a wearable electronic device, and the other is a wearable sensor
based on EMG-TENG. In 2015, an EMG-TENG was reported by Kewei Zhang and others,
as revealed in Figure 5g. They installed this EMG-TENG at the bottom of the shoe, which
can convert the mechanical energy generated by human walking into electrical energy, and
can drive 32 LEDs [70], as shown in Figure 9a. The wearable EMG-TENG can also power
smartphones and smartwatches. In 2020, the EMG-TENG invented by M. Toyabur Rahman
et al. has an output power of 102.29 mW and can drive 380 LEDs at the same time [120]. The
use of this EMG-TENG to charge smartphones and smart bracelets is depicted in Figure 9b.
The device can also drive wearable electronic devices and sensors, and has a wide range of
application scenarios, as illustrated in Figure 9c. Both above-mentioned EMG-TENGs are
used to power wearable devices or portable electronic devices, and the use of EMG-TENG
as a wearable sensor has also been reported. In 2018, researchers in Canada invented an
EMG-TENG for human knee joint health sensing, which can be embedded in the knee joint
stent to monitor patients’ knee joint rehabilitation in real time [22].

4.4. Others Applications

In addition to building self-driving systems and powering portable electronic device-
sand sensors, EMG-TENGs can also harvest wind energy and water wave energy [121].
Although the output power of a single EMG-TENG is small, large quantities of EMG-
TENGs laid in the ocean can be used as an important power source [43,102], as depicted
in Figure 9d,e. Figure 9f shows a special combination of electromagnetic induction and
triboelectricity [105]. The principle of this combination has been introduced in detail in
Section 3.4. The researchers installed the TENG on the sole of the shoe to generate electricity
and fixed the electromagnetic coil to the pants in order to transmit power. The receiver
integrated with the capacitor and the receiver coil can power an electronic watch.
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Figure 9. EMG-TENG for wearable devices: (a) photograph of the EMG-TENG powered LEDs on the shoes (reproduced
with permission [70]. Copyright 2015, ACS); (b) photograph of recharging a commercial smartphone and a commercial
smartwatch using the EMG-TENG; (c) schematic diagram of EMG-TENG harvesting mechanical energy generated by human
motion for sensing (reproduced with permission [120]. Copyright 2020, Elsevier); (d) EMG-TENG for high-efficiency mechan-
ical energy harvesting (reproduced with permission [43]. Copyright 2020, Elsevier); (e) hypothetical multi-energy harvesting
device floating on the ocean (reproduced with permission [102]. Copyright 2016, ACS); (f) TENG and electromagnetic
induction are used for electricity generation and wireless transmission (reproduced with permission [105]. Copyright 2020,
Springer Nature).

5. Summary and Prospect

Based on the principle of the friction nano-generator and electromagnetic generator,
this paper attempts to explain the mechanism of the friction nano-generator simply by
using the friction electrification phenomenon and electrostatic induction phenomenon.
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The material selection and common modification methods of the friction nano-generator
are described pertinently. From the perspective of its mechanical structure, EMG-TENG
is divided into two categories: vibratory EMG-TENG and rotating EMG-TENG, which
also shows the universal design idea of EMG-TENG’s structure. The applications of EMG-
TENG are summarized, including powering small electronic devices, sensors based on
EMG-TENG, and wearable EMG-TENG [112,122–125]. EMG-TENG has been used in
wearable devices and other small electronic devices because of its light weight, small size,
low cost, and so on. However, there are still some problems with EMG-TENG, such as
its low efficiency of low-frequency energy conversion and its non-superposition of multi-
frequency mechanical energy into electric energy. Researchers from South Korea have
made the necessary research on these issues [126]. In order to solve these problems, the
author believes that the future development of EMG-TENG still needs the following three
aspects of research:

(1) From the point of view of materials, the development of EMG-TENG should have
two directions. On the one hand, it is necessary to study the friction materials suitable
for TENG, which should not only ensure the electrical performance of TENG but
also have a good wear resistance and environmental adaptability, so as to provide
strong support for the commercial application of TENG. On the other hand, it has
been mentioned in this paper that the study of composites with both magnetic and
triboelectric properties can simplify the structure of EMG-TENG and increase the
degree of integration of EMG-TENG;

(2) From the perspective of structural design, both the vibratory and rotating EMG-
TENG have certain defects. The power of the vibrating EMG-TENG is not large
enough. The use conditions of the rotating EMG-TENG are restricted. Research on the
miniaturization, high environmental adaptability, and high durability of EMG-TENG
requires new developments in its structural design and material synthesis;

(3) From the perspective of practical application, the current EMG-TENG mainly con-
verts various mechanical energy into electrical energy. Compared with the many
applications of electromagnetic induction in various fields, there are obviously few
application scenarios for EMG-TENG. It is hoped that researchers can develop more
new applications with a combination of electromagnetic induction and triboelectric
power generation.

All things considered, the contemporary research on the combination of electromag-
netic induction and friction power generation is still in the exploratory stage, and there is
still a long way to go before commercial applications. We feel that through the continuous
efforts of more researchers, EMG-TENG will one day be practically applied to human
production and life.
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