Next Issue
Volume 14, February-1
Previous Issue
Volume 14, January-1

Energies, Volume 14, Issue 2 (January-2 2021) – 264 articles

Cover Story (view full-size image): In this work, the findings of different 2030 scenarios, considering various socio-economic and techno-economic determinants of possible future energy system development, identify numerous modification and reduction potentials of the electricity demand due to societal commitment and energy community penetration. View this paper
  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Readerexternal link to open them.
Order results
Result details
Select all
Export citation of selected articles as:
Open AccessFeature PaperArticle
Energy Flexibility as Additional Energy Source in Multi-Energy Systems with District Cooling
Energies 2021, 14(2), 519; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020519 - 19 Jan 2021
Viewed by 398
Abstract
The integration of multi-energy systems to meet the energy demand of buildings represents one of the most promising solutions for improving the energy performance of the sector. The energy flexibility provided by the building is paramount to allowing optimal management of the different [...] Read more.
The integration of multi-energy systems to meet the energy demand of buildings represents one of the most promising solutions for improving the energy performance of the sector. The energy flexibility provided by the building is paramount to allowing optimal management of the different available resources. The objective of this work is to highlight the effectiveness of exploiting building energy flexibility provided by thermostatically controlled loads (TCLs) in order to manage multi-energy systems (MES) through model predictive control (MPC), such that energy flexibility can be regarded as an additional energy source in MESs. Considering the growing demand for space cooling, a case study in which the MPC is used to satisfy the cooling demand of a reference building is tested. The multi-energy sources include electricity from the power grid and photovoltaic modules (both of which are used to feed a variable-load heat pump), and a district cooling network. To evaluate the varying contributions of energy flexibility in resource management, different objective functions—namely, the minimization of the withdrawal of energy from the grid, of the total energy cost and of the total primary energy consumption—are tested in the MPC. The results highlight that using energy flexibility as an additional energy source makes it possible to achieve improvements in the energy performance of an MES building based on the objective function implemented, i.e., a reduction of 53% for the use of electricity taken from the grid, a 43% cost reduction, and a 17% primary energy reduction. This paper also reflects on the impact that the individual optimization of a building with a multi-energy system could have on other users sharing the same energy sources. Full article
Show Figures

Graphical abstract

Open AccessArticle
The LVRT Control Scheme for PMSG-Based Wind Turbine Generator Based on the Coordinated Control of Rotor Overspeed and Supercapacitor Energy Storage
Energies 2021, 14(2), 518; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020518 - 19 Jan 2021
Viewed by 374
Abstract
With the increasing penetration level of wind turbine generators (WTGs) integrated into the power system, the WTGs are enforced to aid network and fulfill the low voltage ride through (LVRT) requirements during faults. To enhance LVRT capability of permanent magnet synchronous generator (PMSG)-based [...] Read more.
With the increasing penetration level of wind turbine generators (WTGs) integrated into the power system, the WTGs are enforced to aid network and fulfill the low voltage ride through (LVRT) requirements during faults. To enhance LVRT capability of permanent magnet synchronous generator (PMSG)-based WTG connected to the grid, this paper presents a novel coordinated control scheme named overspeed-while-storing control for PMSG-based WTG. The proposed control scheme purely regulates the rotor speed to reduce the input power of the machine-side converter (MSC) during slight voltage sags. Contrarily, when the severe voltage sag occurs, the coordinated control scheme sets the rotor speed at the upper-limit to decrease the input power of the MSC at the greatest extent, while the surplus power is absorbed by the supercapacitor energy storage (SCES) so as to reduce its maximum capacity. Moreover, the specific capacity configuration scheme of SCES is detailed in this paper. The effectiveness of the overspeed-while-storing control in enhancing the LVRT capability is validated under different levels of voltage sags and different fault types in MATLAB/Simulink. Full article
Show Figures

Graphical abstract

Open AccessArticle
A Novel Data-Driven Modeling and Control Design Method for Autonomous Vehicles
Energies 2021, 14(2), 517; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020517 - 19 Jan 2021
Viewed by 364
Abstract
This paper presents a novel modeling method for the control design of autonomous vehicle systems. The goal of the method is to provide a control-oriented model in a predefined Linear Parameter Varying (LPV) structure. The scheduling variables of the LPV model [...] Read more.
This paper presents a novel modeling method for the control design of autonomous vehicle systems. The goal of the method is to provide a control-oriented model in a predefined Linear Parameter Varying (LPV) structure. The scheduling variables of the LPV model through machine-learning-based methods using a big dataset are selected. Moreover, the LPV model parameters through an optimization algorithm are computed, with which accurate fitting on the dataset is achieved. The proposed method is illustrated on the nonlinear modeling of the lateral vehicle dynamics. The resulting LPV-based vehicle model is used for the control design of path following functionality of autonomous vehicles. The effectiveness of the modeling and control design methods through comprehensive simulation examples based on a high-fidelity simulation software are illustrated. Full article
(This article belongs to the Special Issue Control Design for Electric Vehicles)
Show Figures

Figure 1

Open AccessArticle
Modelling Bidding Behaviour on German Photovoltaic Auctions
Energies 2021, 14(2), 516; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020516 - 19 Jan 2021
Viewed by 296
Abstract
In this article renewable energy support allocation through different types of auctions are assessed. The applied methodological framework is auction theory, based on the rules governing the German photovoltaic (PV) Feed-in Premium (FIP) auctions. The work focuses on bidding strategies based on an [...] Read more.
In this article renewable energy support allocation through different types of auctions are assessed. The applied methodological framework is auction theory, based on the rules governing the German photovoltaic (PV) Feed-in Premium (FIP) auctions. The work focuses on bidding strategies based on an extended levelised cost of electricity (LCOE) methodology, comparing two different set of rules: uniform price and pay-as-bid. When calculating the optimal bids an iteration is developed to find the Nash-equilibrium optimal bidding strategy. When searching for the bid function, not only strictly monotone functions, but also monotone functions are considered, extending the framework typically applied in auction theory modelling. The results suggest that the PV support allocation in the German auction system would be more cost efficient using the uniform pricing rule, since many participants bid above their true valuation in the pay-as-bid auction Nash-equilibrium. Thus from a cost minimising perspective, the application of uniform pricing rule would be a better policy decision. Full article
Show Figures

Figure 1

Open AccessArticle
Cladding Profilometry Analysis of Experimental Breeder Reactor-II Metallic Fuel Pins with HT9, D9, and SS316 Cladding
Energies 2021, 14(2), 515; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020515 - 19 Jan 2021
Viewed by 230
Abstract
BISON finite element method fuel performance simulations were conducted using an existing automated process that couples the Fuels Irradiation & Physics Database (FIPD) and the Integral Fast Reactor Materials Information System database by writing input files and comparing the BISON output to post-irradiation [...] Read more.
BISON finite element method fuel performance simulations were conducted using an existing automated process that couples the Fuels Irradiation & Physics Database (FIPD) and the Integral Fast Reactor Materials Information System database by writing input files and comparing the BISON output to post-irradiation fuel pin profilometry measurements contained within the databases. The importance of this work is to demonstrate the ability to benchmark fuel performance metallic fuel models within BISON using Experimental Breeder Reactor-II fuel pin data for a number of similar pins, while building off previous modeling efforts. Changes to the generic BISON input file include implementing pin specific axial power and flux profiles, pin specific fluences, frictional contact, and irradiation-induced volumetric swelling models for cladding. A statistical analysis of irradiation-induced volumetric swelling models for HT9, D9, and SS316 was performed for experiments X421/X421A, X441/X441A, and X486. Between these three experiments, there were 174 post-irradiation examination (PIE) profilometries used for validating the swelling models presented using a standard error of the estimate (SEE) method. Implementation of the volumetric swelling models for D9 and SS316 claddings was found to have a significant impact on the BISON profilometry simulated, where HT9 clad pins had an insignificant change due to low fluence values. BISON profilometry simulated for HT9, D9, and SS316 fuel pins agreed with PIE profilometry measurements, with assembly SEE values being 4.4 × 10−3 for X421A, 2.0 × 10−3 for X441A, and 2.8 × 10−3 for X486. D9 clad pins in X421/X421A had the highest SEE values, which is due to the BISON simulated profilometry being shifted axially. While this work accomplished its purpose to demonstrate the modeling of multiple fuel pins from the databases to help validate models, the results suggest that the continued development of metallic fuel models is necessary for qualifying new metallic fuel systems to better capture some physical performance phenomena, such as the hot pressing of U-Pu-Zr and the fuel cladding chemical interaction. Full article
(This article belongs to the Special Issue Advances in Nuclear Fuels)
Show Figures

Figure 1

Open AccessArticle
Design and Analysis of a Five-Phase Permanent-Magnet Synchronous Motor for Fault-Tolerant Drive
Energies 2021, 14(2), 514; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020514 - 19 Jan 2021
Viewed by 342
Abstract
Reliability is a fundamental requirement in electric propulsion systems, involving a particular approach in studies on system failure probabilities. An intrinsic improvement to the propulsion system involves introducing robust architectures such as fault-tolerant motor drives to these systems. Considering the potential for hardware [...] Read more.
Reliability is a fundamental requirement in electric propulsion systems, involving a particular approach in studies on system failure probabilities. An intrinsic improvement to the propulsion system involves introducing robust architectures such as fault-tolerant motor drives to these systems. Considering the potential for hardware failures, a fault-tolerant design approach will achieve reliability objectives without recourse to optimized redundancy or over-sizing the system. Provisions for planned degraded modes of operation are designed to operate the motor in fault-tolerant mode, which makes them different from the pure design redundancy approach. This article presents how a five-phase permanent-magnet synchronous motor operates under one- or two-phase faults, and how the system reconfigures post-fault motor currents to meet the torque and speed requirement of reliable operation that meets the requirements of an electric propulsion system. Full article
(This article belongs to the Special Issue Design and Analysis of Electric Machines)
Show Figures

Figure 1

Open AccessArticle
Analysis of Various Options for Balancing Power Systems’ Peak Load
Energies 2021, 14(2), 513; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020513 - 19 Jan 2021
Viewed by 330
Abstract
The balancing of the power of the Polish Power System (KSE) is a key element in ensuring the safety of electric energy supplies to end users. This article presents an analysis of the power demand in power systems (PS), with emphasis on the [...] Read more.
The balancing of the power of the Polish Power System (KSE) is a key element in ensuring the safety of electric energy supplies to end users. This article presents an analysis of the power demand in power systems (PS), with emphasis on the typical power variability both in subsequent hours of the day and on particular days and in particular months each year. The methodology for calculating the costs of electric energy undelivered to the end users and the amount of these costs for KSE is presented. Different possibilities have been analyzed for balancing power systems’ peak load and assumptions have been formulated for calculating the amount of the related costs. On this basis, a comparative analysis has been made of the possibility to balance peak load using operators’ system services, trans-border connections, and various energy storage solutions. On the basis of the obtained results, optimal tools have been proposed for market-based influence from transmission and distribution system operators on energy market participants’ behaviors in order to ensure the power systems’ operating safety and continuous energy deliveries to end users. Full article
Show Figures

Figure 1

Open AccessArticle
Comparison of Factorial and Latin Hypercube Sampling Designs for Meta-Models of Building Heating and Cooling Loads
Energies 2021, 14(2), 512; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020512 - 19 Jan 2021
Viewed by 310
Abstract
Interest in research analyzing and predicting energy loads and consumption in the early stages of building design using meta-models has constantly increased in recent years. Generally, it requires many simulated or measured results to build meta-models, which significantly affects their accuracy. In this [...] Read more.
Interest in research analyzing and predicting energy loads and consumption in the early stages of building design using meta-models has constantly increased in recent years. Generally, it requires many simulated or measured results to build meta-models, which significantly affects their accuracy. In this study, Latin Hypercube Sampling (LHS) is proposed as an alternative to Fractional Factor Design (FFD), since it can improve the accuracy while including the nonlinear effect of design parameters with a smaller size of data. Building energy loads of an office floor with ten design parameters were selected as the meta-models’ objectives, and were developed using the two sampling methods. The accuracy of predicting the heating/cooling loads of the meta-models for alternative floor designs was compared. For the considered ranges of design parameters, window insulation (WDI) and Solar Heat Gain Coefficient (SHGC) were found to have nonlinear characteristics on cooling and heating loads. LHS showed better prediction accuracy compared to FFD, since LHS considers the nonlinear impacts for a given number of treatments. It is always a good idea to use LHS over FFD for a given number of treatments, since the existence of nonlinearity in the relation is not pre-existing information. Full article
(This article belongs to the Special Issue Data-Driven Energy-Cost Analysis of HVAC System for Buildings)
Show Figures

Figure 1

Open AccessArticle
Experimental Feasibility Study of a Direct Contact Latent Heat Storage Using an Ester as a Bio-Based Storage Material
Energies 2021, 14(2), 511; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020511 - 19 Jan 2021
Viewed by 350
Abstract
Latent heat storage (LHS) represents a valuable technology for the integration of intermittent renewable energy sources in existing and future energy systems. Improvements in LHS can be sought by enhancing heat transfer efficiency, compactness and diminishing the environmental impact of storage systems. In [...] Read more.
Latent heat storage (LHS) represents a valuable technology for the integration of intermittent renewable energy sources in existing and future energy systems. Improvements in LHS can be sought by enhancing heat transfer efficiency, compactness and diminishing the environmental impact of storage systems. In this paper, direct contact latent heat storage (DC-LHS) using esters as phase change material (PCM) is proposed as a promising compact storage technology to achieve high performance both in terms of heat transfer and sustainability. The technology allows for the heat transfer fluid (HTF) to flow directly through the PCM, forming a large amount of small droplets and thus providing a large heat exchange surface area between the two materials. At the same time, using biobased esters as PCM, gives the technology clear ecological advantages when compared to alternative types of compact energy storage. Furthermore, no complex heat transfer enhancing structures are necessary in a DC-LHS, further reducing the environmental impact and enabling very high energy densities. In this paper, the feasibility of this concept is explored for the first time by developing and testing an experimental DC-LHS device using methyl palmitate as PCM and water as HTF. The thermal performance and stability of the material combination are analysed by different melting–solidification experiments and distinctive effects are identified and comprehensively discussed for the first time. The basic concept as well as the novel material combination are validated. The study finds the critical challenges that must be overcome in order for this highly promising technology to be successfully implemented. Full article
(This article belongs to the Section Energy Storage and Application)
Show Figures

Figure 1

Open AccessArticle
Fractional-Order Control of Grid-Connected Photovoltaic System Based on Synergetic and Sliding Mode Controllers
Energies 2021, 14(2), 510; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020510 - 19 Jan 2021
Viewed by 262
Abstract
Starting with the problem of connecting the photovoltaic (PV) system to the main grid, this article presents the control of a grid-connected PV system using fractional-order (FO) sliding mode control (SMC) and FO-synergetic controllers. The article presents the mathematical model of a PV [...] Read more.
Starting with the problem of connecting the photovoltaic (PV) system to the main grid, this article presents the control of a grid-connected PV system using fractional-order (FO) sliding mode control (SMC) and FO-synergetic controllers. The article presents the mathematical model of a PV system connected to the main grid together with the chain of intermediate elements and their control systems. To obtain a control system with superior performance, the robustness and superior performance of an SMC-type controller for the control of the udc voltage in the DC intermediate circuit are combined with the advantages provided by the flexibility of using synergetic control for the control of currents id and iq. In addition, these control techniques are suitable for the control of nonlinear systems, and it is not necessary to linearize the controlled system around a static operating point; thus, the control system achieved is robust to parametric variations and provides the required static and dynamic performance. Further, by approaching the synthesis of these controllers using the fractional calculus for integration operators and differentiation operators, this article proposes a control system based on an FO-SMC controller combined with FO-synergetic controllers. The validation of the synthesis of the proposed control system is achieved through numerical simulations performed in Matlab/Simulink and by comparing it with a benchmark for the control of a grid-connected PV system implemented in Matlab/Simulink. Superior results of the proposed control system are obtained compared to other types of control algorithms. Full article
Show Figures

Figure 1

Open AccessArticle
Renovation of Public Lighting Systems in Cultural Landscapes: Lighting and Energy Performance and Their Impact on Nightscapes
Energies 2021, 14(2), 509; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020509 - 19 Jan 2021
Cited by 1 | Viewed by 502
Abstract
The technological innovation in the field of lighting and the need to reduce energy consumption connected to public lighting are leading many municipalities to undertake the renewal of public lighting systems, by replacing the existing luminaires with LED technologies. This renovation process is [...] Read more.
The technological innovation in the field of lighting and the need to reduce energy consumption connected to public lighting are leading many municipalities to undertake the renewal of public lighting systems, by replacing the existing luminaires with LED technologies. This renovation process is usually aimed at increasing energy efficiency and reducing maintenance costs, whist improving the lighting performance. To achieve these results, the new luminaires are often characterised by a luminous flux distribution much more downward oriented, which may remarkably influence and alter the perception of the night image of the sites. In this study the implications of the renovation of public lighting systems in terms of lighting and energy performance as well as the effects relating to the alteration of the night image, in historical contexts characterized by significant landscape value, are analysed. Results, along with demonstrating the positive effect that more sustainable and energy efficient lighting systems may have on the lighting performance and energy consumptions of public lighting systems, evidences the impact they may have on the alteration of the nocturnal image. Full article
(This article belongs to the Special Issue Smart City Lighting Systems)
Show Figures

Figure 1

Open AccessArticle
Quasi-Z-Source Inverter-Based Photovoltaic Power System Modeling for Grid Stability Studies
Energies 2021, 14(2), 508; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020508 - 19 Jan 2021
Viewed by 503
Abstract
Quasi-Z-source inverters (qZSIs) are becoming a powerful power conversion technology in photovoltaic (PV) power systems because they allow energy power conversion in a single stage operation. However, they can cause system resonances and reduce system damping, which may lead to instabilities. These stability [...] Read more.
Quasi-Z-source inverters (qZSIs) are becoming a powerful power conversion technology in photovoltaic (PV) power systems because they allow energy power conversion in a single stage operation. However, they can cause system resonances and reduce system damping, which may lead to instabilities. These stability problems are well known in grid-connected voltage source converter systems but not in quasi-Z-source inverter (qZSI)-based PV power systems. This paper contributes with Matlab/Simulink and PSCAD/EMTDC models of qZSI-based PV power systems to analyze transient interactions and stability problems. These models consider all power circuits and control blocks of qZSI-based PV power systems and can be used in sensitivity studies on the influence of system parameters on stability. PV power system stability is assessed from the proposed models. The causes of instabilities are analyzed from numerical simulations and possible solutions are proposed. Full article
(This article belongs to the Special Issue Applications of Medium Voltage Direct Current in Electric Systems)
Show Figures

Figure 1

Open AccessArticle
Hybridizing Lead–Acid Batteries with Supercapacitors: A Methodology
Energies 2021, 14(2), 507; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020507 - 19 Jan 2021
Viewed by 477
Abstract
Hybridizing a lead–acid battery energy storage system (ESS) with supercapacitors is a promising solution to cope with the increased battery degradation in standalone microgrids that suffer from irregular electricity profiles. There are many studies in the literature on such hybrid energy storage systems [...] Read more.
Hybridizing a lead–acid battery energy storage system (ESS) with supercapacitors is a promising solution to cope with the increased battery degradation in standalone microgrids that suffer from irregular electricity profiles. There are many studies in the literature on such hybrid energy storage systems (HESS), usually examining the various hybridization aspects separately. This paper provides a holistic look at the design of an HESS. A new control scheme is proposed that applies power filtering to smooth out the battery profile, while strictly adhering to the supercapacitors’ voltage limits. A new lead–acid battery model is introduced, which accounts for the combined effects of a microcycle’s depth of discharge (DoD) and battery temperature, usually considered separately in the literature. Furthermore, a sensitivity analysis on the thermal parameters and an economic analysis were performed using a 90-day electricity profile from an actual DC microgrid in India to infer the hybridization benefit. The results show that the hybridization is beneficial mainly at poor thermal conditions and highlight the need for a battery degradation model that considers both the DoD effect with microcycle resolution and temperate impact to accurately assess the gain from such a hybridization. Full article
Show Figures

Figure 1

Open AccessArticle
Designing of Dynamic Spectrum Shifting in Terms of Non-Local Space-Fractional Mechanics
Energies 2021, 14(2), 506; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020506 - 19 Jan 2021
Viewed by 256
Abstract
In this paper, the applicability of the space-fractional non-local formulation (sFCM) to design 1D material bodies with a specific dynamic eigenvalue spectrum is discussed. Such a formulated problem is based on the proper spatial distribution of material length scale, which maps the information [...] Read more.
In this paper, the applicability of the space-fractional non-local formulation (sFCM) to design 1D material bodies with a specific dynamic eigenvalue spectrum is discussed. Such a formulated problem is based on the proper spatial distribution of material length scale, which maps the information about the underlying microstructure (it is important that the material length scale is one of two additional material parameters of sFCM compared to the classical local continuum mechanics—the second one, the order of fractional continua—is treated herein as a scaling parameter only). Technically, the design process for finding adequate length scale distribution is not trivial and requires the use of an inverse optimization procedure. In the analysis, the objective function considers a subset of eigenvalues reduced to a single value based on Kreisselmeier–Steinhauser formula. It is crucial that the total number of eigenvalues considered must be smaller than the limit which comes from the ratio of the sFCM length scale to the length of the material body. Full article
(This article belongs to the Special Issue Strain Energy in Composite Structures)
Show Figures

Figure 1

Open AccessArticle
Modeling and Dynamic Simulation of a Hybrid Liquid Desiccant System with Non-Adiabatic Falling-Film Air-Solution Contactors for Air Conditioning Applications in Buildings
Energies 2021, 14(2), 505; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020505 - 19 Jan 2021
Viewed by 323
Abstract
This paper presents an experimentally validated, dynamic model of a hybrid liquid desiccant system. For this purpose, we developed new components for the air-solution contactors, which are of the non-adiabatic falling-film type with horizontal tubes (made of improved polypropylene) and the solution tanks. [...] Read more.
This paper presents an experimentally validated, dynamic model of a hybrid liquid desiccant system. For this purpose, we developed new components for the air-solution contactors, which are of the non-adiabatic falling-film type with horizontal tubes (made of improved polypropylene) and the solution tanks. We also provide new experimental correlations for both the tube-solution heat transfer coefficient and the mass transfer coefficient on the airside as a function of the air velocity. To validate the model, the results obtained from the dynamic simulations were compared with those obtained by monitoring a demonstration unit installed in a sports center in Taipei (Taiwan). Once validated, the model was used to perform a sensitivity analysis at different operational conditions, such as the inlet water temperatures in the air-solution contactors and the LiCl mass fraction at which the system operates. The results of the sensitivity analysis were used to optimize the seasonal performance in terms of comfort and energy required by the system. Compared with a conventional air-handling unit that controls air temperature and humidity, the annual energy savings of the liquid desiccant systems are 17%. Full article
Show Figures

Figure 1

Open AccessArticle
Analysis of Factors Influencing Energy Efficiency Based on Spatial Quantile Autoregression: Evidence from the Panel Data in China
Energies 2021, 14(2), 504; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020504 - 19 Jan 2021
Viewed by 353
Abstract
This research mainly studies the factors influencing the efficiency of energy utilization. Firstly, by calculating MoransI and local indicators of spatial association (LISA) of energy efficiency of regions in mainland China, we found that energy efficiency [...] Read more.
This research mainly studies the factors influencing the efficiency of energy utilization. Firstly, by calculating MoransI and local indicators of spatial association (LISA) of energy efficiency of regions in mainland China, we found that energy efficiency shows obvious spatial autocorrelation and spatial clustering phenomena. Secondly, we established the spatial quantile autoregression (SQAR) model, in which the energy efficiency is the response variable with seven influence factors. The seven factors include industrial structure, resource endowment, level of economic development etc. Based on the provincial panel data (1998–2016) of mainland China (data source: China Statistical Yearbook, Statistical Yearbook of provinces), the findings indicate that level of economic development and industrial structure have a significant role in promoting energy efficient. Resource endowment, government intervention and energy efficiency show a negative correlation. However, the negative effect of government intervention is weakened with the increase of energy efficiency. Lastly, we compare the results of SQAR with that of ordinary spatial autoregression (SAR). The empirical result shows that the SQAR model is superior to SAR model in influencing factors analysis of energy efficiency. Full article
(This article belongs to the Section Energy Economics and Policy)
Show Figures

Figure 1

Open AccessArticle
Biogas Upgrading and Ammonia Recovery from Livestock Manure Digestates in a Combined Electromethanogenic Biocathode—Hydrophobic Membrane System
Energies 2021, 14(2), 503; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020503 - 19 Jan 2021
Viewed by 434
Abstract
Anaerobic digestion process can be improved in combination with bioelectrochemical systems in order to recover energy and resources from digestates. An electromethanogenic microbial electrolysis cell (MEC) coupled to an ammonia recovery system based on hydrophobic membranes (ARS-HM) has been developed in order to [...] Read more.
Anaerobic digestion process can be improved in combination with bioelectrochemical systems in order to recover energy and resources from digestates. An electromethanogenic microbial electrolysis cell (MEC) coupled to an ammonia recovery system based on hydrophobic membranes (ARS-HM) has been developed in order to recover ammonia, reduce organic matter content and upgrade biogas from digested pig slurry. A lab-scale dual-chamber MEC was equipped with a cation exchange membrane (CEM) and ARS with a hydrophobic membrane in the catholyte recirculation loop, to promote ammonia migration and absorption in an acidic solution. On the other hand, an electromethanogenic biofilm was developed in the biocathode to promote the transformation of CO2 into methane. The average nitrogen transference through the CEM was of 0.36 gN m−2 h−1 with a removal efficiency of 31%, with the ARS-HM in the catholyte recirculation loop. The removal of ammonia from the cathode compartment helped to maintain a lower pH value for the electromethanogenic biomass (7.69 with the ARS-HM, against 8.88 without ARS-HM) and boosted methane production from 50 L m−3 d−1 to 73 L m−3 d−1. Results have shown that the integration of an electromethanogenic MEC with an ARS-HM allows for the concomitant recovery of energy and ammonia from high strength wastewater digestates. Full article
Show Figures

Graphical abstract

Open AccessReview
A Review of Recent Advances in Emerging Alternative Heating and Cooling Technologies
Energies 2021, 14(2), 502; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020502 - 19 Jan 2021
Viewed by 421
Abstract
The heating and cooling industry underpins everything we do, e.g., manufacturing, commercial and residential applications. Many of these applications invariably use mechanical refrigeration technologies, consequently contributing significantly to the environmental impacts of the refrigeration, air conditioning, and heat pump (RACHP) industry both through [...] Read more.
The heating and cooling industry underpins everything we do, e.g., manufacturing, commercial and residential applications. Many of these applications invariably use mechanical refrigeration technologies, consequently contributing significantly to the environmental impacts of the refrigeration, air conditioning, and heat pump (RACHP) industry both through direct and indirect emissions of CO2. To reduce these emissions, research and development worldwide aim to improve the performance of conventional systems and the development of new refrigeration technologies of potentially much lower environmental impacts. As we transition to a low carbon economy, there are sizable environmental and economic benefits from developing and using efficient, innovative, low carbon heating and cooling technologies that reduce energy use and carbon emissions. This paper provides an up-to-date and comprehensive critical review and evaluation of recent advances in emerging alternative heating and cooling technologies that have the potential to reduce the environmental impacts of refrigeration in the RACHP sector. The paper highlights the basic working principle of operation, its main applications, the challenges and opportunities in penetrating the market. The paper also highlights further research and development needed to accelerate the development and adoption of these alternative refrigeration technologies by the sector. Most of the technologies reviewed have a Technology Readiness Level (TRL) of 3–4, except electrocaloric technology which is less ready compared to its counterparts with a TRL of 1–2 at this stage. Furthermore, most technologies have capacities ranging between a few kilowatts to a maximum of 7 kW with a coefficient of performance COP between 1 and 10 reported in the literature. Full article
(This article belongs to the Special Issue Alternative and Emerging Cooling and Heating Technologies)
Show Figures

Figure 1

Open AccessArticle
Polish Energy Transition 2040: Energy Mix Optimization Using Grey Wolf Optimizer
Energies 2021, 14(2), 501; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020501 - 19 Jan 2021
Viewed by 477
Abstract
Poland is facing demanding challenges to achieve a sustainable energy mix in the near future. Crucial and tough decisions must be made about the direction of the national energy economy, safety, and environmental impact. Considering the electricity and heating demand forecast, this paper [...] Read more.
Poland is facing demanding challenges to achieve a sustainable energy mix in the near future. Crucial and tough decisions must be made about the direction of the national energy economy, safety, and environmental impact. Considering the electricity and heating demand forecast, this paper proposes an optimization model based on the Grey Wolf Optimizer meta-heuristic to support the definition of ideal energy mix considering the investment and operational costs. The proposed methodology uses the present energy mix in Poland (the most recent values are from 2017) to calibrate the model implemented in the EnergyPLAN tool. Afterwards, EnergyPLAN relates to an optimization process allowing the identification of the most convenient energy mix in 2040 in Poland. The values obtained are compared with those proposed by Polish public entities showing advantage regarding the global costs of the project nevertheless respecting the same levels of CO2 and the energy import and export balance. The expected savings can achieve 1.3 billion euros a year and more than 8 million tonnes of CO2 emission reduction. Sensitivity analysis considering the decrease of the global cost of renewables-based sources is also presented. Full article
Show Figures

Figure 1

Open AccessArticle
Continuous Production of Lipids with Microchloropsis salina in Open Thin-Layer Cascade Photobioreactors on a Pilot Scale
Energies 2021, 14(2), 500; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020500 - 18 Jan 2021
Viewed by 432
Abstract
Studies on microalgal lipid production as a sustainable feedstock for biofuels and chemicals are scarce, particularly those on applying open thin-layer cascade (TLC) photobioreactors under dynamic diurnal conditions. Continuous lipid production with Microchloropsis salina was studied in scalable TLC photobioreactors at 50 m [...] Read more.
Studies on microalgal lipid production as a sustainable feedstock for biofuels and chemicals are scarce, particularly those on applying open thin-layer cascade (TLC) photobioreactors under dynamic diurnal conditions. Continuous lipid production with Microchloropsis salina was studied in scalable TLC photobioreactors at 50 m2 pilot scale, applying a physically simulated Mediterranean summer climate. A cascade of two serially connected TLC reactors was applied, promoting biomass growth under nutrient-replete conditions in the first reactor, while inducing the accumulation of lipids via nitrogen limitation in the second reactor. Up to 4.1 g L−1 of lipids were continuously produced at productivities of up to 0.27 g L−1 d−1 (1.8 g m2 d−1) at a mean hydraulic residence time of 2.5 d in the first reactor and 20 d in the second reactor. Coupling mass balances with the kinetics of microalgal growth and lipid formation enabled the simulation of phototrophic process performances of M. salina in TLC reactors in batch and continuous operation at the climate conditions studied. This study demonstrates the scalability of continuous microalgal lipid production in TLC reactors with M. salina and provides a TLC reactor model for the realistic simulation of microalgae lipid production processes after re-identification of the model parameters if other microalgae and/or varying climate conditions are applied. Full article
Show Figures

Graphical abstract

Open AccessArticle
Monofacial and Bifacial Micro PV Installation as Element of Energy Transition—The Case of Poland
Energies 2021, 14(2), 499; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020499 - 18 Jan 2021
Viewed by 387
Abstract
The several government subsidies available in Poland contributed to an increased interest in PV installations. Installed PV capacity increased from 100 MW in 2016 up to 2682.7 MW in July 2020. In 2019 alone, 104,000 microinstallations (up to 50 kWp) were installed in [...] Read more.
The several government subsidies available in Poland contributed to an increased interest in PV installations. Installed PV capacity increased from 100 MW in 2016 up to 2682.7 MW in July 2020. In 2019 alone, 104,000 microinstallations (up to 50 kWp) were installed in Poland. The paper determines the energy gain and the associated reduction of CO2 emissions for two types of solar installation located in Poland. The monofacial solar modules with a power of 5.04 kWp (located in Leki) and bifacial solar modules with a power of 6.1 kWp (located in Bydgoszcz). Both installations use mono-crystalline Si-based 1st generation PV cells. With comparable insolation, a bifacial installation produces approx. 10% (for high insolation) to 28% (for low insolation) more energy than a monofacial PV installation. Avoided annual CO2 emission in relation to the installation capacity ranges from 0.58 to 0.64 Mg/kWp for monofacial and from 0.68 to 0.74 Mg/kWp for bifacial and is on average approx. 16% higher for bifacial installations. Cost-benefit analyses were made. For different electricity prices, the NPV for monofacial and bifacial was determined. Full article
(This article belongs to the Special Issue Technologies Conducive to Low Green House Gas Emission)
Show Figures

Figure 1

Open AccessArticle
Horizontally Assembled Trapezoidal Piezoelectric Cantilevers Driven by Magnetic Coupling for Rotational Energy Harvester Applications
Energies 2021, 14(2), 498; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020498 - 18 Jan 2021
Viewed by 370
Abstract
Horizontally assembled trapezoidal piezoelectric cantilevers driven by magnetic coupling were fabricated for rotational energy harvester applications. A dodecagonal rigid frame with an attached array of six trapezoidal cantilevers served as a stator for electrical power generation. A rotor disk with six permanent magnets [...] Read more.
Horizontally assembled trapezoidal piezoelectric cantilevers driven by magnetic coupling were fabricated for rotational energy harvester applications. A dodecagonal rigid frame with an attached array of six trapezoidal cantilevers served as a stator for electrical power generation. A rotor disk with six permanent magnets (PMs) interacted magnetically with the counterpart cantilever’s tip-mass PMs of the stator by rotational motion. Each trapezoidal piezoelectric cantilever beam was designed to operate in a transverse mode that utilizes a planar Ag/Pd electrode printed onto lead zirconate titanate (PZT) piezoelectric thick film. The optimized distance between a pair of PMs of the rotor and the stator was evaluated as approximately 10 mm along the same vertical direction to make the piezoelectric cantilever beam most deflectable without the occurrence of cracks. The theoretically calculated resistance torque was maximized at 46 mN·m for the optimized trapezoidal piezoelectric cantilever. The proposed energy harvester was also demonstrated for wind energy harvester applications. Its harvested output power reached a maximum of approximately 22 mW at a wind speed of 10 m/s under a resistive load of 30 kΩ. The output performance of the proposed energy harvester makes it possible to power numerous low-power applications such as smart sensor systems. Full article
(This article belongs to the Section Wind, Wave and Tidal Energy)
Show Figures

Figure 1

Open AccessReview
An Integrated Approach to Convert Lignocellulosic and Wool Residues into Balanced Fertilisers
Energies 2021, 14(2), 497; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020497 - 18 Jan 2021
Viewed by 421
Abstract
Valorising biomass waste and producing renewable energy or materials is the aim of several conversion technologies. In this work, we consider two residues from different production chains: lignocellulosic residues from agriculture and wool residues from sheep husbandry. These materials are produced in large [...] Read more.
Valorising biomass waste and producing renewable energy or materials is the aim of several conversion technologies. In this work, we consider two residues from different production chains: lignocellulosic residues from agriculture and wool residues from sheep husbandry. These materials are produced in large quantities, and their disposal is often costly and challenging for farmers. For their valorisation, we focus on slow pyrolysis for the former and water hydrolysis for the latter, concisely presenting the main literature related to these two processes. Pyrolysis produces the C-rich biochar, suitable for soil amending. Hydrolysis produces a N-rich fertiliser. We demonstrate how these two processes could be fruitfully integrated, as their products can be flexibly mixed to produce fertilisers. This solution would allow the achievement of balanced and tuneable ratios between C and N and the enhancement of the mechanical properties. We propose scenarios for this combined valorisation and for its coupling with other industries. As a result, biomass waste would be returned to the field, following the principles of circular economy. Full article
(This article belongs to the Special Issue Environmental and Energetic Valorization of Renewable Resources)
Show Figures

Figure 1

Open AccessArticle
Energy and Economic Investigation of a Biodiesel-Fired Engine for Micro-Scale Cogeneration
Energies 2021, 14(2), 496; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020496 - 18 Jan 2021
Viewed by 296
Abstract
The work aims at investigating the techno-economic performance of a biodiesel micro combined heat and power (CHP) system for residential applications. The CHP unit is based on a direct-injection compression ignition engine providing 6.7 kWel and 11.3 kWth. A 0D [...] Read more.
The work aims at investigating the techno-economic performance of a biodiesel micro combined heat and power (CHP) system for residential applications. The CHP unit is based on a direct-injection compression ignition engine providing 6.7 kWel and 11.3 kWth. A 0D model is developed and validated to characterise the behaviour of the biodiesel-fired engine at full and partial load in terms of efficiency, fuel consumption, and emissions. Furthermore, non-dimensional polynomial correlations are proposed to foresee the performance of biodiesel-fuelled engines for micro-CHP applications at partial loads. Afterwards, the CHP system is adopted to satisfy the electric and thermal demand of domestic users in Southern Italy. To this purpose, a parametric analysis is performed considering a different number of apartments and operating strategies (electric-driven and thermal-driven). A bi-variable optimisation based on the primary energy saving (PES) index and payback period (PBT) permits selecting the thermal-driven strategy and five apartments as the most suitable solution. The optimal PBT and PES are equal to 5.3 years and 22.4%, respectively. The corresponding annual thermal self-consumption reaches 81.3% of the domestic request, and the thermal surplus is lower than 8%. Finally, a sensitivity analysis is adopted to define the influence of the costs of energy vectors and a cogeneration unit on the economic feasibility of the biodiesel CHP system. The analysis highlights that the investigated apparatus represents an attractive option to satisfy the energy requests in micro-scale applications, providing valuable energy and economic advantages compared to traditional energy production. Full article
Show Figures

Graphical abstract

Open AccessArticle
Effect of the Foresight Horizon on Computation Time and Results Using a Regional Energy Systems Optimization Model
Energies 2021, 14(2), 495; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020495 - 18 Jan 2021
Viewed by 238
Abstract
Due to the high complexity of detailed sector-coupling models, a perfect foresight optimization approach reaches complexity levels that either requires a reduction of covered time-steps or very long run-times. To mitigate these issues, a myopic approach with limited foresight can be used. This [...] Read more.
Due to the high complexity of detailed sector-coupling models, a perfect foresight optimization approach reaches complexity levels that either requires a reduction of covered time-steps or very long run-times. To mitigate these issues, a myopic approach with limited foresight can be used. This paper examines the influence of the foresight horizon on local energy systems using the model DISTRICT. DISTRICT is characterized by its intersectoral approach to a regionally bound energy system with a connection to the superior electricity grid level. It is shown that with the advantage of a significantly reduced run-time, a limited foresight yields fairly similar results when the input parameters show a stable development. With unexpected, shock-like events, limited foresight shows more realistic results since it cannot foresee the sudden parameter changes. In general, the limited foresight approach tends to invest into generation technologies with low variable cost and avoids investing into demand reduction or efficiency with high upfront costs as it cannot compute the benefits over the time span necessary for full cost recovery. These aspects should be considered when choosing the foresight horizon. Full article
Show Figures

Figure 1

Open AccessArticle
Lifetime Assessment of PILC Cables with Regard to Thermal Aging Based on a Medium Voltage Distribution Network Benchmark and Representative Load Scenarios in the Course of the Expansion of Distributed Energy Resources
Energies 2021, 14(2), 494; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020494 - 18 Jan 2021
Viewed by 225
Abstract
The decentralized feed-ins from distributed energy resources (DER) represent a significant change in the manner in which the power grid is used. If this leads to high loads on electrical equipment, its aging can be accelerated. This applies in particular with regard to [...] Read more.
The decentralized feed-ins from distributed energy resources (DER) represent a significant change in the manner in which the power grid is used. If this leads to high loads on electrical equipment, its aging can be accelerated. This applies in particular with regard to the thermal aging of older generations of power cables, namely paper insulated lead covered (PILC) cables. This type of power cable can still be found frequently in medium voltage (MV) networks. If aging of these cables is significantly accelerated in the presence of DER, distribution system operators (DSO) could face unplanned premature cable failures and a high replacement demand and costs. Therefore, this paper investigates the thermal aging of PILC cables in a MV distribution network benchmark for different load scenarios, using standardized load profiles and representative expansion scenarios for wind power and photovoltaics plants in particularly affected network areas in Germany. A main objective of this paper is to present a methodology for estimating the thermal degradation of PILC cables. An approach is used to draw simplified conclusions from the loading of cables to their conductor or insulation temperature. For this purpose, mainly Joule losses are considered. In addition, thermal time constants are used for the heating and cooling processes. Based on the insulation temperature, thermal aging is determined using the Arrhenius law or the Montsinger rule. However, it is important to note that there is an urgent need for research on reference data in this area. For this reason, the results of the lifetime estimation presented in this paper should only be considered as an approximation if the selected reference data from the literature for the aging model are actually applicable. The lifetime assessment is performed for a highly utilized line segment of the network benchmark. Accordingly, extreme values are examined. Different operational control strategies of DSO to limit cable utilization are investigated. The results show that the expansion of DER can lead to a short but high cable utilization, although the average utilization does not increase or increases only slightly. This can lead to significantly lower cable lifetimes. The possible influence of these temporarily high loads is shown by comparing the resulting cable lifetime with previous situations without DER. It is also shown that DSO could already reduce excessive aging of PILC cables by preventing overloads in a few hours of a year. In addition to these specific results, general findings on the network load due to the influence of DER are obtained, which are of interest for congestion management. Full article
(This article belongs to the Section Smart Grids and Microgrids)
Show Figures

Figure 1

Open AccessArticle
A DC Microgrid System for Powering Remote Areas
Energies 2021, 14(2), 493; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020493 - 18 Jan 2021
Viewed by 319
Abstract
DC microgrid has been gaining popularity as solution as a more efficient and simpler power system especially for remote areas, where the main grid has yet to be built. This paper proposes a DC microgrid system based on renewable energy sources that employs [...] Read more.
DC microgrid has been gaining popularity as solution as a more efficient and simpler power system especially for remote areas, where the main grid has yet to be built. This paper proposes a DC microgrid system based on renewable energy sources that employs decentralized control and without communication between one grid point and another. It can be deployed as an individual isolated unit or to form an expandable DC microgrid through DC bus for better reliability and efficiency. The key element of the proposed system is the power conditioner system (PCS) that works as an interface between energy sources, storage system, and load. PCS consists of modular power electronics devices and a power management unit, which controls power delivery to the AC load and the grid as well as the storage system charging and discharging sequence. Prototypes with 3 kWp solar PV and 13.8 kWh energy storage were developed and adopt a pole-mounted structure for ease of transportation and installation that are important in remote areas. This paper presents measurement results under several conditions of the developed prototypes. The evaluation shows promising results and a solid basis for electrification in remote areas. Full article
(This article belongs to the Special Issue Microgrids: Planning, Protection and Control)
Show Figures

Figure 1

Open AccessArticle
Thermoelectric Generation with Impinging Nano-Jets
Energies 2021, 14(2), 492; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020492 - 18 Jan 2021
Viewed by 324
Abstract
In this study, thermoelectric generation with impinging hot and cold nanofluid jets is considered with computational fluid dynamics by using the finite element method. Highly conductive CNT particles are used in the water jets. Impacts of the Reynolds number of nanojet stream combinations [...] Read more.
In this study, thermoelectric generation with impinging hot and cold nanofluid jets is considered with computational fluid dynamics by using the finite element method. Highly conductive CNT particles are used in the water jets. Impacts of the Reynolds number of nanojet stream combinations (between (Re1, Re2) = (250, 250) to (1000, 1000)), horizontal distance of the jet inlet from the thermoelectric device (between (r1, r2) = (−0.25, −0.25) to (1.5, 1.5)), impinging jet inlet to target surfaces (between w2 and 4w2) and solid nanoparticle volume fraction (between 0 and 2%) on the interface temperature variations, thermoelectric output power generation and conversion efficiencies are numerically assessed. Higher powers and efficiencies are achieved when the jet stream Reynolds numbers and nanoparticle volume fractions are increased. Generated power and efficiency enhancements 81.5% and 23.8% when lowest and highest Reynolds number combinations are compared. However, the power enhancement with nanojets using highly conductive CNT particles is 14% at the highest solid volume fractions as compared to pure water jet. Impacts of horizontal location of jet inlets affect the power generation and conversion efficiency and 43% variation in the generated power is achieved. Lower values of distances between the jet inlets to the target surface resulted in higher power generation while an optimum value for the highest efficiency is obtained at location zh = 2.5ws. There is 18% enhancement in the conversion efficiency when distances at zh = ws and zh = 2.5ws are compared. Finally, polynomial type regression models are obtained for estimation of generated power and conversion efficiencies for water-jets and nanojets considering various values of jet Reynolds numbers. Accurate predictions are obtained with this modeling approach and it is helpful in assisting the high fidelity computational fluid dynamics simulations results. Full article
(This article belongs to the Special Issue Numerical Simulation of Convective Heat Transfer)
Show Figures

Graphical abstract

Open AccessArticle
Investigating the Asymmetric Effect of Economic Growth on Environmental Quality in the Next 11 Countries
Energies 2021, 14(2), 491; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020491 - 18 Jan 2021
Viewed by 289
Abstract
This study investigates the asymmetric cointegration and causal relationships between economic growth, carbon emissions, and energy consumption in the next eleven (11) countries over the period 1972–2013. The nonlinear autoregressive distributed lag (NARDL) bounds testing approach and nonpragmatic Granger causality tests are employed. [...] Read more.
This study investigates the asymmetric cointegration and causal relationships between economic growth, carbon emissions, and energy consumption in the next eleven (11) countries over the period 1972–2013. The nonlinear autoregressive distributed lag (NARDL) bounds testing approach and nonpragmatic Granger causality tests are employed. This research’s empirical results have entrenched vital relationships that have significant policy implications. We affirm nonlinear cointegration among the variables in Bangladesh, Iran, Turkey, and Vietnam. The long-run asymmetric effect outcomes indicate a definite boom in economic growth, significantly increases carbon emission in Turkey, and a decline in Vietnam. Additionally, a positive shock to energy consumption significantly increases the carbon emission in Bangladesh, Iran, and Turkey, but a decrease in emissions in Vietnam. Findings from the Wald test reveal a long-run asymmetric effect between carbon emission and economic growth in Bangladesh, Iran, and Vietnam, and for Iran, an asymmetric short-run impact. Long-run and short-run asymmetric effects between carbon emission and energy consumption in Bangladesh and Iran. In terms of asymmetric causality results, bidirectional causality between carbon emission and economic growth was noted in Bangladesh and Turkey, and a unidirectional causality from economic growth to carbon emission in Egypt and South Korea. Energy consumption causes carbon emission in Bangladesh, Egypt, Pakistan, South Korea, and not vice versa. We determined a bidirectional asymmetric causality relationship between carbon emission and energy consumption in Vietnam and a unidirectional causality link from carbon emissions to Turkey’s energy consumption. Full article
Show Figures

Figure 1

Open AccessArticle
Oxidation Stability of Natural Ester Modified by Means of Fullerene Nanoparticles
Energies 2021, 14(2), 490; https://0-doi-org.brum.beds.ac.uk/10.3390/en14020490 - 18 Jan 2021
Viewed by 265
Abstract
Increasing environmental demands influence the requirements for devices and materials used in the power industry. One example is a power transformer and an electro-insulating liquid used in it. In order to meet these requirements, electro-insulating liquids should be characterized by, inter alia, high [...] Read more.
Increasing environmental demands influence the requirements for devices and materials used in the power industry. One example is a power transformer and an electro-insulating liquid used in it. In order to meet these requirements, electro-insulating liquids should be characterized by, inter alia, high biodegradability and good fire properties. One of such liquids is natural ester. However, its oxidation stability is low in comparison to mineral oil and demands improvement, which can be achieved by the addition of an antioxidant. The authors of this work used fullerene nanoparticles for that purpose. Pure natural ester samples were prepared, and samples with two concentrations of fullerene, 250 mg/L and 500 mg/L in natural ester. All these samples were aged in a thermal oxidation process. Thereafter, the aging properties of all the samples were compared to assess the oxidation stability of modified liquids. Moreover, the electrical properties of prepared insulating liquids were investigated to assess if fullerene deteriorates these properties after aging process. Based on the obtained results, it was proved that the aging process slowed down in the case of both fullerene concentrations in ester. The acid number of natural ester modified using fullerene was lower than in the case of pure liquid. Full article
(This article belongs to the Special Issue Nanoparticles and Nanofluids for Electrical Power and Energy Systems)
Show Figures

Figure 1

Previous Issue
Back to TopTop