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Abstract: In this study, an optimal control strategy for the variable refrigerant flow (VRF) system
is developed using a data-driven model and on-site data to save the building energy. Three data-
based models are developed to improve the on-site applicability. The presented models are used
to determine the length of time required to bring each zone from its current temperature to the set
point. The existing data are used to evaluate and validated the predictive performance of three
data-based models. Experiments are conducted using three outdoor units and eight indoor units on
site. The experimental test is performed to validate the performance of proposed optimal control
by comparing between conventional and optimal control methods. Then, the ability to save energy
wasted for maintaining temperature after temperature reaches the set points is evaluated through
the comparison of energy usage. Given these results, 30.5% of energy is saved on average for each
outdoor unit and the proposed optimal control strategy makes the zones comfortable.

Keywords: optimal control strategy; optimal start; variable refrigerant flow (VRF) system; energy saving

1. Introduction

According to the U.S. Department of Energy (DOE, 2010), 40% of residential en-
ergy use and 30% of commercial building energy use are associated with the process of
heating, ventilation and air conditioning (HVAC) and a variable refrigerant flow (VRF)
system. The buildings have great potential for energy savings and peak savings. Several
studies, including those of Liu et al. and Mills, have demonstrated that scalable and cost-
effective intelligent building systems have an energy-saving potential of greater than 30%,
in which optimal control and automated diagnosis are included [1,2]. Intelligent building
management mentioned above means that the building system is optimally controlled
in consideration of comfort and energy costs over time [3–7]. Other studies show that
issues of common building control include longer-than-necessary operation of HVAC and
lighting systems, poor operation of distributors, poor ventilation during warm-up or reuse
dashes, malfunction of optimal control algorithms, misuse of exhaust fans, and incorrect
installation locations [8].

This paper introduces an optimal control method to solve the problem of longer-
than-necessary operation in buildings. The proper pre-heating/cooling is one of the best
ways to save energy and reduce peak demand in various types of buildings such as
commercial buildings and educational buildings. The most basic scheduling system is to
start the air conditioning system before the building is occupied each day, and to turn off
the air conditioning system when the day is over [9]. In addition, while the building is
occupied, the building energy management system controls the VRF system to maintain
the temperature within a desired range for the convenience of residents [10,11]. Conversely,
the control system changes the set points when the building is not occupied; this concept is
referred to as the night setback. The heating/cooling system is operated before the start of
the day when a night setback is applied and it remains operational long enough for the
zone temperature to reach the set points before the time at the beginning of occupancy [12].
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It is assumed that the best time to start the VRF system is generally before the beginning
of occupancy time. Furthermore, most managers who are in charge of a VRF system are
reluctant to face issues about comfort and they want to resolve them as soon as possible [13].

For this reason, conservative stances have been taken on optimal controls within the
existing building sector and applications have been slow. In particular, there is a great deal
of doubt about energy saving potential and the effects of unpredictable variables when
control algorithms are the main means of controlling the temperature of a building site [14].
It is also a concern that the optimal control algorithm will not work in due course even
though a system may be applied at a high cost of implementation, which adversely affects
building management and schedule. For example, the heating/cooling system is set to
operate more than necessary in a worst-case scenario, resulting in excessive warmth or
coldness [15]. The energy loss may occur in the heating/cooling system in such cases. In
addition, a single fixed operating period is used daily to control the entire building in some
cases, which fails to take into account the cooling area and falls short of the set temperature
during the schedule [16–18]. Given these problems, this paper attempts to present an
optimal control strategy that can offer solutions at low cost and alleviate concerns about
the effects of unknown variables by using easily measurable data acquired in each area.

Existing models including physics-based models, data-based models and a combi-
nation of both have been used to develop optimal control strategies. For physics-based
models, theoretical physical concepts are used to establish an optimal control strategy;
these models make it easy to identify the variables that affect the system because the
data associated with heating and cooling phenomena are clearly labeled [19]. However,
there are some weaknesses of physics-based models. Due to the complexity of equations
and quantity of data, they can be not only computationally intensive but also a signif-
icant level of effort is required to develop a model [20]. The performance degradation
of the physics-based model is compensated in cases that physics and data are combined.
However, most of these models require a great deal of consideration prior to and during
implementation because they take a long time to apply on site, thereby increasing the cost of
application [21]. In addition, if the variables that need to be disclosed concern information
that the building manager needs to protect, on-site application becomes more difficult. To
overcome the above-mentioned shortcomings, in this paper, we propose an optimal start
control methodology based on a data-based models for modelling the building thermal
dynamics. Data-based models do not require additional consideration of the effects of
unknown variables [22]. The advantage of using a data-based model is that additional
sensors, such as sensors that measure pressure during a cycle, are not needed and, therefore,
the implementation cost is reduced. In addition, the method presented in this paper differs
in the start-up time of each indoor unit compared to [22] because operating all indoor units
at the same time can cause peaks in the buildings; then, there is no need to turn it on early
because the power is off during the non-occupancy time. In the future, the amount of
energy will be even more significant when applied to cluster of buildings. Therefore, it
should be accompanied by the development of the underlying control methods.

Another problem is the different capacity of the different cooling/heating rates because
of the effects on the surrounding environment. This means that the cooling/heating
zone should be operated separately because the time to reach the set point varies among
zones, even if the spaces are used for the same purpose. Even if the cooling/heating
systems are turned on at different times, the power consumed by heating or cooling
varies depending on the cooling/heating load of the space. High loads increase the
amount of power consumption for cooling/heating, so control algorithms should reflect
the heating characteristics of each zone. In addition, even when the indoor air temperature
has reached the set point, the system is sometimes operated at maximum power, which
means that the expansion valve remains the maximum open possible even though the
necessary heat exchange has been completed [23]. This may waste energy and the pressure
difference between the indoor unit and the outdoor unit will occur over a long period of
time, resulting in a loss of lifespan and operational performance due to the operational
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burden [24]. An optimal control method is developed to compensate for this phenomenon.
The existing approaches are to use a dynamic model to forecast system behavior, and
optimize the forecast to produce the optimal control at the current time. However, the
complexity of implementing those approaches is a significant limitation because of the
high implementation costs associated with providing site-specific solutions relative to
the savings potential. The additional implementation costs are due to additional sensor
requirements and labor to engineer and program the site-specific solutions. In addition,
there is a perceived risk that optimal strategies will not work or will disrupt operations.

Because of these backgrounds, a data-based model adopted can be a good option for a
conservative building manager because related building data do not need to be disclosed to
the outside world such as wall thickness and material. Only temperature data are required
such as zone temperature and set points. For these reasons, three data-based models are
presented in this paper before the performance among three models is evaluated and
compared. The optimal control algorithm is developed after the best-performing model
is selected with existing data. For the first model, the optimal start adjustment time is
fixed; a fixed minimum uptime is used. For the second model, the optimum start time is
determined by adjusting the heating capacity. In other words, the optimal start time is
calculated by calibrating the temperature slope over time. In the third model, the optimum
control time is calculated by the difference between the set temperature and the indoor
air temperature. It is important to minimize costs when optimization is applied to all air
conditioning units [25,26]. However, it should also be considered whether comfort level
is being achieved up to set points correctly. In this paper, an optimal control strategy is
established after three data-based models are introduced briefly and the highest one among
three models is adopted. The on-site data are analyzed and the energy savings are used to
determine whether the model is functioning properly [27,28]. As a result, the high energy
saving performance should ultimately be achieved, while the indoor spaces remain at a
comfortable temperature at the same time.

2. Method

The development of a data-based model usually involves several variables with
control rules [29]. However, installing expensive sensors must be minimized in order to
improve field applicability. Three data-based models are developed in this chapter to
address these problems. The models determine the length of time required to bring each
indoor unit from its current temperature to the set point temperature. Then, each indoor
unit switched on as late as possible, so that zone temperature in each zone reaches the
set point just in time. The first model uses a fixed minimum operating time, the second
is a heating capacity control model, and the third is a model that utilizes the difference
between indoor air and set temperature. An optimal control rule is defined in Section 2.3.
Finally, the energy saving is defined in order to evaluate the performance of the optimal
control strategy.

2.1. Model 1

Model 1 uses the difference between the initial zone and set temperature, as shown in
Equation (1), to predict the how many minutes of precooling or preheating are required
based on temperature differences between the zone temperature and the heating set point
or cooling set point. In addition, the initial zone temperature (Tz,init) and the zone tempera-
ture at the beginning of occupancy (Tz,occ) are taken into account when the coefficient is
calculated. The model 1 is calculated using the equations below:

tk
1,opt,i = Capk

1,i

(
Tk

sp,i − Tk
z,init,i

)2
+ tk

1,adj,i (1)

Capk
1,i =

∆ti(
Tk−1

z,occ,i − Tk−1
z,init,i

)2 (2)
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tk
1,adj,i = tk−1

1,adj,i (3)

where, t1,opt (min) is the time required for optimal start-up, i is the zone number, k is the

day number, Cap1

(
min/◦C2

)
is the rate at which the temperature inside the building

changes, t1,adj(min) is the amount of time required to raise or lower the zone temperature
1 ◦C, and the default time value is set to t1,adj = 10 min. Tsp is the set temperature (◦C), Tz,occ
is the zone temperature (◦C) at the beginning of occupancy, and Tz,init is the initial zone
temperature (◦C). ∆t is the difference in time between Tz,init and Tz,occ, and when Cap1 is
calculated, the square of the difference between Tz,init and Tz,occ is taken into account. After
the model has operated each day, the tk

1,adj,i can be adjusted based on the past performance

that is achieved when occupancy begins. For example, if Tk
z,i does not converge, tk

1,adj,i
are increased. This increase moves the optimal start time closer to the earliest start time
defined for the VRF system.

2.2. Model 2

Model 2 adjusts the cooling/heating capacity to predict the optimal starting time
using temperature difference and outdoor air temperature. As shown in Equation (4), if
the difference between Tz,init and Tsp is constant, an increase in cooling/heating capacity
reduces the optimal start duration. The cooling/heating capacity is adjusted according to
the outdoor air temperature (Toa), as shown in Equation (5). For example, when controlled
by heating mode, the higher the ambient air temperature, the lower the heating capacity.
In other words, if Toa is high, the heating capacity can be reduced. Conversely, the lower
Toa, the higher heating capacity. This is to ensure that users feel comfortable as soon as
possible. However, the use of this model may be a good option for improving predictive
performance, provided that accurate wind flow control is possible and the heating capacity
can be precisely adjusted. In addition, additional installation costs may arise because it is
generally impossible to precisely control wind flow at a building site.

tk
2,opt,i =

(
Tk−1

sp,i − Tk−1
z,init,i

)
Capk

2,i
(4)

Capk
2,i =

(
Tk−1

sp − Tk−1
oa,occ

Tk−1
sp − Toa,rated

)
Capk

rated,i + Capk
2,adj,i (5)

Capk
rated,i =

(
Tk−1

z,occ,i − Tk−1
z,init,i

)
∆ti

(6)

where, t2,opt (min) is the time required for optimal start-up, i is the zone number, k is the
day number, Tz,init is the initial zone temperature (◦C), Cap2 (◦C/min) is the adjusted
cooling/heating capacity, and Caprated (

◦C/min) is the rate at which Tz,i changes when the
VRF system runs at full capacity to maintain designed occupied set point. Toa,rated required
to calculate Cap2 is the ambient air temperature (◦C) at which the heating/cooling facilities
must be operated for maintaining indoor comfort. Toa,rated is an outdoor temperature which
the VRF system must run constantly to maintain comfort. Toa,rated was set to −10 ◦C in
heating mode and 37 ◦C in cooling mode based on the manufacture design reference. These
values are set for determining the rated slope to be 24 ◦C at the beginning of the occupancy
time. That is, it is the temperature values at 12 a.m. when connected in a straight line from
9 a.m. to 12 a.m. It is assumed that the beginning of occupancy time is 9 a.m. ∆t is the time
required to raise Tz. Capadj is the adjustment of the heating capacity, which is dependent
on the Tz,occ and the Tset and it is activated when the Tz,occ is higher or lower than the Tsp.
Because Cap2,adj is a value provided by the manufacturer of the air conditioner/heater, the
adjustment value may not reflect the characteristics of the site, depending on the conditions
in the field.
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2.3. Model 3

According to the two previous models, the environment around the building changes
in real time and controlling the cooling/heating capacity of the building incurs additional
installation costs. The model 3 is designed to complement the two models discussed above.
This model can be flexibly calibrated using only the zone temperature at the beginning
of occupancy (Tz,occ) and the Tsp, and which can be controlled according to the value of
the Tz,occ. The model 3 uses the Tsp, Tz and Toa to calculate the optimal control time. In
addition, the optimal start time is calculated based on the occupancy time because the
schedule may be changed. The process by which the model 3 is calculated is as follows.

tk
3,opt,i = Capk

3,i

(
Tk−1

sp,i − Tk−1
z,init,i

)
− Capk

4,i

(
Tk−1

sp,i − Tk−1
z,init,i

)(Tk−1
sp,i − Tk−1

oa,occ,i

)
10

+ tk
3,adj,i (7)

Capk
4,i =

∆ti(
Tk−1

z,occ − Tk−1
z,init

)2 (8)

Capk
4,i =

∆ti(
Tk−1

z,occ − Tk−1
z,init

)2 (9)

tk
3,adj = Rk−1

adj ×
(

Tk−1
z,sp − Tk−1

z,occ

)
(min) (10)

where, t3,opt (min) is the time required for optimal start-up, i is the zone number, k is the
day number, the Tz,occ is the zone temperature (◦C) at the beginning of occupancy time, the
Tsp is the set temperature (◦C), Toa is the ambient air temperature (◦C), and tadj(min) is the
adjustment time. tadj is determined by the difference between Tsp and Tz,occ. Radj(min/◦C)
is the adjustment weight and it is determined by the user and it is set to 5 min. In addition,
the value of 10 in the denominator of Equation (7) should be changed to a value set by
the user that is appropriate for the environment. For example, if Tsp is 1 ◦C lower than
Tz,occ, the system will operate for an additional 5 min. Cap3 (min/◦C) is the time required
for a 1 ◦C rise, and Cap4

(
min/◦C2

)
is the time for a 1 ◦C rise in the square value of

the temperature difference with the historical performance of how quickly the zone has
been able to warm up or cool down. Cap3 and Cap4 are adjusted based on the difference
between Tz,occ and Tsp when the occupancy time begins. The use of this model also reduces
complexity in control because it does not require precise control of certain elements of
the system and is controlled using the temperature data at the beginning of the schedule.
The problem under consideration is that there is no boundary between maximum and
minimum operation, so it is possible to calculate over-heating or under-heating times; thus,
if this model is used, a basic interval should be established for operation.

2.4. Optimal Start Rules

The models should be highly adaptable to the changing environment around buildings
in real time. In addition, the ability to respond to over- or under-use should be the most
predictable and easiest to apply among the three models discussed earlier. The optimal
control model is selected through a comparison using existing data, and the performances
are compared using the summer and winter data (6 days) of 2019. In other words, the
best one among models was chosen based on their prediction performance of operational
duration. The predicted performance of the three models is covered in detail in chapter
4, and this section will provide a detailed description of several rules applicable to the
adopted models. Experiments are conducted with this control rule and are optimal control
performance is evaluated.

The model 3 is adopted in this paper as it is simple and easy to apply in the field among
the three cases. In this model, optimal control is possible and relatively simple if rules are
defined for the allowed heating/cooling intervals for over or under operating. According
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to Figure 1, the data required for optimal control are inputted such as zone temperature
(Tz), ambient air temperature (Toa), and set temperature (Tsp). First, the component of
Equation (7) is calculated and t3,adj is calculated using Tz and Tset at the occupancy time.
t3,adj adjusts the indoor unit to operate 5 min (Radj = 5) later when Tz is 1 ◦C above Tsp,
while the indoor unit to be operated 5 min faster when Tz is 1 ◦C below Tsp. In the optimal
control strategy, t3,adj is set to a maximum of 25 min (P = 25 min), which is a user-defined
value where P is the maximum adjustment time set by the user.
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In this study, all Tsp values are set at 24 ◦C, which is a comfortable temperature for
the winter, and an optimal control method is necessary to compare a conventional control
method to establish an appropriate strategy. In conventional methods, all devices are made
to operate before the occupancy time by 60 min. However, different indoor capacity occurs
with different temperature increases, resulting in energy waste and both over-heating and
under-heating. To address these problems, the control rules proposed in this study suggest
maximum and minimum operating boundaries. The maximum operating time (MAX) is
set to 60 min for energy saving and the minimum operating time (min) is set to 30 min
to reach the set points. If Tz, which is higher than Tsp, is created under an operating time
of 60 min using this control strategy, topt is reduced and the system operates for 60 min,
but if Tz,occ is low, a maximum of 60 min is maintained to save energy. In addition, topt is
controlled using the rules shown in Figure 1 if a situation occurs outside the maximum
and minimum operating conditions. The calculated topt is used as it is when topt is within
the interval (between MAX and MIN), but if a value greater than the maximum operation
is calculated, it is limited by MAX. Conversely, if topt is lower than the minimum boundary,
it is limited by the minimum operating boundary value. MAX shall be set in consideration
of energy savings, and min shall be set in consideration of comfort. These boundaries can
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change depending on the application site by user; in this study, the operating boundaries
are empirically set according to the local climate environment and zones in Gwang-ju,
South Korea.

2.5. Energy Savings

Energy saving index is usually used to compare amount of the energy consumption
between reference use and proposed use [30,31]. In this study, the potential energy savings
can be expressed as the ratio of energy use under the optimal method start control to energy
use under conventional methods, as shown in Equation (11). The conventional methods
are programmed to start VRF systems early enough so that the building will warm up or
cool down fast enough on the worst-case morning. As a result, for all other days of the
year, the VRF system starts earlier than needed. For the conventional control, the VRF
systems are switched on 60 min before the building is occupied in the morning.

EI =

(
1 −

EMopt

EMcon

)
× 100(%) (11)

where, EI represents the potential energy saving rate (%); EMopt(kWh) is the energy
usage under the optimal control strategy; and EMcon(kWh) is the energy usage under
the conventional control strategy. This study is interested in electricity usage before the
schedule, therefore, the electrical usage of the conventional method is set for an hour to
facilitate analysis. Accordingly, it is assessed whether energy savings are achieved with the
indoor temperature approaching the Tsp, comparing power usage over an hour.

3. System Specification and Test Conditions

This chapter briefly introduces the building information and provides schematics of
the internal layout in which the optimal control strategy will be applied. Then, a description
of the methods used to acquire and analyze data is given so that the reader understands
the process. In addition, the points to be considered during the morning hours of interest
are described in detail in this paper.

In this section, the process of on-site data acquisition is described in detail. Because
on-site data are acquired through experiments rather than simulations, local characteristics
are accurately reflected, making it suitable for application of the data-based model that
is applied in this study. In other words, data are obtained from the building shown in
Figure 2. The demonstration site is a seven-story building located at Chonnam National
University in Korea; experiments were conducted using the lecture halls on floor 2 and
floor 4. The operation of the indoor units installed in the corridor is excluded. The lecture
halls in the building are laid out as shown in Figure 2b, and the cooling/heating schedules
depend on the class schedule during the semester. However, in this study, the zone is
defined as the area for which the indoor units are responsible, and whether the lecture halls
are properly cooled/heated is of primary interest. The heating/cooling facilities installed
in the building are all equipped with temperature sensors, which can be used to gauge the
temperature change in the specific area. Tz is measured in real-time and reflects the effects
of doors, insulation, windows, etc., so the conditions are sufficient to apply the data-based
model followed by the optimal control strategy.
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Figure 3 shows that a number of indoor units are connected to one outdoor unit and
data are collected in real time, then stored in the data management system (DMS). The
working fluid is phase-changed by the compressor and transported by the pump [22]. The
red and blue solid lines in Figure 3 indicate the direction in which the working fluid flows,
and the cooling/heating mode is controlled by controlling the four-way valve. The zone
temperature is measured using a thermostat mounted in the indoor unit on the ceiling. The
outdoor temperature is measured in the outdoor unit. In addition, the building energy
management system (BEMS), a centralized management system that monitors information
in a database using Transmission control protocol and internet protocol (TCP/IP), can
control the power, set temperature, and temperature limits of all indoor units from one
location. The existing data used in this study were obtained from a DMS system that
monitors and writes operational conditions of VRF systems. The DMS system monitors
the operational conditions of indoor and outdoor units and writes them to a database at
1-minute intervals. Three different optimal control models were evaluated and validated
using two one-week existing datasets from the second weeks of July and January considered
to represent a typical summer and winter season as shown in Table 1. The spring/fall
dataset was excluded because the VRF systems are not typically running during this period.
After the validation of optimal control models using the exiting data, the proposed model
was implemented in BEMS. The experiment is performed on VRF systems to enable the
evaluation of optimal control. When conducting the experiment, the experiment was
carried out by controlling a number of indoor units using BEMS.
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Table 1. Existing data and experiments.

Purpose Periods

Existing data The comparison of prediction performance among the models 2nd week of July 2019
2nd week of January 2019

Experiments Validation of the optimal start strategy performance 3rd week of January 2020

The capacity of the outdoor/indoor units installed in the building is detailed in Table 2.
The outdoor units 1 and 2 are in charge of cooling/heating on the second floor and outdoor
unit 3 is in charge of the fourth floor. According to Table 2, a number of indoor units
can be connected without exceeding the capacity of the outdoor unit. Since the outdoor
units should be installed in locations where heat discharge will not create problems, all
outdoor units are installed on the rooftop of the building. For example, for outdoor unit
1, the heating capacity is 84.9 kW, and zone 1 consists of two indoor units. The control of
cooling/heating in spaces such as corridors is not carried out; only lecture hall spaces are
climate-controlled. The total heating capacity of the indoor units in zone 1 is 22 kW and
the total cooling capacity is 20 kW. One or two indoor units are installed in the lecture halls
as shown in Figure 2b. One indoor unit is installed in zone 3, and two indoor units in the
others. According to Table 2, zones 1 to 5 correspond to the second floor, indoor units 6
through 8 are installed on the fourth floor. In this study, a strategy is presented to ensure
that Tz can be properly controlled depending on the indoor cooling/heating capacity.

Table 2. Cooling and heating capacity of outdoor/indoor units.

Outdoor Units
Outdoor Unit Capacity (kW)

Zone Number
Indoor Unit Capacity (kW)

Heating Cooling Heating Cooling

1 84.9 75.4
1 22 20

2 22 20

2 84.9 75.4

3 14.5 13

4 32.6 29

5 32.6 29

3 104.4 92.8

6 22 20

7 22 20

8 22 20

The analysis sequence is examined; conventional and optimal controls are compared
with regard to the process of acquiring and analyzing data, as shown in Figure 4. The
flowchart in Figure 4 starts with raw data that have not been pre-processed, which in this
study are data acquired from the BEMS database. The data reflect the characteristics of
each zone and are collected through experiments. This means that the data-based model is
suitable for application.

Data cleansing is an essential process when assessing the performance of a model, and
incomplete data cleansing can undermine the accuracy of the model because relationships
between variables can be distorted. Thus, in this study, missing values and anomalies
were removed when data cleansing was performed and the data delay was correctly
adjusted. Both physics-and data-based models can be used for conventional control
methods. However, in conventional methods, all units are programmed to turn on at the
same time and perform pre-cooling. In such cases, energy savings are often not achieved,
and even if energy savings are realized, an appropriate comfort level may not be achieved.
This can cause problems, so it would ideally be possible to determine the optimal start time
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according to the unique climate and environment in each zone. For example, although
the areas covered by each indoor unit differ, it may be the case that all pre-cooling starts
at the same time and the temperature in certain zones may not reach the set points on
schedule. Conversely, there are situations in which the capacity is adequate but the system
has been operating for a long period of time and too much energy has been supplied. In the
proposed optimal control method, a data-based model is used, with coefficients calculated
to reflect the thermal characteristics of each zone. In general, when the zone temperature
rises, the operation time is used to determine the coefficient of zones. Ultimately, the
optimal start time (topt) can be calculated with the aim of maintaining comfort while saving
energy before the day’s schedule begins.
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4. Results and Discussion

This chapter introduces the results of model prediction accuracy. Then, the proposed
optimal control strategy is used to save energy. The performance of the optimal control
algorithm is evaluated using the energy saving index in Section 4.2.

4.1. Results of Model Prediction Accuracy

This section presents the analysis results used to select the model with the highest
predictive performance, as discussed in Sections 2 and 3. The predicted performance of
the three models is compared using existing summer and winter data (6 days) and the
results are shown in Figure 5. The darkest bar represents the time taken from the operating
start point to Tsp and provides a baseline for the predicted performance among the models.
The 100% in the results means that the darkest bars and prediction bars are, at the same
time, required to reach the set point. Below 100% means less time is required to reach
the set point, but this means less predictive performance because it results in a cold area.
For the model 3, the time taken to reach Tsp was measured; it showed, on average, a 4%
difference from the baseline in summer and 6% in winter. In other words, in both summer
and winter, the system is predicted to work longer than the experiment value up to Tsp.
The model 1 was unable to produce optimal start time calculations due to the large impact
of fixed adjustment time, as seen in Section 2.1. The results revealed a fixed tendency
for cooling/heating. This means that the adjustment values will not change even if the
environment changes. This indicates that model 1 is not flexible in responding to changes
in the external environment although all zones have different thermal characteristics. The
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model 2 can be used to control the heating capacity to provide optimal control. The
cooling/heating capacity per hour is required to calculate topt, so it is difficult to apply
unless the facility is suited for such control methods meaning that additional facility costs
may be incurred. Given the results shown in Figure 5, Tsp will be reached more slowly
than the baseline in the summer, and the model 2 predicts that the system will operate for a
shorter period of time in winter compared to the baseline values. This shows that Equation
(5) is insensitive to changes in the environment. Therefore, in this section, the model 3 is
chosen as it produces an output that is most similar to the darkest bar, thus it is used to
develop the optimal control rules.
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4.2. Results of the Proposed Optimal Strategy

Use of the conventional controls ensures that all of the indoor unit power is on at the
same time, as illustrated in Figure 4. In this paper, indoor units operate during an hour
when conventional control is applied as the one-hour operation is to facilitate analysis of
power usage. The experiment was conducted during the third week of January 2020 and
it was not conducted on weekends. The Tsp in all zones is 24 ◦C and the air supply flow
rate into all zones is the same. In all areas, Tz generally increases during the first half hour,
and energy is continuously used to maintain the temperature for the next half hour in case
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of the conventional control method. In other words, conventional control wastes energy
because it operates indoor units more than necessary. The results from the experiment are
shown in Table 3. In this section, the performance of the optimal control strategy is verified
through the results of two cases: the day when energy saving is best and the day when it is
lowest. Day 4 of Table 3 shows the worst energy saving case in Figure 6. Day 5 of Table 3
shows the best energy saving in Figure 7.

Table 3. Experimental results of optimal start time.

Outdoor Units 1 2 3

Zone 1 2 3 4 5 6 7 8
Heating Capacity (kW) 22 22 14.5 32.6 32.6 22 22 22

Day 1

Tz,init 17 17 10 11 8 10 10 10
Tz,occ 22 22 24 21 21 20 23 22
Toa −3
topt 8:30 8:30 8:22 8:16 8:10 8:13 8:19 8:25

Day 2

Tz,init 10 13 13 12 8 10 12 13
Tz,occ 23 24 26 23 22 23 25 26
Toa 0
topt 8:30 8:30 8:09 8:12 8:02 8:00 8:09 8:09

Day 3

Tz,init 9 12 15 12 8 10 12 15
Tz,occ 24 23 24 21 22 23 25 25
Toa −2
topt 8:09 8:26 8:30 8:18 8:00 8:17 8:28 8:30

Day 4

Tz,init 14 13 12 14 15 11 15 14
Tz,occ 24 25 25 24 24 24 23 24
Toa −1
topt 8:19 8:24 8:01 8:18 8:09 8:09 8:29 8:29

Day 5

Tz,init 17 17 13 14 11 11 16 17
Tz,occ 23 23 26 21 21 23 24 23
Toa −1
topt 8:28 8:28 8:27 8:23 8:18 8:11 8:28 8:28

According to the lowest energy saving case (day 4), zone 3 is equipped with indoor
unit 3 (Figure 6), and it is the smallest lecture hall on the second floor in Figure 1. The
outdoor temperature profile is presented in Figure 6c to verify Toa,occ to calculate t3,opt
using the model 3. Toa cannot be controllable. The optimal control model is affected by
Toa in Figure 6c. Indoor units of (a) to (i) are turned on between 8:01 a.m. and 8:29 a.m.
because proper optimal starting points are determined by calculating t3,opt. The Toa,occ was
−1 ◦C on day 4, and the Tz,init was distributed between the lowest 11 ◦C and the highest
15 ◦C. The results of the optimal start calculation were applied to each zone, reaching and
average of about 24.1 ◦C. This result means that the average operating time was reduced
by about 17 min using optimal control strategy. Figure 6d shows that zone 3 takes more
than 30 min to reach 24 ◦C but continues to waste electricity to maintain that temperature
once it is reached. This excess results in wasted energy suggesting that operating in more
than one building rather than a single zone can lead to serious energy waste. In that case, it
is difficult to maintain a comfortable temperature. In this paper, the optimal control rule as
defined in chapter 2.4 is applied to solve the problem of energy waste. For the conventional
control in Figure 6, the Tsp at 24 ◦C may have resulted in an indoor temperature that is
either too high or too low due to environmental effects. However, the energy is wasted to
maintain the temperature if the temperature reaches 24 ◦C before that time, considering
that the scheduled start time is 9 a.m. To solve these problems, the data from a day before
were used to determine the start time. For example, indoor units operate about 10 to 20 min
later than the conventional strategy, but it may produce the Tz close to the Tsp, with the
predicted time shown in Figure 6. The results are used to create a forecast for the following
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day. If Tz,occ is 2 ◦C higher than Tsp, tadj will be adjusted so that the indoor unit turns on
10 min later the next day. Conversely, the results in Figure 6h shows that the Tz,occ value is
23 ◦C, so the tadj is adjusted to turn the unit on 5 min earlier the next day. Overall, the Tz,occ
approached the Tsp closely while saving energy. Overall, the optimal control can reduce the
energy consumption by keeping a facility in its unoccupied mode for as long as possible
and putting it in unoccupied mode as soon as possible without sacrificing comfort.
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According to the highest energy saving case, excessive indoor temperature results were
not derived before the occupancy time, except in zone 3. The outdoor temperature profile is
presented in Figure 7c to verify Toa,occ to calculate t3,opt using the model 3. The Toa cannot
be controllable. The indoor units of (a) to (i) are turned on between 8:11 a.m. and 8:28 a.m.
because proper optimal starting points are determined by calculating t3,opt. The Toa,occ was
−1 ◦C on day 5, and the Tz,init was distributed between the lowest 11 ◦C and the highest
17 ◦C. The results of the optimal start calculation were applied to each zone, reaching and
average of about 23 ◦C. Comparing with a result of zone 3 in Figure 6 (day 4), the indoor
unit 3 operates from 8:27 a.m. Then, the Tz,occ of zone 3 reaches the Tsp at about 8:50 a.m.
and subsequent energy use is to be considered wasted. Given the results, the average
operating time was reduced by about 23 min on average using the optimal control strategy.
Specifically, an optimal start algorithm can reduce the time waste by about 15 min to
maintain the Tz,occ in case of zone 3 as shown in Figure 7 (day 5). This means that operating
in more than one building rather than a single zone can save serious energy waste. The
results of other zones are similar, but it should be considered that waste can occur because
of various causes such that Toa is not the same every day. The waste by environmental
variables is adjusted by calculating tadj. So, topt can be corrected using tadj and applied the
next day. This suggests that the proposed control algorithm can make zones comfortable
while saving energy. As the operating durations decrease, the amount of the energy use is
also reduced, which increases the energy saving rate; the larger the size of the application
site, the greater the energy saving can be.



Energies 2021, 14, 271 14 of 17
Energies 2021, 14, x FOR PEER REVIEW 14 of 17 

 

 

 

 

Figure 7. Comparison of the optimal control effect by indoor and outdoor units (day 5): (a,b) outdoor unit 1, (c) outdoor 

temperature, (d–f) outdoor unit 2, (g–i) outdoor unit 3. 

The results shown in Figures 6 and 7 demonstrate that zone-specific control is possible, 

and Figure 8 can be used to examine the potential energy savings in terms of outdoor units. 

Figure 8a shows the results of day 4 and Figure 8b shows the results of day 5. The energy 

usage was measured with an energy meter and data were recorded every 15 min for each 

outdoor unit. The outdoor unit 1 is recorded by summing the power consumption used in 

zones 1 to 2 of Figure 6. The outdoor unit 2 is recorded by summing the energy usage in 

zones 3 to 5. The outdoor unit 3 is recorded by summing the electricity used in zones 6 to 8. 

For example, the energy saving of the outdoor unit 1 is 33.3% on day 4 and 49.0% on day 5. 

The energy saving of the outdoor unit 2 is 12.5% on day 4 and 36.1% on day 5. The energy 

saving of the outdoor unit 3 is 16.9% on day 4 and 37.5% on day 5. This experiment resulted 

in an average energy saving of 20.9% on day 4 and 40.9% on day 5. Based on these results, 

the optimal control strategy can reduce the amount of electricity used by each outdoor unit 

by controlling energy use by each indoor unit. 

 

(a) 

 

(b) 

Figure 7. Comparison of the optimal control effect by indoor and outdoor units (day 5): (a,b) outdoor unit 1, (c) outdoor
temperature, (d–f) outdoor unit 2, (g–i) outdoor unit 3.

The results shown in Figures 6 and 7 demonstrate that zone-specific control is possible,
and Figure 8 can be used to examine the potential energy savings in terms of outdoor units.
Figure 8a shows the results of day 4 and Figure 8b shows the results of day 5. The energy
usage was measured with an energy meter and data were recorded every 15 min for each
outdoor unit. The outdoor unit 1 is recorded by summing the power consumption used in
zones 1 to 2 of Figure 6. The outdoor unit 2 is recorded by summing the energy usage in
zones 3 to 5. The outdoor unit 3 is recorded by summing the electricity used in zones 6 to
8. For example, the energy saving of the outdoor unit 1 is 33.3% on day 4 and 49.0% on
day 5. The energy saving of the outdoor unit 2 is 12.5% on day 4 and 36.1% on day 5. The
energy saving of the outdoor unit 3 is 16.9% on day 4 and 37.5% on day 5. This experiment
resulted in an average energy saving of 20.9% on day 4 and 40.9% on day 5. Based on
these results, the optimal control strategy can reduce the amount of electricity used by each
outdoor unit by controlling energy use by each indoor unit.
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The experiment was conducted over a total of five days and the energy saving was
calculated using Equation (11). The amount of energy used was determined only for an
hour because it is assumed that all indoor units run at the same time at 8 a.m. and this study
is only interested in the time before the beginning of the schedule. The results shown in
Table 4 were recorded on five consecutive weekdays; the experiment was not conducted on
the weekend. Daily average power consumption and total average are displayed in Table 4.
During the five experimental days, an average energy saving of 30.5% was achieved.

Table 4. Daily and average energy savings.

Energy Saving (%) Outdoor Unit 1 Outdoor Unit 2 Outdoor Unit 3 Average

Day 1 50.0% 24.4% 31.6% 35.3%
Day 2 50.0% 10.9% 10.0% 23.6%
Day 3 32.2% 21.4% 41.7% 31.8%
Day 4 33.3% 12.5% 16.9% 20.9%
Day 5 49.0% 36.1% 37.5% 40.9%

Average 42.9% 21.1% 27.5% 30.5%

5. Conclusions

In this study, optimal control strategies were developed using data collected at a
building site to facilitate energy saving. The existing data were used to evaluate predictive
accuracy among three data-based models. In order to develop a successful optimal control
algorithm, an investigation was conducted about the environment such as the building
information and the location of units. Then, the mechanism of the VRF system and the
overall data acquisition process were described. Three data-based models were presented
to compensate for the degradation performance of the physics-based model and to improve
on-site applicability. The Tsp and Tz are used to calculate topt in the first model. However,
the first model does not allow for flexible control because it has a fixed minimum operating
time. For calculating topt, rated capacity are used in the second model. The second model
is easy to apply when optimal control is performed via control of the heating capacity but
requires a facility capable of reacting sensitively to environmental changes. The Tsp, Tz
and Toa are used to calculate topt in the third model. The third model uses Tz,occ and Tsp
to correct the predicted time and perform optimal control through simple on/off control.
Thus, the third model, which showed the highest predictive performance, was selected in
this paper. The selected model was used to develop the optimal control strategy. In addition,
the optimal control rules were presented in detail. The experiments were conducted to
assess the performance of the optimal control strategy during the third week of 2020. The
experimental results were used to compare the conventional vs. optimal control strategy;
performance was compared between the two, and the temperature curve confirmed that
the time required for temperature rise was accurately predicted. In general, the use of
an optimal control strategy reduces the amount of energy required to maintain the air
temperature after a temperature increase, and the system can be controlled to accurately
reach the Tsp at the time of occupancy, which is not the case under a conventional control
strategy. In addition, the performance of the optimal control algorithm was evaluated by
calculating the energy savings for each outdoor unit after experiments are conducted on
site. The analysis of energy savings using all outdoor units showed an average energy
saving of 30.5%. Based on these results, an optimal control strategy was developed to save
energy and make users more comfortable during the occupancy time.
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Nomenclature

Cap1 Coefficient at which the zone heats up after equipment start-up
(

min/◦C2
)

Cap2 Adjustment of heating capacity (◦C/min)
Cap3 Coefficient of temperature response (min/◦C)

Cap4 Coefficient of heating transfer
(

min/◦C2
)

EI Energy saving (%)
EM Energy usage (kWh)
MIN Min-operating time (min)
MAX Max-operating time (min)
P Maximum adjustment time (min)
R Adjustment weight (min/◦C)
t Time (min)
T Temperature (◦C)

Subscripts
adj Adjust
con Conventional
init Initial
i Zone number
k Day number
occ Occupancy time
opt Optimal
oa Outdoor air
rated Rated
sp Set point (set)
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