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Abstract: Forecasting uncertainties limit the development of photovoltaic (PV) power generation.
New forecasting technologies are urgently needed to improve the accuracy of power generation
forecasting. In this paper, a novel ultra-short-term PV power forecasting method is proposed based
on a deep belief network (DBN)-based Takagi-Sugeno (T-S) fuzzy model. Firstly, the correlation
analysis is used to filter redundant information. Furthermore, a T-S fuzzy model, which integrates
fuzzy c-means (FCM) for the fuzzy division of input variables and DBN for fuzzy subsets forecasting,
is developed. Finally, the proposed method is compared to a benchmark DBN method and the T-S
fuzzy model in case studies. The numerical results show the feasibility and flexibility of the proposed
ultra-short-term PV power forecasting approach.

Keywords: DBN; T-S fuzzy; PV power; forecasting

1. Introduction

To cope with the challenges of energy security and climate change, promote energy
transformation and deepen the concept of sustainable development, countries around the
world are promoting the development of sustainable energy generation. Among them,
PV power generation is a focus in many countries for its high efficiency, low pollution,
safety and convenience [1]. However, when large-scale photovoltaic power generation
is connected to the grid, its randomness and intermittent nature endangers the stability
and security of the electricity system [2,3]. As we all know, ultra-short-term forecasting
is very useful in planning power generation and planning energy storage. Therefore, the
ultra-short-term, high-accuracy forecasting of photovoltaic energy is of great importance to
ensure the proper functioning of the electricity grid and to optimize the transmission of the
electricity system.

Extensive research has been conducted on PV power prediction, and a relatively sys-
tematic method has been formed. According to the different input data, power prediction
methods are divided into univariate prediction and multivariable prediction. Univariate
prediction usually carries out the modal decomposition of power variables. Then, it carries
out the independent prediction for the main modes, and finally combines all the predictions
to achieve the final result. The multivariate forecasting not only takes historical power
as an input, but includes meteorological data, such as wind speed and direction. Based
on the different prediction technologies, there are physical prediction methods, statistical
methods and machine learning methods [4,5]. Physical forecasting methods are limited
by the optimization of physical understanding rules and numerical weather forecasting,
and have a large number of calculations and a poor timeliness. Additionally, statistical
prediction methods cannot cope with a large randomness, or unstable data and multivariate
situations, and their application scenarios are limited. Machine learning can easily explore
the nonlinear relationship between data and has a higher generalization ability. Common
machine learning prediction methods include the Markov chain [6], support vector ma-
chine [7], artificial neural network [8], extreme learning machine [9], XGBoost [10], and
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random forest [11], etc. Recently, the Takagi-Sugeno (T-S) fuzzy model was applied to
ultra-short-term predictions of low-dimensional PV power, as it could characterize complex
nonlinear functions with a smaller number of fuzzy rules. In [12], an inter type-2 fuzzy C
regression algorithm based on the T-S fuzzy model was used for short-term wind energy in-
terval prediction. From the simulation, it can be seen the proposed model greatly improves
the performance in the quality of the prediction interval (PI) compared to the traditional
prediction models. The T-S fuzzy model is applied to complete the ultra-short-term PV
power prediction with a 1 h time scale. However, its accuracy greatly depends on the
similarity between the training set and the actual situation [13,14].

There are many factors which influence PV power generation. Deep learning has the
ability to extract deep functions. Compared to the shallow machine learning algorithms, the
deep network model with multiple hidden layers can better understand the variation trend
between the time series data and make more accurate predictions. At present, the ideal
deep learning prediction methods include the long-term and short-term memory network,
the gated recurrent neural network, and the deep belief networks (DBN) [15–17]. A deep
learning model developed from the neural network is used to solve high-dimensional
problems with multi-meteorological factors, such as input [18–22]. Based on the panel
temperature, ambient temperature, cumulative power, and irradiance, DBN is used to
forecast the PV power after 15 min by Neo [18]. Based on the weather classification and
DBN, a prediction method is proposed to achieve a one-day forecasting of the PV power
output [19]. In addition, DBN is used to learn the high-level abstractions in the historical
PV output data by leveraging Gary’s hierarchical architectures [20]. The results show that
DBN can guarantee a minimal prediction error and satisfactory accuracy with the optimal
data set length. Because of the small amount of data, the model cannot be fully trained with
the sampling frequency in 15 min. Alzahrani takes the high-resolution global horizontal
irradiance and global tilt irradiance data as model inputs, and then the PV power output is
predicted by the interval [21]. Sorkun uses the hourly global horizontal irradiance data
from the last decade to establish a long-short-term memory network model for PV power
forecasting [22]. These two models [20,21] have requirements for data sampling interval
or capacity.

However, the above approaches only use a single model to forecast PV power. To
further improve the forecasting accuracy, some schemes, which are combined with multi-
model, are devised [23–29]. In [23], the self-organizing map and learning vector quanti-
zation networks are used to classify the historical data into multiple weather types, and
then the supporting vector is used to predict the PV power. However, the single prediction
model is simple and has a low precision. Based on a combination of a genetic algorithm,
particle swarm optimization and the adaptive neuro-fuzzy inference method, a PV power
generation prediction method is proposed in [24]. Liu uses the backpropagation (BP) neural
networks with an artificial neural network (ANN) model to predict future photovoltaic
power generation. The prediction accuracy exceeds that of conventional artificial neu-
ral networks [25]. The proposed BP-ANN model combines the advantages of BP neural
networks and ANN, which achieves a higher forecasting performance of PV power. A
temporal convolution network model based on wavelet decomposition is presented to
predict the short-term photovoltaic power generation [26]. Quantile regression averaging
(QRA) is used to compile a group of independent deterministic prediction models for long-
short-term memory (LSTM) in [27], which have a higher prediction performance due to
the better prediction accuracy of deterministic prediction. Wang proposes an independent
PV power day-ahead forecasting model based on a long-term recurring neural network
(LSTM-RNN) [28]. However, the differences between the binding models are small and the
characteristics are not significant. Given the characteristics of many influencing factors and
the huge uncertainty, Ge proposes a hybrid model based on a principal component analysis,
gray wolf optimization and the general regression nervous network (PCA-GWO-GRNN)
for the short-term forecasting of 24 h of solar energy production [29]. PCA is used to reduce
the dimensions of the meteorological properties and GRNN is used to analyze the input
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operations again after the reduction in dimensions and the parameter GRNN is optimized
with GWO. The results confirm the accuracy and usefulness of the proposed model in real
life. In addition, Akylas C. Stratigakos et al. [30] combine LSTM with a singular spectrum
analysis (SSA) to improve the accuracy of day-ahead hourly load prediction. From the
above analysis, it was confirmed that a combination of a variety of different models can
outperform single methods.

Motivated by the above, this paper proposes a DBN-based T-S fuzzy PV power ultra-
short-term forecasting model. The proposed prediction model can overcome some of
the shortcomings of traditional approaches, such as adapting only low dimensions and
a loss of precision by the input variables screening. The organization of this paper is as
follows: In Section 2, the proposed model framework is introduced. Section 3 describes
the methodologies we use in detail and the whole process. Then, Section 4 is the case
study, including the data processing and parameter settings. Lastly, some conclusions are
provided in Section 5.

2. Forecast Model Framework

The framework of the DBN-based, T-S fuzzy, PV power, ultra-short-term forecasting
model is shown in Figure 1.
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First, the data of the experiment are pretreated and normalized. After filtering the
data using clustering via a correlation analysis, the FCM algorithm is employed to cluster
the input variables into several subsets. Then, a DBN PV power forecasting model for each
fuzzy subset is established. The weight of each sub-model is determined by the similarity
from the fuzzy clustering center. Based on the forecasting results of all sub-models and
weights, the final PV power forecasting output value could be calculated.

Each T-S fuzzy model with multiple inputs and single outputs is described by a set of
if-then fuzzy rules:

R(i) : IF x1 is Ar1, and x2 is Ar2, . . . and xs is Asr THEN y(r) = pr0 + ∑
r

prsxs (1)

y =

N
∑

i=1
wiyi

N
∑

i=1
wi

(2)
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in which R(i) is the if-then rule, xi represents the independent input parameter, Aij are the
fuzzy sets, y(r) is the output value of the ith rule, pij is the linear parameter, wi is the fuzzy
system output, and is the applicability of the i-th rule.

3. Methodology
3.1. Filter Fuzzy Clustering Variables

The factors affecting PV power generation are complex. If all factors are used as
the input of the clustering, the information becomes redundant and the efficiency of the
operation is reduced. Therefore, a correlation analysis is required to select factors that have
an important impact on the power forecasting results. The correlation coefficient γ is a
statistical indicator that can be adopted to show the correlation between two variables:

γ =
∑(xi − x)∑(yi − y)[

∑(xi − x)2 ∑(yi − y)2
] (3)

where x is one of the factors, y is the power output, is the average value of x, and is the
average value of y.

A factor with a higher |γ|mean has a large association with the output, and this factor
should be selected as the input of the clustering system.

3.2. Fuzzy Division of Input Variables

Clustering analysis divides the input variables into different fuzzy sets, and input
variables belonging to the same fuzzy set combine to form a fuzzy subset. In this part,
the FCM clustering algorithm is employed to obtain the degree of membership of input
variables in each fuzzy set. The main steps of the identification of the FCM cluster algorithm
are shown in Figure 2.

Energies 2021, 14, x FOR PEER REVIEW 5 of 11 
 

 

Set 

Ɛ   – objective function accuracy

C  – clustering number

m  – the fuzzy index

Tm – the maximum number of iterations

T   – the initially iteration 0

Input limited data set Z

Initialization

vi – fuzzy clustering center

Output parameter

U={uij} – membership matrix

Update

vi – fuzzy clustering center

J – objective function

d2 – distance norm

U={uij} – membership matrix

 | J(T) - J(T-1) |<Ɛ
or T =Tm

yes

no

 

Figure 2. Steps of identification. 

3.3. Establish A DBN Model for Each Fuzzy Subset 

Figure 3 shows the structure of the DBN model. A DBN model can be divided into 

two parts. The bottom layer of the model is a stack formed by multiple restricted boltz-

mann machines (RBM), extracting features layer by layer and passing the extracted fea-

ture to the top layer. A backpropagation neural network (BPNN) is used to forecast re-

sults at the top. Meanwhile, it adjusts the network parameters, including the RBM stack. 

Figure 2. Steps of identification.



Energies 2021, 14, 6447 5 of 10

3.3. Establish A DBN Model for Each Fuzzy Subset

Figure 3 shows the structure of the DBN model. A DBN model can be divided into two
parts. The bottom layer of the model is a stack formed by multiple restricted boltzmann
machines (RBM), extracting features layer by layer and passing the extracted feature to the
top layer. A backpropagation neural network (BPNN) is used to forecast results at the top.
Meanwhile, it adjusts the network parameters, including the RBM stack.
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RBM is a stochastic neural network model, which contains a two-layer structure (a
visible layer v and a hidden layer h), symmetric connection, and no self-feedback. The
energy of an RBM system is defined as:

E(v, h) = −
n

∑
i=1

aivi −
m

∑
j=1

bjhj −
n

∑
i=1

m

∑
j=1

viwijhk (4)

where ai, bj are bias for visible layer and hidden layer, n, m are neuron numbers for visible
layer and hidden layer, and wij is weight between vi and hj.

The probability distribution function of the visible layer in RBM is:

P(v) = ∑h e−E(v,h)

∑v,h e−E(v,h)
(5)

As the visible cell state is known, the activation probability of the hidden cell P
(
hj = 1|v

)
is:

P
(
hj = 1|v

)
= σ

(
bj + ∑

i
viwij

)
(6)

Because of the symmetrical structure, as the hidden cell state is known, the activation
probability of the visible cell P

(
vj = 1|h

)
is:

P(vi = 1|h ) = σ

(
aj + ∑

j
wijhj

)
(7)
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The activation function selected in the above formula is:

σ(x) =
1

1 + e−x (8)

Train each RBM to obtain the weight matrix and bias vector of each layer until the
training of the entire RBM stack is complete. The power output of the final DBN model can
be expressed as:

ydbn = f
(
x, ai, wij

)
(9)

3.4. T-S Model Output

The final forecasting result of PV power is a combination of results for each fuzzy
subset. Thus, it can be represented as follows:

yPVPower = λ(1)ydbn−sub1 + λ(2)ydbn−sub2 + λ(3)ydbn−sub3 (10)

Here, yPVPower is the final forecasting result of PV power; ydbn−subi is the power output
of the i-th sub-DBN model, and λ(i) is weight of the i-th sub-DBN model. Here, the degree
of membership for each subsystem is selected as the weight.

4. Case Studies
4.1. Data Set Description

The proposed approach is tested using a 433 kW PV matrix database on the University
of Queensland campus in St Lucia. The data include air temperature, humidity, solar
radiation, wind speed, wind direction, and historical power. The data sampling interval is
1 h. The period of the data spans March, June, September, and December of 2015, which
represent the four seasons. The first to the twentieth day of each month is selected as the
train dataset, and the remaining days of the month are regarded as the test dataset.

4.2. Evaluation Index

The following three evaluation indicators were selected to assess the predictive per-
formance of different networks or models: Mean Absolute Error (MAE), Mean Relative
Error (MRE) and Standard Error of the Mean (RMSE). In the following formulas, y and ŷ
represent the actual power and the forecasting result, y and ŷ represent the average of y and
ŷ , Cap represents the daily average boot capacity, and n represents the number of samples.

MAE (y, ŷ) =
1
n

n

∑
i=1
|yi − ŷi| (11)

MRE (y, ŷ) =
1
n

n

∑
i=1

|yi − ŷi|
Capi

(12)

RMSE (y, ŷ) =

√√√√ 1
n

n

∑
i=1

(
|yi − ŷi|

Capi

)2
(13)

4.3. Experimental Setup

Following the method described in 3.1, the correlation coefficients between the PV
power and the influencing factors are shown in Table 1.

Table 1. Correlation coefficients between PV power and influence factors.

Insolation Temperature Humidity Wind Speed Wind
Direction

Historical
Power

0.8279 0.5406 0.4083 0.0117 0.0227 0.8066
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According to Table 1, the correlation coefficient between the PV power and the ir-
radiation power data has the best performance, followed by the historical power data.
Moreover, they are all greater than 0.8. This indicates that the aforementioned two types of
influencing factors can reflect the variation of the power output to a large extent. Thus, the
input variables are classified using the insolation and power data within 15 min.

The forecasting performance of the DBN model is not static, which is strongly related
to many parameters, such as the number of RBM layers and the number of neurons in each
layer, etc. Therefore, multiple sets of experimental parameters are compared to establish
the optimal model structure. The results are shown in Table 2.

Table 2. Performance of DBN forecasting model with different parameters.

Number of
RBM Layer

Number of Neurons in Each Layer
MAE/KW

1 2 3 4 5

2

150 200 - - - 14.42
200 300 - - - 15.01
250 400 - - - 15.47
300 500 - - - 15.78

3

150 200 250 - - 14.68
200 300 400 - - 14.01
250 400 550 - - 14.47
300 500 700 - - 14.89

4

150 200 250 300 - 14.68
200 300 400 500 - 15.32
250 400 550 700 - 15.75
300 500 700 900 - 16.06

5

150 200 250 300 350 14.14
200 300 400 500 600 14.69
250 400 550 700 850 15.11
300 500 700 900 1100 15.51

From Table 2, it can be seen that the performance of the DBN model does not increase
linearly with the number of RBM layers and the number of neurons in each layer. The
unnecessarily complicated multi-layer neural networks not only lead to an excessive
training time but also increase the error due to structural redundancy. Consequently, it
is necessary to construct an optimal DBN model framework by analyzing the evaluation
index among different parameters. From the results in Table 2, the DBN model with 3 RBM
layers has the best performance in all frameworks when the number of neurons in each
layer is 200, 300, and 400.

4.4. Experimental Results

The forecasting results from the proposed model, DBN model, and T-S model are
obtained as shown in Figure 4, where (a) is the forecasting results for one day in March in
spring, (b) is the forecasting results for one day in June in summer, (c) is the forecasting
results for one day in September in autumn, and (d) is the forecasting results for one day in
December in winter.

From the results in Figure 4, it is observed that the predictions of the DBN and T-S
models fluctuate greatly during the power fluctuation period. However, the proposed
model can track the target power curve well. The proposed model can outperform the
DBN model and the T-S model can outperform in the four seasons because the distance
between the curve of the proposed model and the actual power is minimal. It is proven
that the proposed model can successfully classify without many input variables and learn
the characteristics of the multi-impact factor via RBM stacks. This finding indicates that
the proposed model can be used to improve the performance of PV power forecasting.
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Figure 4. Forecasting results in different seasons. (a) one day in March in spring; (b) one day in June in summer; (c) one day
in September in autumn; (d) one day in December in winter.

Moreover, Table 3 shows the MAE, MRE, and RMSE of the proposed model and
other forecasting approaches in the four seasons can accurately observe the forecasting
accuracy of each model. It can be seen that the selected four types of evaluation indices
of the proposed model are smaller than some T-S and DBN approximations in the four
seasons. This indicates that the proposed model is more in accordance with the actual
output situation and has an intensive prediction error. The averages of the RMSE of the TS
fuzzy model, the DBN model and the proposed model under the four seasons are 8.2%,
and 12.6% and 7.2%, both of which can meet the requirement that the RMSE of the PV
power forecast is 20%. Additionally, the proposed model decreased by 12.2% and 42.85%,
respectively, compared to the T-S model and the DBN model. Therefore, the proposed
model absorbs the characteristics of two types of models and effectively improves the
overall forecasting accuracy.

Table 3. Forecasting errors analysis in four seasons.

Spring Summer Autumn Winter

MAE/KW MRE RMSE MAE/KW MRE RMSE MAE/KW MRE RMSE MAE/KW MRE RMSE

T-S 7.8596 0.0390 0.0684 6.1446 0.0300 0.0508 10.5962 0.0638 0.1174 9.9633 0.0603 0.0912
DBN 9.5807 0.0761 0.1207 11.9857 0.0809 0.1083 8.5044 0.0752 0.1189 8.9548 0.0805 0.1580

The proposed
model 4.0440 0.0319 0.0577 5.3429 0.0258 0.0431 7.7214 0.0573 0.1051 6.7769 0.0595 0.0826

5. Conclusions

This article proposes a new DBN-based T-S fuzzy model for predicting PV power.
The historical PV power per hour, air temperature, humidity and solar radiation per hour
are selected as the multiple input variables of the proposed prediction model. The fuzzy
clustering makes the forecasting data more similar to the training data and the RBM stacks
can outperform typical models with a high-dimensional data input. The data from the
PV array from the University of Queensland of Australia is adopted to test the proposed
approach by comparing it with the single DBN and T-S fuzzy model. The results indicate
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that fewer prediction errors and a more stable prediction process can be achieved by
using the proposed approach. In summary, the proposed model effectively improves the
ultra-short-term forecasting accuracy of PV power and has an ideal performance.
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