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Abstract: The aim of the study is to explore the intellectual structure of the field and fronts in
research on energy efficiency in the context of cloud computing and thus to contribute to science
mapping of the research field. The research process was driven by the following study questions:
(1) what are the most influential publications in the research field? and (2) what are the research
fronts in the research field? The method of direct citation analysis was employed in the research
process. Data for analysis were obtained from the Scopus database and analyzed with the use of
VOSviewer science mapping software. In response to the first question, we identified the most
influential publications in the research field and analyzed their types (i.e., whether they are original
research papers or rather the “context” papers e.g., survey or review papers, framework papers,
challenges papers, and study papers). Moreover, a comparison analysis between the types of papers
among the most cited “classical” publications and “emerging stars” was conducted. In response to
the second research question, we identified five research fronts concentrated around the issues of:
virtual machine management (“VM”); task-focus, concerning data replication, task consolidation,
and task scheduling (“task”); energy efficiency (“energy”); modelling and optimization (“model”);
and energy efficiency in the networking context (“network”).

Keywords: cloud computing; energy efficiency; bibliometrics; science mapping; direct citation
analysis; Scopus; VOSviewer

1. Introduction

The second decade of the 21st century saw the period of rapid growth of cloud
computing—a new trend in communications and computing technology, which started only
a few years prior. Enabled by the constantly growing capacity and ubiquity of the internet
and progress in mass storage technology, it offers many advantages—and associated new
challenges—to companies and users, enabling software as a service approach with simple
deployment of updates, advanced functionality delivered with low-resource end devices
(IoT—Internet of Things), large scale data correlation, analysis, and more (see Avram [1],
for example). However, the trend moving functionality and data storage towards data
centers also has a significant impact on the use of energy for computing. While user devices
become increasingly mobile, with reduced energy consumption appropriate for battery
use (with some exceptions, the most obvious being high-end gaming and small-scale
high-performance computing—basically fast graphics-processing units (GPUs), which
tend to consume energy at similar rates between generations, increasing computing power
instead), the demand for data centers of varying size grows. Even though server hardware
becomes more and more energy efficient itself, the growing demand increases the energy
consumption by the data centers—see Avgerinou et al. [2]. This can be seen as a problem
as well as an opportunity—concentration of computation in large data centers enables new,
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innovative methods of optimizing energy use through energy-aware management of tasks,
virtual machines, and data location, something not possible years ago, when most of the
processing was handled by end devices. As a result, this decade has seen a lot of research
activity in this area.

Lis et al. [3] notice that research on energy efficiency in cloud computing has not
yet been mapped bibliometrically, although the field has been developing dynamically in
recent years and bibliometric reviews have become increasingly popular approaches to
study the outputs of scientific productivity on cloud computing in general and its particular
aspects, e.g., security issues or quality of experience by customers, or contexts, e.g., the
healthcare sector. This gap has not been filled either by traditional literature reviews,
which focus on narrowly defined aspects rather than covering the overall picture of the
research field [3]. The aforementioned work by Lis and his associates has attempted to
map the conceptual structure of the field, giving emphasis on leading thematic areas and
emerging topics. Nevertheless, the intellectual structure of the field has not been included
in this study.

Therefore, the aim of the study is to explore the intellectual structure of the field
and fronts in research on energy efficiency in the context of cloud computing, and thus
to contribute to science mapping of the research field. Referring to Zupic and Čater [4],
the following research questions were defined to operationalize the aforementioned aim
of the study: (1) what are the most influential publications in the research field? and
(2) what are the research fronts in the research field? The method of direct citation analysis
was employed in the research process. Data for analysis were obtained from the Scopus
database and analyzed with the use of VOSviewer science mapping software [5].

The remainder of the paper consists of three sections and conclusions. This introduc-
tion is followed by the methodology section explaining employed methods, sources of
data, and the research sampling process. The main body includes two sections covering
results presentation and analysis, as well as a discussion of research findings.

2. Materials and Methods

Science mapping is one of the branches of bibliometric studies. Science mapping
methodology comprises the five main methods employed to explore research fields i.e.,
direct citation analysis, co-citation analysis, bibliographic coupling, co-author analysis, and
co-word analysis [4]. Three among them, i.e., direct citation analysis, co-citation analysis,
and bibliographic coupling, explore the relations among documents in a dataset and may
be employed for exploring the intellectual structure of a field and research fronts within
it. For the purposes of this study, we employed the method of direct citation analysis.
Citation analysis is based on the assumption that the more often a given publication is
cited, the more significant impact it has on its research field. In spite of its weaknesses,
such as bias towards ‘core’ authors (so-called Matthews effect) and older publications,
as a result of inequal distribution of citations, direct citation analysis is recognized as
an effective method for analyzing the intellectual structure of a field [6] and identifying
research fronts [6,7]. Although comparing against two other methods recommended for
mapping research fronts, i.e., co-citation analysis and bibliographic coupling, direct citation
analysis is found to show a slightly lower accuracy, but is advantageous in regard to more
even clustering of publications in the analyzed period of time. As observed by Boyack
and Klavans [7] (p. 2391), “[i]n a longitudinal dataset where links are restricted to those
within the set, bibliographic coupling is able to cluster very recent papers but clusters
fewer of the very old papers, while co-citation clustering does the opposite—it clusters the
older papers, but cannot cluster the most recent papers that have not yet been cited. Direct
citation clusters documents more evenly across the time window, and tends to cluster a
larger number of documents than either bibliographic coupling or co-citation processes”.
Direct citation analysis is also found to be more effective in mapping research fronts
than two other methods taken into account (i.e., co-citation analysis and bibliographic
coupling) [8]. As summarized in the study, “[d]irect citation, which could detect large
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and young emerging clusters earlier, shows the best performance in detecting a research
front [ . . . ]. Additionally, in direct citation networks, the clustering coefficient was the
largest, which suggests that the content similarity of papers connected by direct citations
is the greatest and that direct citation networks have the least risk of missing emerging
research domains because core papers are included in the largest component” [8] (p. 571).

The publications related to energy efficiency issues in cloud computing, indexed in the
Scopus database, constituted the sample for analysis. On 5 September 2020, we searched for
the logical conjunction of phrases “cloud computing” AND “energ*” AND “efficien*” in the
titles of publications indexed in Scopus. The truncation (stemming) technique (an asterisk
after the roots of searched words) was used to include all the variations of the words
related to “energy” and “efficiency”. Neither the date of publication nor a subject area
were limited to include all the relevant items. We replicated the searching criteria of the
study by Lis and associates [3] in order to ensure a comparison between the research fronts
identified with direct citation analysis and thematic areas discovered through co-word
analysis. Consequently, 323 publications were retrieved and selected for further analysis.
The process of citation analysis was supported by VOSviewer science mapping software [5].
We decided to employ VOSviewer due to its growing popularity within academia. The first
study indexed in Scopus and employing VOSviewer for science mapping was published in
2011. In 2018, for the first time, more than 100 publications were indexed which included
the phrase ‘VOSviewer’ in their titles, keywords, and abstracts. The number of such
publications increased to 493 in 2020 and to 775 in 2021 (as of 03 October). VOSviewer is a
free-of-charge software aimed at creating, analyzing, and visualizing bibliometric maps.
The authors of the software explain that “VOSviewer constructs a map on a co-occurrence
matrix. The construction of a map is a process that consists of three steps. In the first step, a
similarity matrix is calculated based on the co-occurrence matrix. In the second step, a map
is constructed by applying the VOS mapping technique to the similarity matrix. Finally,
in the third step, the map is translated, rotated, and reflected” [5] (p. 530). VOSviewer
supports distance-based bibliometric maps. In this type of maps, the distance between the
two items manifests the strength of relation between them, i.e., the closer two objects are
located to each other, the stronger relation is noticed [5]. A unified framework consisting
of the VOS (i.e., visualization of similarities) layout technique and the VOS clustering
technique [9,10] is employed by VOSviewer to create bibliometric maps. As claimed by Van
Eck and associates, “in general, maps constructed using VOS provide a more satisfactory
representation of a dataset than maps constructed using well-known multidimensional
scaling approaches” [11] (p. 2405). In the process of analysis, the layout parameters of
attraction and repulsion “influence the way in which items are located in a map by the
VOS layout technique”, while resolution “determines the level of detail of the clustering
produced by the VOS clustering technique” [12] (pp. 21, 22). This means that an increase
in the value of the resolution parameter results in an increase in the number of clusters.
Following the recommendation of the authors of the VOSviewer software, in our analysis
of research on energy efficiency in the context of cloud computing, we employed default
values of the parameters of attraction, repulsion, and resolution. In order to avoid having
single items or very small clusters, we switched the function of merging small clusters
on and set the minimum size of a cluster at the level of 10 items. Detailed parameters are
provided in Table 1.

Table 1. VOSviewer parameters.

Parameter Value/Characteristic

Normalization method Association strength
Layout Attraction—2 (default value); Repulsion—0 (default value)

Clustering Resolution—1.00 (default value); Minimum cluster size—10
Minimum number of citations of a document (network analysis) 5

Source: authors’ own study. Data sources from VOSviewer (5 September 2020).
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3. Results
3.1. Core Publications

Among the publications comprising the research sample (n = 323), there are 237 works
which were cited at least once. Those items are the subject of direct citation analysis.
The study of “Energy-aware resource allocation heuristics for efficient management of
data centers for cloud computing” by Beloglazov and associates [13] with 1679 citations
is found to be the most influential paper in the research field. Another highly cited
publications include: a review of methods and technologies employed for energy efficient
cloud computing by Berl et al. [14] (443 citations), “A taxonomy and survey of energy-
efficient data centers and cloud computing systems” by Beloglazov et al. [15] (427 citations),
an investigation of energy consumption by mobile users of cloud computing services by
Miettinen and Nurminen [16] (408 citations), and an analysis of heuristics optimizing the
use of resources and energy consumption in cloud computing by Lee and Zomaya [17]
(377 citations). The density visualization of the most prominent publications in the cloud
computing energy efficiency research field weighted by the number of citations is displayed
in Figure 1, and the catalogue of the top 20 core references in the research field is enumerated
in Table 2. In the item density maps, the color scale ranges from blue through green and
yellow to red as the number of citations increases. The labels of publications display the
name of the first author and the date publication.
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Table 2. Top 20 core references in the cloud computing energy efficiency research field (ranked by
the number of citations).

Reference Number of Citations Type

Beloglazov et al. (2012) [13] 1679 Framework, Challenges
Berl et al. (2010) [14] 443 Survey, Challenges

Beloglazov et al. (2011) [15] 427 Survey
Miettinen and Nurminen (2010) [16] 408 Study

Lee and Zomaya (2012) [17] 377 Research
You et al. (2016) [18] 184 Research

Hameed et al. (2016) [19] 156 Survey
Mastelic et al. (2015) [20] 150 Survey

Guo et al. (2016) [21] 148 Research
Boru et al. (2015) [22] 125 Study
Mi et al. (2010) [23] 125 Research

Zhang et al. (2013) [24] 109 Research
Liu et al. (2018) [25] 101 Research

Chen et al. (2015) [26] 98 Research
Kaur and Chana (2015) [27] 97 Survey

Goudarzi and Pedram (2012) [28] 97 Research
Kandavel and Kumaravel (2019) [29] 87 Research

Li et al. (2016) [30] 79 Research
Horri et al. (2014) [31] 74 Research

Sharma et al. (2016) [32] 71 Survey, Challenges
Source: authors’ own study. Data sourced from Scopus, analyzed with VOSviewer (5 September 2020).

As direct citation analysis shows a natural favoritism towards older publications,
which have had more chances to be cited than those more recent, we included the attribute
of the normalized number of citations into analysis. In VOSviewer, “[t]he normalized
number of citations of a document equals the number of citations of the document divided
by the average number of citations of all documents published in the same year and
included in the data that is provided to VOSviewer” [12] (p. 37). The normalization function
is used to mitigate the bias of direct citation analysis towards the earliest documents at the
expense of the most recent publications.

Taking into account the normalized number of citations, some very recent publications
are found among those having a strong impact on development of the research field. First
and foremost, the works by Kandavel and Kumaravel [29] and Liu et al. [25] are worth
mentioning. The analysis of “Offloading computation for efficient energy in mobile cloud
computing” [29] published in 2019 has received 87 citations so far and scored the highest
value of the normalized number of citations (14.69) within the sample. The study of “An
energy efficient ant colony system for virtual machine placement in cloud computing”
issued in 2018 is cited 101 times and is found to be another one of the most influential
recent researches in the field with the normalized number of citations equal to 13.29. The
seminal paper by Beloglazov et al. [13], published in 2012, is recognized as the most
cited paper in the field (1679 citations) and is the third top publication when taking into
account the normalized number of citations (11.94). The map of density visualization
of items with the highest value of the normalized number of citations is displayed in
Figure 2, and the list of top 20 publications is enumerated in Table 3. Identifying core
publications of the highest normalized number of citations provides information about
the most influential documents in the research field. Mitigating the natural bias of direct
citation analysis towards earlier publications, the citation normalization technique enables
researchers exploring the intellectual structure of the field to supplement classical and
seminal works [13] with “emerging stars” of a potentially high impact on the development
of the field, e.g., [25,29].
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Figure 2. Direct citation analysis of the cloud computing energy efficiency research field (item density
visualization; weights—normalized citations). Source: authors’ own study. Data sourced from
Scopus, analyzed with VOSviewer (5 September 2020).

Table 3. Top 20 core references in the cloud computing energy efficiency research field (ranked by
the normalized number of citations).

Reference Normalized Number of
Citations Type

Kandavel and Kumaravel (2019) [29] 14.69 Research
Liu et al. (2018) [25] 13.29 Research

Beloglazov et al. (2012) [13] 11.94 Framework, Challenges
Guo et al. (2019) [33] 8.78 Research

Agitha and Kaliyamurthie (2019) [34] 7.94 Research
Hameed et al. (2016) [19] 7.78 Survey

Guo et al. (2016) [21] 7.38 Research
Khorsand and Ramezanpour (2020) [35] 7.09 Research

Zhang et al. (2013) [24] 5.98 Research
Beloglazov et al. (2011) [15] 5.60 Survey

Boru et al. (2015) [22] 5.45 Study
Horri et al. (2014) [31] 5.33 Research

Devaraj et al. (2020) [36] 4.73 Research
Kaur and Chana (2015) [27] 4.23 Survey
Malekloo et al. (2018) [37] 4.21 Research

Li et al. (2016) [30] 3.94 Research
Shu et al. (2014) [38] 3.73 Research

Sharma et al. (2016) [32] 3.54 Survey, Challenges
Abrahamsson et al. (2013) [39] 3.51 Study

Kliazovich et al. (2013) [40] 3.46 Research
Source: authors’ own study. Data sourced from Scopus, analyzed with VOSviewer (5 September 2020).
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3.2. Research Fronts

In order to identify research fronts within the field, network visualization function
of VOSviewer was employed. The publications cited at least five times were taken into
account. There were 147 publications meeting this threshold. For them, the number of
citation links was calculated and documents with the largest number of links were chosen.
The largest set of connected publications counting 67 items was identified and categorized
into five clusters (Figure 3) and then the composition of clusters was explored (Table 4).
The number of clusters was calculated automatically by the VOSviewer software according
to the pre-defined analysis parameters (cf. Table 1). The clusters were ranked from these of
the highest number of items to those with the lowest one.
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Table 4. Clusters of core references in the cloud computing energy efficiency research field.

Cluster Number/Label/Color/Number
of Items References

Cluster 1/VM/red/21

Aldulaimy et al. (2015) [41]; Ali et al. (2019) [42]; Beloglazov et al. (2012) [13];
Borgetto and Stolf (2014) [43]; Bui et al. (2017) [44]; Dashti and Rahmani (2016) [45];

Djemame et al. (2014) [46]; Goyal et al. (2016) [47]; Horri et al. (2014) [31]; Jararweh et al.
(2018) [48]; Li et al. (2016) [30]; Malekloo et al. (2018) [37]; Mekala and Viswanathan

(2019) [49]; Okada et al. (2015) [50]; Sharma et al. (2016) [32]; Sharma et al. (2019) [51];
Shidik and Ashari (2014) [52]; Stavrinides and Karatza (2019) [53]; Subirats and Guitart

(2015) [54]; Tesfatsion et al. (2014); [55]; Wen et al. (2017) [56]

Cluster 2/task/green/14

Boru et al. (2015) [22]; Fiandrino et al. (2017) [57]; Kumar et al. (2015) [58]; Lee and
Zomaya (2012) [17]; Lin et al. (2013) [59]; Lin et al. (2014) [60]; Panda and Jana

(2014) [61]; Panda and Jana (2019) [62]; Tian et al. (2013) [63]; Tian and Yeo (2015) [64];
Ye et al. (2010) [65]; Ye et al. (2017) [66]; Zhou et al. (2015) [67]; Zhou et al. (2018) [68]

Cluster 3/energy/blue/11
Beloglazov et al. (2011) [15]; Bianchini et al. (2016) [69]; Fayyaz et al. (2016) [70]; Kaur

and Chana (2015) [27]; Khattar et al. (2019) [71]; Mastelic et al. (2015) [20]; Shu et al.
(2014) [38]; Valentini et al. (2013) [72]; Wajid et al. (2016) [73]; Xu and Buyya (2019) [74]

Cluster 4/model/yellow/11
Berl et al. (2010) [14]; Chen et al. (2015) [26]; Demirci (2016) [75]; Hameed et al. (2016) [19];

Tang et al. (2018) [76]; Vakilinia et al. (2016) [77]; Vakilinia (2018) [78]; Wang et al.
(2012) [79]; Wang et al. (2012) [80]; Wu and Wang (2018) [81]; Zhang et al. (2018) [82]

Cluster 5/network/purple/10
Bermejo et al. (2017) [83]; Cao et al. (2012) [84]; Dabbagh et al. (2015) [85]; Fallahpour et al.
(2015) [86]; Jiang et al. (2016) [87]; Jiang et al. (2016) [88]; Lu and Sun (2019) [89]; Mastelic

and Brandic (2015) [90]; Xiang et al. (2014) [91]; Xiang et al. (2015) [92]

Source: authors’ own study. Data sourced from Scopus, analyzed with VOSviewer (05 September 2020).
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Network analysis of citation links among the analyzed publications indicates five clus-
ters of connected publications focused on the following issues: (1) VM; (2) task; (3) energy;
(4) model; and (5) network. In all cases, the focus is clear, but not complete. As can be
expected in an analysis based on citations alone, topics of individual papers can be quite
different, but the leading issue of the cluster is clearly visible in most of its papers. Cluster
1 (marked in red in Figure 3) follows the topic of energy-aware resource allocation in cloud
computing data centers, with a clear focus on the virtual machine management, leading
to the label “VM”. Note that the adjacent clusters (especially 2 and 3) are strongly related
thematically. Cluster 2 (green) is closely linked with the previous one. While some of the
highly connected papers in the cluster explicitly consider virtual machine deployment, the
core of cluster 1, the remaining papers in the cluster are more task-focused, concerning data
replication, task consolidation, and task scheduling. This resulted in the label “task” as-
signed to the cluster. Cluster 3 (blue) is closely linked to the previous two. While the works
in this cluster often include scheduling or VM deployment themes typical of clusters 1 and
2, analysis of titles and abstracts shows a clear focus on energy efficiency, leading to the
label “Energy”. Cluster 4 (yellow) is characterized by a strong theoretical bias, approaching
the problem of energy efficiency through modeling and optimization, resulting in the label
“model”. Cluster 5 (purple) is significantly less connected with the other clusters, which
finds support in the analysis of titles and abstracts in this group. The focus is clearly on
energy efficiency in the networking context, leading to the label “Network”.

4. Discussion

The following discussion is focused on the results of analysis of the titles and abstracts
of the papers in each of the identified clusters, moving on to more general analysis of
the field.

4.1. Clusters as Research Streams

The clusters identified in the previous section can be viewed as streams of related
research connected by citations. In this section, we present these research directions in
more detail.

Cluster 1 (VM) has roots in the framework paper by Beloglazov et al., 2012 [13].
The first works of this stream—Borgetto and Stolf [43]; Horri et al. [31]; and Shidik and
Ashari [52]—focus on virtual machine management: allocation, reallocation, and consolida-
tion. In the same year, Djemame et al. [46] present a cloud architecture focused on energy
efficiency and Tesfatsion et al. [55] present techniques involving CPU frequency scaling
and core allocation. These early works set the theme for the rest of the cluster, as other
works in this cluster expand on these issues.

In cluster 2 (task), the earliest works are by Ye et al. [65] and Lee and Zomaya [17]. The
first one is similar to cluster 1 in its focus on virtual machine migration, while the second
deals with task consolidation heuristics. Starting there, most of the works in the cluster deal
with various mathematical approaches to task scheduling and resource allocation. Early
works (2013–2016) propose various optimization or heuristic approaches, e.g., resource
allocation as a constraint satisfaction problem in works of Lin et al. [59,60] or as a linear
programming problem with various selection algorithms in Kumar et al. [58]. Later papers
experiment with other optimization approaches and metrics, e.g., evolutionary algorithm
in Ye at al. [66].

The earliest paper in cluster 3 (energy) is Beloglazov et al. [15], who review the causes
of high energy consumption. The papers in this cluster mostly follow this theme (with
a few outliers dealing with scheduling). The general topic of this cluster is underscored
by two highly cited publications from 2015—Kaur and Chana [27] survey the existing
energy efficiency techniques, presenting data centers as both major energy consumers
and potential energy savers, while Mastelic et al. [20] analyze energy consumption of the
infrastructure behind the cloud. Newer papers follow the topic with new eco-aware metrics
and reviews of energy saving methods.
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Cluster 4 (model) starts with an early review paper by Berl et al. [14] and Wang et al. [79,80]
from 2012 on energy-efficient task scheduling models, employing genetic algorithms. This
sets the general direction of the works in this cluster—e.g., Demirci [75] provides a sur-
vey of works involving machine learning for cloud energy efficiency problems, while
Tang et al. [76] use genetic algorithms to solve the energy consumption optimization prob-
lem. Various other models are discussed either as the core topic of the papers or as
an aspect of a different core problem (e.g., in the design of a virus scanning service in
Zhang et al. [79]).

Finally, cluster 5 (network) begins with Cao et al. [84] considering the VM allocation
problem, but is better defined by the second oldest paper by Xiang et al. [91], which
discusses the link selection and data transmission scheduling problems. The focus of this
cluster is the cloud as a networked system, with various transmission problems to consider.
For example, energy-efficient routing is a core problem discussed by Fallahpour et al. [86]
and Jiang et al. [88], while Lu and Sun [89] discuss energy-efficient load balancing.

4.2. Thematic Separation of Clusters

As could be expected in case of a connected set of publications, all of the clusters share
a common theme which appears as a leading issue in some papers regardless of clusters.
This central theme is the problem of energy-efficient deployment of virtual machines. The
topic is central to cluster 1, but appears in all clusters, for example:

• Cluster 2: Zhou et al. [67] and Zhou et al. [68] explicitly address virtual machine
deployment and virtual machine migration, respectively;

• Cluster 3: Fayyaz et al. [70] consider VM consolidation as a tool in energy-efficient
resource scheduling. Note that this is the least clear example of the common theme;

• Cluster 4: Vakilinia et al. [77] propose a platform for virtual machine placement/migration;
• Cluster 5: Even though the cluster is most isolated from the other ones, Cao et al. [84]

focus on energy-efficient allocation of virtual machines based on demand forecast.

Even outside of this common theme, the clusters are, in general, clearly linked the-
matically. The entire group can be described as a body of work regarding energy-efficient
task and resource allocation in cloud environments, with the different clusters focusing on
different aspects of the problem or handling it in a different way. The labels introduced
in Section 3.2 correspond to those different approaches. The division between clusters
1 and 2 is unclear, but works in cluster 1 tend to focus more on VM placement, while,
in cluster 2, task scheduling is more explicitly addressed. Clusters 3 and 4 seem to take
more high-level approaches, with cluster 3 more explicitly focusing on the goal of energy
efficiency and cluster 4 taking a structured modeling approach.

Cluster 5 is much more clearly separated from the remaining clusters, as its central
focus is on networking—routing algorithms, QoS constraints, manycast, etc. These themes
are not present in most of the papers in the other clusters. However, even this cluster is
not thematically consistent, with several papers considering energy efficiency in general,
without a clear networking focus.

The contrast between the relatively clear separation of the clusters in the citation
graphs and mixed content of the clusters can probably be attributed to the backgrounds
of the researchers; depending on the previous work and familiarity with different aspects
of the topic (task scheduling, VM management, energy efficiency, networking, linear
modeling/optimization, etc.), the selection of literature for very similar papers can show
significant bias.

4.3. Key Publication Types in Clusters

Analysis of the clustering behavior of the selected connected group of papers allows
certain observations on the role of different papers. Most of the papers in the group are
regular; they cite common sources for research context and recent closely related research,
while themselves being cited in the latter role. However, certain papers stand out either
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as heavily cited centers of the clusters, or as links between otherwise weakly connected
clusters of sources.

The keystone paper for this entire group is clearly the one by Beloglazov et al. [13], i.e.,
the most influential paper in the entire sample in terms of citation count. According to the
abstract, the paper proposes “an architectural framework and principles for energy-efficient
cloud computing”. Even though there are several older papers in this group, with high
citation counts, this one clearly ties together the entire body of work, directly citing or
being cited by papers in each of the five identified clusters. Note that the keystone role
does not require such a high citation count—it is defined by the graph connectivity, so a
paper with very few citations from outside the identified group could potentially play the
same role as long as it is well connected within it.

Each of the identified clusters also includes central papers tying them together:

• Cluster 1 is focused directly around the above-mentioned keystone paper. Another
highly connected paper in this cluster is Sharma et al. (2016) [32]—a survey and
taxonomy paper which reviews existing techniques and identifies challenges and
research gaps;

• Cluster 2 is defined by the significant impact of three core papers: Lee and Zomaya
(2012) [17], Ye et al. (2010) [65], and Zhou et al. (2015) [67], but none of them hold
a position as central as the main papers in cluster 1. All three are research papers,
with the first one considering task consolidation and the other two focused on VM
deployment algorithms;

• Cluster 3, despite being highly interconnected with the other ones, is fairly coher-
ent due to the impact of the core paper Beloglazov et al. (2011) [15]. This is again
a survey/taxonomy paper which focuses on the causes and problems of high en-
ergy consumption;

• Cluster 4 is anchored in the papers by Berl et al. (2010) [14] and Hameed et al.
(2016) [19]. Both papers are of a survey/taxonomy type, reviewing existing methods
and techniques and identifying key research challenges;

• Cluster 5 is mostly connected by Dabbagh et al. (2015) [85] and Fallahpour et al.
(2015) [86]. The first paper is an investigation of key resource allocation challenges,
while the second one is a research paper which proposes an energy-efficient manycast
routing and spectrum assignment algorithm.

The above analysis confirms that, while direct citation analysis is effective at identify-
ing clusters of related research, this is largely facilitated by high-quality survey/taxonomy
or framework papers, citing a collection of crucial older papers and used in later pa-
pers as support for the importance of the addressed challenge, as a base/framework for
the research or simply as a high-quality wide research context. Some research papers
can sometimes take this role in smaller clusters, either tying together related papers due
to an extensive bibliography, or by achieving sufficient significance to be often cited as
previous works.

Figure 3 makes Bermejo et al. (2017) [83] stand out visually as a link of cluster 5 to
other clusters, an example of another important role—the role of connecting nodes. Such
nodes can appear in two very different ways. In some cases, a connecting paper signifies
an important step in the differentiation of the field, with further research having reduced
incentive to cite the papers from other clusters, but identifying the branching one as a
precursor. However, in this case, the paper is, in fact, relatively new, and newer than most
papers in cluster 5. Furthermore, it is not yet very highly cited (6 citations). Instead of a
research branch diverging from a common root, this is a case of thematically related research
based on different sources being correctly identified and connected by a publication citing
from both groups.

4.4. Core Publication Types

Analysis of core publications in the entire sample provides similar conclusions to the
selected clusters, but interesting observations can be made by comparing the results for
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normalized and non-normalized citation counts. For this purpose, it is useful to review
the publications’ abstracts and titles and estimate their character, as accomplished in some
cases in the previous section (cf. Tables 2 and 3). In general, we will classify the papers
into two groups. One group (“research”) focuses on original research of the authors related
to the core problems of the field—from proposed models to experimental verification
of new approaches, algorithms, etc. The other group (“context”) is an amalgamation of
several types of papers: survey or review papers, cataloguing existing research, framework
papers proposing high-level architectures or methodologies, challenges papers identifying
open questions in the field, and study papers, either comparing existing solutions or
proposing new tools for the field—experimental approaches, methodologies, etc. Clearly,
the individual subclasses in the second group may overlap; in fact, a single paper may fit
more than one group. The boundary between the two groups is also not strict—e.g., there
can and do exist papers that both provide new solutions and present them in the context of
a wide set of existing ones, providing a useful comparative study.

The top 20 publications by citation count are generally older, 65% of them published
before 2016, only one in 2019 and none in 2020, as it is difficult to reach such high citation
numbers so fast. There is a similar amount of research and context papers in this group
(9 vs. 11), with the context papers occupying places mostly in the upper half of the list.
The context papers on the list tend to be older, with two newest being from 2016, while
relatively new research papers are present. This is consistent with intuition; as new research
requires context (surveys, reviews, methodologies, etc.), papers of this type accumulate a
lot of citations, and the ones already highly cited tend to gather more. On the other hand,
only especially successful research papers gain comparable numbers of citations.

Analyzing the top 20 list for normalized citation counts gives a very different outcome.
Normalization changes the order significantly. Some context papers are replaced with
research ones (65% research papers on this list). Furthermore, this list is—as expected—far
less biased towards old papers. In fact, 11 of the 20 papers were published in 2016 or later.
For research papers this trend is even reversed, with almost 70% of the research papers on
the list published in year 2016 or later. The prevalence of context papers in the upper half
of the non-normalized list is not present here; instead, the top of the list seems to be more
accessible to newer papers, especially in the case of research papers.

This result suggests that the two groups follow very different dynamics. Good context
papers tend to gain citations over a long period of time, as their usefulness for current
research remains significant. This leads to very high citation counts in older papers. On
the other hand, good research papers tend to gather most of their citations early, through
immediate follow-up research or state-of-the-art reviews which focus on the latest results.
This results in high normalized citation counts for new papers, which tend to decrease
over time. In summary, the citation analysis results seem to agree with the intuition which
allows us to expect a group of “context”-type papers and only some key “research”-type
papers to form the core of literature of any field.

4.5. Comparison of Bibiliometric Methods

As noted earlier, the sample analyzed in this paper is the same as the one used
in Lis et al. (2020) [3], although citation counts have been updated. This allows us to
compare the results of different bibliometric methods applied to the same data. Lis et al.
(2020) [3] adopted a multifaceted approach, utilizing a combination of bibliometric de-
scriptive studies (research profiling), science mapping (keyword co-occurrence analysis),
and literature reviews (systematic literature review), but notably omitting direct citation
analysis. In their study, “network analysis of high-frequency keywords indicates the four
following thematic clusters within the research field focused on the studies of energy
efficiency in cloud computing systems: (1) virtualization; (2) power; (3) scheduling; and
(4) offloading” ([3] p. 17). While the previous sections show that direct citation analysis
does produce interesting results correlated with the actual content of the papers in the
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sample, the question whether the results of such a content-agnostic approach are similar to
more content-focused approaches is interesting.

Table 5 shows publications from clusters identified in Section 3 that also appear in the
top-cited lists for each cluster in Lis et al. (2020) [3]. Note that the nature of membership
in clusters is different in both cases—in this work, each reference can only appear in one
cluster, while, in Lis et al., the clustering is performed on keywords, which means that each
paper can belong to more than one cluster.

Table 5. References present in clusters identified both in Section 3 and in Lis et al. (2020) [3].

Reference Clusters in Section 3 Clusters in Lis et al. (2020) [3] Type

Beloglazov et al. (2012) [13] 1 (VM)

1 (virtualization),
2 (power),

3 (scheduling),
4 (offloading)

Framework, Challenges

Berl et al. (2010) [14] 4 (model)

1 (virtualization),
2 (power),

3 (scheduling),
4 (offloading)

Survey,
Challenges

Lee and Zomaya (2012) [17] 2 (task)

1 (virtualization),
2 (power),

3 (scheduling),
4 (offloading)

Research

Hameed et al. (2016) [19] 4 (model) 2 (power) Survey

Mastelic et al. (2015) [20] 3 (energy) 3 (scheduling) Survey

Boru et al. (2015) [22] 2 (task) 2 (power),
4 (offloading) Study

Kaur and Chana (2015) [27] 3 (energy) 3 (scheduling),
4 (offloading) Survey

Li et al. (2016) [30] 1 (VM) 4 (offloading) Research

Source: authors’ own study. Data sourced from VOSviewer (05 September 2020) and combined with data from Lis et al. (2020) [3].

The analysis of the table does not show a clear mapping. The connected group
as a whole does not clearly correspond to any of the keyword-level clusters. There is
also not enough support in the data to claim correspondence between the individual
clusters, although the relation between citation-level cluster 3 (Energy) and keyword-level
cluster 3 (scheduling) is suggested by Mastelic et al. [20] and Kaur and Chana [27] in both.
Notably, none of the papers in cluster 5 (network) appears in the clusters analyzed by
Lis et al. The papers in this cluster are not highly cited compared to the top entries.

There is a clear sub-class of very highly cited papers, the focal points of their clusters,
which tend to appear in all keyword-based clusters. Those were also noticed in Lis et al. as
repeating, making the identification of unique research content of each cluster based on top
cited papers in it difficult. This suggests that using direct citation analysis to detect highly
connected papers within the sample might be useful as a first step before keyword-based
analysis, as these papers tend to cover a wide range of issues and are unlikely to contribute
highly to the identification of individual research trends, while at the same time pushing
more specific papers out of top list for each cluster. This is likely the reason why Table 5 is
so short and cluster 5 (network) is not represented at all—the top 10 lists prepared for each
cluster in Lis et al. were dominated by the same set of highly influential papers. Eliminating
papers highly connected within the sample might be preferred to simply ignoring the most
cited papers, as high citation count does not automatically imply broad scope.

Regarding analysis of new research trends performed in Lis et al., only one paper from
the connected group selected for clustering in our paper is mentioned by Malekloo et al. [37]
as an example of growing interest in social and economic aspects of the field. This is not
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surprising, as we have selected the largest connected group in the sample. A large con-
nected group of publications can be expected to focus on well-known topics. New trends
are more likely to occur in smaller, less connected groups, as the network of citations is still
being built.

5. Conclusions

The study was oriented to provide responses to research questions focused on the
intellectual structure of the cloud computing energy efficiency research field and research
fronts within the field. In response to the first question, we identified the most influential
publications in the research field and analyzed their types (i.e., whether they are original
research papers or rather the “context” papers, e.g., survey or review papers, framework
papers, challenges papers, and study papers). Moreover, a comparison analysis between
the types of papers among the most cited “classical” publications and “emerging stars” was
also conducted. In response to the second research question, we identified five research
fronts concentrated around the issues of virtual machine management (“VM”); task-focus,
concerning data replication, task consolidation, and task scheduling (“task”); energy
efficiency (“energy”); modelling and optimization (“model”); and energy efficiency in the
networking context (“network”). Moreover, we compared and contrasted mapping of the
cloud computing energy efficiency research field completed with different science mapping
methods, i.e., direct citation analysis employed in our study and co-word (keywords
co-occurrence) analysis used by Lis et al. [3].

The contribution of our study is mainly of a theoretical character. Through identifying
core references in the field, including both the seminal works and “emerging stars”, we
provide scholars designing and conducting research in cloud computing energy efficiency
with reading guidelines. Moreover, the findings related to the distribution of research
papers and “context” papers among core references may be a useful observation for
scientometrics, which certainly requires further exploration and validation in other research
fields. Identification of research fronts brings another “added value” to the research field,
as it offers a kind of a “map” of the research landscape to other scholars and facilitates them
maneuvering within a variety of research themes. Direct citation analysis is also shown as a
tool for tracing the development of the field when the papers are analyzed in a chronological
order. This can be used to identify current trends and find related works regardless of the
keywords proposed by the authors. To the best of our knowledge, our work is the first
application of this method to the field of energy efficiency in cloud computing.

Discussing the findings of the study, the limitations of the research process should
be taken into account. Firstly, using only one database as a source of bibliometric data
should be considered as a weakness. Although we considered sourcing data from some
other databases, due to technical limitations of the employed software, we were not able to
implement our plan. VOSviewer creates maps based on bibliographic data retrieved from
Web of Science, Scopus, Dimensions, PubMed, RIS, Crossfer JSON, or Crossref API. Never-
theless, analyzing files retrieved from more than one database is not possible in the same
session. Thus, we decided to source data from Scopus, which is listed among the largest
databases and is commonly valued for indexing high-quality publications [93–96]. Cer-
tainly, Scopus has some vulnerabilities, e.g., its bias towards output written in English [97],
which we are aware of. Thus, replication of the study with the use of data retrieved from
other sources, e.g., more open to publishing in languages other than English, is worth
considering. Secondly, direct citation analysis was the only method employed to identify
research fronts in the field, which inhibits triangulation of research. In consequence, we
recommend exploring the research field of cloud computing energy efficiency with other
science mapping methods, e.g., co-citation analysis [98] and bibliographic coupling [99],
which are as well recognized as effective solutions for mapping research fronts [7].
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