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Abstract: Phase change heat storage material is a preferred material in solar building heating or
off-peak electric-heat storage heating technology and is the research focus. A compact phase change
thermal storage device has been designed and experimentally studied for improving heating system
load in this work. A new type, magnesium nitrate hexahydrate-based phase change material has
been studied to improve the cooling degree and crystallization difficulty. The focus of this study is on
the heat charging and discharging characteristics of this new phase change material. The heat storage
device has two groups of coils, the inner side which carries water and the outer side which is the
phase change material. A testing system was built up to value the thermal cycling performance of the
heat storage device. The measurement data include phase change material temperature field, water
inlet and water outlet mean temperature, heat charging and heat discharging depth, and flow rates
over the operating period. The results show the phase change material has a quick response with
the operating temperature range of 20–99 ◦C. Its latent heat is 151.3 J/g at 91.8 ◦C. The heat storage
density of this phase change material is about 420 MJ/m3. The thermal performance degradation is
about 1.8% after 800 operation cycles. The phase change thermal storage device shows flexibility and
a great potential to improve the capacity and economy of heating systems.

Keywords: heat storage performance; phase change material; heat storage; building heating; magne-
sium nitrate hexahydrate

1. Introduction

Ecological environment and energy utilization are closely related to social health
development [1,2], and more than ninety percent of the world energy budget is connected
to heat conversion and storage [3]. Due to its wide applicability, heat storage has attracted
more and more attention in renewable energy power generation, solar building heating, and
power grid peak shaving [4,5]. Different from other existing energy storage, heat storage
has significantly high stability and low cost [6,7]. Especially in recent years, responding
to the nationwide policy of “coal to clean energy”, solar heating and electric heating is
increasingly used in northern China to reduce coal-fired heating and its resulting pollution
emissions [8,9]. This brings significant market prospects for heat storage technology to fill
the energy demand gap economically. Phase change heat storage materials are different
from common sensible heat storage materials [10]. Because of their latent heat, phase
change materials (PCMs) can store additional energy at a certain temperature [11]. This
allows them to play important roles in improving energy storage cost and balancing the
mismatch between heating supply and demand [12]. The PCMs used in special fields
should have certain thermophysical properties. For instant requirement such as building
heating, the PCMs should have better thermal conductivities to get quick response, and
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the phase change temperature of the PCMs should be between 40 and 90 ◦C. PCMs include
organic and inorganic materials [13]. The organic PCMs include fatty acids and paraffin
wax, most of them have relatively stable chemical properties. However, these organic
PCMs are always expensive and burn easily, and present poor thermal conductivity. The
inorganic PCMs usually include salts, salt hydrates, and eutectic. Unlike organic materials,
inorganic compounds are generally cheap and nonflammable, and have better thermal
conductivity performance and higher density, all of these are helpful to obtain high heat
storage performance. However, so far, most of the PCM used in buildings are organic
materials. Inorganic PCMs lack application due to the problems such as supercooling and
unstable circulation caused by phase separation [14]. Supercooling brings extra cooling
capacity to release latent heat, and phase separation may lead to the failure of inorganic
hydrate to maintain its phase change characteristics in long-term thermal cycle. Because the
temperature of building heating is usually below 100 ◦C, it is valuable to study hydrated
salt PCMs. Through comparison and selection, magnesium nitrate hexahydrate (MNH)
with phase change temperature close to 89 ◦C and latent heat about 162 J/g is more suitable
for this temperature range, and it has relatively higher chemical stability, lower corrosivity,
and better economy. There are also cycle stability and supercooling problems in pure
MNH. In order to solve the supercooling problem of pure MNH, Lane et al. [15] selected a
variety of isomorphic additives as candidate nucleating agents, and freezing experiments
show that the addition of 0.5 wt% sulfate hydrate can greatly inhibit the supercooling
of pure MNH. Wang H et al. [16] proposed to prepare composite PCMs by combining
photo-thermal materials. Solar-driven composite PCMs can absorb photons and convert
them into thermal energy, most of which are stored in PCMs in the form of latent heat.
The driving energy of PCMs comes from solar energy or other heat sources. First, a new
solar-driven composite PCM containing MNH, carboxymethyl cellulose, and graphene was
prepared, and its absorption capacity and photo to heat storage properties were measured
by full spectrum system. Compared with pure MNH, the adsorption capacity of graphene
composites increased from 46.54% to 79.12%. The photo to heat conversion and storage
efficiency of composite PCMs can reach 69.73%, while pure MNH is not enough to absorb a
large amount of latent heat because of its low absorption capacity. The thermal conductivity
of the composite PCM with 5% graphene increased by 191.18%.

Zhang MH et al. [17] systematically studied the kinetic characteristics and its behavior
of multi-step thermal decomposition of MNH. The results show that the pyrolysis of MNH
is a complex multi-step reaction. It includes three reaction processes. The first two reaction
processes are characterized by the precipitation of H2O, while the third reaction process
is characterized by the precipitation of NO2. The order of the three processes is diffusion,
orderly nucleation, and growth mechanism. Neeraj et al. [18] experimentally studied the
effects of carbon materials of different sizes and shapes on the thermophysical properties
of MNH. The experimental results show that the thermal conductivity of MNH can be
increased by 100% by adding 0.5 wt.% carbon spheres. The results of differential scanning
calorimetry show that the addition of carbon material improves the phase change and
reduces the supercooling effect without affecting the latent heat capacity of the material.
Honcova et al. [19] tried to reduce the supercooling of pure MNH by adding some additives,
the mass fractions is from 0.5 to 2%. DSC results show that Mg (OH)2 is very effective
which can reduce the supercooling of pure MNH by about 90%. Honcova P. et al. [20]
carried out a study on the thermal stability of MNH by adding carbon nanomaterials. The
results show that graphite and graphene provide the highest energy, and the supercooling
inhibition decreases from about 30 K to 2.2 K in 50 cycles. The addition of 3% graphite and
3% graphene can significantly increase 9% and 15%, respectively. Nagano et al. [21] also
studied the corrosivity of MNH to metals such as aluminum and steel. The experimental
results show that aluminum has good corrosion resistance to MNH, but carbon steel is not
suitable. The experimental results show that the aluminum container can maintain the
storage performance of MNH and its modified composites even after 1000 charge–discharge
cycles. Li TX et al. [22–24] developed a modified MNH composite containing a certain
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amount of nucleating agent for low-cost energy storage applications at medium and low
temperatures. The results show that the supercooling of the composites can be maintained
at about 2 K during solidification. So far, the research on the thermophysical properties
modification and cycle performance evaluation of MNH including the modified composites
with MNH as the main material all basically proved the applicability of MNH in medium
and low temperature energy storage. However, for the large area application potential
of MNH, such as industrial waste heat recovery and the use of “peak valley electricity
price” for thermal regulation of electric building heating, there still are uncertainties. At
present, the research on thermal design and performance evaluation of actual scale storage
equipment using this material is quite few. In addition, some important results obtained
in previous studies, such as the theoretical heat storage capacity and supercooling of
materials, heat charging and heat discharging performance, need to be further analyzed
and evaluated in practical application. In this work, the main thermal properties and
supercooling stability of the modified MNH named as MNH90 were characterized. After
confirming that the material can be recycled, we designed and manufactured a small latent
heat storage device for the phase change material, and tested the charging and discharging
performance of the energy storage device under certain working conditions with the electric
boiler as the heat source and the cold water tank as the cold source. Some suggestions
for thermal design and operation of the equipment are also put forward in the end of this
work. The purpose of this paper is to prove the potential of MNH90 in the field of medium
and low temperature heat storage and building heating.

2. Experimental Set Up
2.1. Phase Change Material

The thermal–physical properties of the MNH90 include latent heat, melting point
and specific heat were measured by using a differential scanning calorimeter (DSC214,
NETZSCH-Gerätebau GmbH). Figure 1 shows the specific heat of phase change material
MNH90. The mass of sample analyzed here is about 20.75 mg. Concavus aluminum
crucibles were used to fix samples in the DSC. The operating temperature range for
these experiments was from 20 to 120 ◦C, the heating rate of the measurement was set to
1 K/min, and the flow rate of purge nitrogen and protective nitrogen is set at 40 mL/min
and 60 mL/min, respectively. Sapphire is taken as the standard sample, and its mass is
20.75 mg. It can be seen from the results that the specific heat of MNH90 is 1.6 J/(g·K) at
20 ◦C. The specific heat increases slowly with the increase of working temperature. The
specific heat reaches 4.1 J/(g·K) at 120 ◦C.
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The mass of MNH90 sample to be analyzed for latent heat is about 16.51 mg. Heat
the sample from 20 ◦C to 110 ◦C and then cool it to 20 ◦C, the heating rate was set to
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1 K/min, and the flow rate of purge nitrogen and protective nitrogen is set at 40 mL/min
and 60 mL/min, respectively. Figure 2 reveals that in the heating stage, MNH90 has two
endothermic peaks corresponding to 74.4 ◦C and 94.3 ◦C. The melting point corresponding
to the larger peak is around 91.8 ◦C, so the melting point of the material is 92 ◦C, the
latent heat is about 151.3 J/g, and in the cooling stage, the solidification temperature of
the material is about 68 ◦C. Compared with pure MNH, due to the addition of 0.3 wt%
nanoparticles and 2 wt% additive A, the supercooling degree and the stability of charging
and discharging of MNH90 have been greatly improved, and the density, thermal con-
ductivity, and specific heat of MNH90 are also higher than pure MNH. However, these
nanoparticles and additive A do not have the ability to store latent heat in this operating
temperature range, resulting in the latent heat of MNH90 to decrease slightly than that of
pure MNH. According to the results, the MNH90 material can be used for heat storage
and building heating system, which can meet the user’s demand of 60 ◦C heating/hot
water consumption. It can be estimated that the heat storage density of MNH90 is about
420 MJ/m3, which is about 2.5 times than that of water, assuming the heat storage working
temperature range is 40 ◦C. The thermal properties for MNH and MNH90 are provided
in Table 1.
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Table 1. Thermal properties for MNH and MNH90.

Material Tm
(◦C)

∆Hm
(J/g)

ρ

(g/m)
CP

[J/(gial)]
λ

[W/(mial)]

Pure MNH 89.9 162.8 1.636 1.8 0.67
MNH90 91.8 151.3 1.886 2.2 0.77

2.2. Heat Storage Cycle Experimental Device

In order to test the feasibility of MNH90 for heat storage, a small-scale heat storage
unit was designed and manufactured. Figure 3 shows the heat storage device has two
groups of stainless-steel (304 SS) coils as heat exchanger, the inner side of heat exchanger
coils is water and the outer side is phase change material. The heat exchanger has 2 header
pipes, 2 serpentine branch-pipe groups (20 layers) and the length of the two water channels
is equal. The total mass of MNH90 is 700 kg, and it fills 92% of the space between the inside
of the heat storage tank and the outside of the pipeline. The outside surface of the heat
storage tank is a layer of rock wool thermal insulation with an average thickness of 100 mm
and an external steel sheets shell. The overall size of the heat storage device is 1788 mm
(length) × 220 mm (width) × 1776 mm high. The designed heat storage capacity of the
heat storage device is 70 kWh, and its designed working temperature range is 20–100 ◦C,
which is mainly aimed at the working temperature of building heating. The heat storage
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system is manufactured, assembled, and debugged in Henan Energy Storage Technology
Co., Ltd. Cc (Pingdingshan, China).
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Figure 3. Heat storage device for MNH90 test: (a) plane section diagram, (b) vertical view, and (c)
internal structure of heat storage.

2.3. Testing System and Its Heat Performance Test

A testing system was built to evaluate the charge and discharge capacity and cycling
efficiency of MNH90. Figure 4a shows the system employs a hot water tank with 10 kW
electric heater and a cold water tank with cooling coil to provide constant inlet temperature
for the heat storage device. The heat transfer fluid for the heat storage device is water, and
it was driven by a centrifugal water pump with a rated mass flowrate of 453 kg/h. The flow
rate of water for heating or cooling is measured by an electromagnetic flowmeter. Total
of 11 temperature measuring points, including the mean temperature of the water inlet
(Tin) and water outlet (Tout), and the temperature of the MNH90 in the heat storage tank
(between the two groups of coils, and the distance from the top of the tank inner surface
are 498 mm, 1138 mm and 1618 mm) are arranged to present the temperature in charging
and discharging. Figure 4b presents the full view of the experiment system. It is needed to
mention that the current design of the heat storage device is a modular design. By means of
series and parallel multiple such modules, it is easy to realize the amplification application
of the phase change heat storage unit. The ambient temperature around the experimental
system ranges from 23 ◦C to 25 ◦C.
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Figure 4. Performance test system of heat storage device: (a) schematic the experimental system and
(b) the full view.

The detailed system operation strategy and test steps of this experiment are as follows:
During the charging process, the electric heater is set to a constant thermal output with a
given maximum outlet water temperature of 99.5 ± 0.5 ◦C. When the average difference
of mean water temperature between water inlet and water outlet drops below 3.0 ◦C,
heat charging stops. During heat discharging, the electric heater is shut down and the
cooling water from cold water tank with the temperature of 20.5 ± 0.5 ◦C flows through
the heat storage tank. When the temperature of outlet water drops below the given cut-off
temperature of 38.5 ± 0.5 ◦C, heat discharging is terminated. In this experiment, data
acquisition instrument (34970A, Keysight) is used for automatic data acquisition, and the
data acquisition interval is 10 s.

2.4. Performance Evaluation

The heat storage capacity of MNH90 can be obtained by this equation [25]:

Q = m
∫ Tmax

Tmin

cP,PCMdT (1)
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where m is the total mass of MNH90, Tmin and Tmax are the start and end temperature of
the MNH90 during charging process, and cP is the specific heat capacity of the MNH90.

The operating thermal power of the heat storage unit named as P can be calculated by
Equation (2), Tin is the mean temperature of water inlet, Tout is the mean temperature of
water outlet,

.
m is the mass flow rate of water, cP,water is the temperature-dependent specific

heat capacity (using the mean temperature of Tin and Tout) of water.

P =
.

mcP,water(Tin − Tout) (2)

The charging and discharging capacity of the heat storage device can be listed by the
transient operating thermal power calculated by Equation (3): QC =

∫ t+tc
t Pdt

QDC =
∫ t+tDC

t Pdt
(3)

where tC and tDC are the time in heat charging and heat discharging procession, respectively.
The cycling efficiency of charging and discharging (also be defined as the thermal efficiency)
of the heat storage unit, which can show the energy storage and reuse efficiency of the heat
storage device, can be defined as the ratio between QDC and QC:

η =
QDC
QC

× 100% (4)

The storage capacity factor f which reflects the utilization of the heat storage capacity
of the phase change heat storage device can be defined as the ratio of QC and Q:

f =
QC
Q

× 100% (5)

The heat loss of the phase change heat storage device can be calculated by Equation (6):

Qloss =
Asur f (TPCM − Tamb)

1
h + δins

λins

(6)

where TPCM is the mean temperature of the MNH90 within the heat storage tank. Tamb
is the room temperature. h is the coefficient of natural convective heat transfer, assigned
to 10 W/(m2·K) in this work. δins is the thickness of the thermal insulation layer and the
thermal conductivity λins is 0.05 W/(m·K). Asurf is the surface area of the phase change
heat storage device.

2.5. Uncertainty Analysis of the Research Results

The measurement ranges and measurement accuracy of the main detectors and in-
struments used in this research are listed in Table 2. The aluminum crucible which is
used in the DSC analyzer can work above 300 ◦C. It is calibrated with indium at the
heating rate of 10 K/min through the standard calibration procedure. The uncertainty for
latent heat measurements is around 0.34%, and the uncertainty for melting temperature is
around 0.14%. The Hot Disk analyzer is only suitable for experiments at room temperature.
The measurement accuracy of electromagnetic flowmeter comes from the manufacturer’s
manual. The temperature sensors are A-grade PT-100 thermal resistance with external
armors for inlet and outlet water temperature measurements, and K-type thermocouples
for MNH90 temperature tests in the heat storage tank.
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Table 2. Information of the main detectors and instruments.

Instruments Measurement Ranges Accuracy

DSC214

Room temperature to 750 ◦C
Heating rate: 0.1 ◦C/min to
50 ◦C/min
Cooling rate:
0.1 ◦C/min to 2 ◦C/min (<30 ◦C)
0.1 ◦C/min to 10 ◦C/min (≥30 ◦C)

±0.1 ◦C for temperature
sensor
±2% for calorimeter

Hot Disk TPS2500S 0.005 W/m·K to 500 W/m·K ±5%

K type thermocouple −40 ◦C to 375 ◦C
375 ◦C to 1000 ◦C

±1.5 ◦C
±0.004|t|

PT-100 −100–400 ◦C ±(0.15 + 0.002|t|)
Flowmeter 1 m3/h to 12 m3/h ±0.5%

Through the linear regression calculation of the temperature difference between the
water temperature measured at the typical temperature point of the high-precision constant
temperature water bath (the temperature control accuracy is ±0.01 ◦C), the measurement
error introduced by the external armor and cable of the sensors were corrected by 50–120 ◦C
(the temperature interval is 10 ◦C). The uncertainty of key parameters of instruments and
equipment involved in this study can be estimated according to the basic uncertainty in
the list.

3. Results and Discussion

Figure 5 demonstrates the temperature evolution of key measuring points of the phase
change heat storage device. About 800 cycles of heat charging and heat discharging were
performed. Figure 5a shows the temperature variations of water inlet and water outlet,
the filled phase change material MNH90 during the first heat charging and discharging
operation. Figure 5b illustrates the measurement results after 800 cycles. The temperature
difference between the mean temperature of MNH90 and the mean temperature of outlet
water is also showed in Figure 5. It can be found that the entire charge and discharge
cycle can be divided into six stages according to the temperature evolution of water and
MNH90. Stages I, II, and III are charging phases and detected by whether the temperature
of outlet water reaches the desired charging temperature, while stages IV, V, and VI are
discharging phases and marked by whether the temperature of outlet water reaches the
desired charging temperature. Stage I is sensible heat storage. MNH90 in this stage is
pure solid, with the continuous heating by high-temperature inlet water, solid MNH90 and
outlet water temperature increase rapidly, and the outlet water temperature is about 2 to
4 degrees higher than that of MNH90. When the MNH90 working temperature exceeds
90 ◦C, the trend of temperature change slows down, and stage II can be regarded as the
latent heat storage stage as the change of temperature tends to be gentle. In stage III, the
water outlet temperature and MNH90 have obvious temperature jump, indicating that
MNH90 is in the stage of sensible heat storage of pure liquid, further heating the results in a
significant temperature rise. Stage IV is a transition stage, where the heat charging process
ends and the heat discharging process starts. At a specific time, the outlet temperature of
water is equal to the MNH90 temperature. Stage V is the phase change process in heat
discharging, and MNH90 changes from liquid phase to solid phase and releases latent heat.
In stage VI, MNH90 is already in the solid, and depends on the solid heat conduction to
exchange heat with the water in the coil.
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Figure 5. Temperature evolution of key measuring points of the phase change heat storage device (a) within
the first typical charge–discharge operation (b) within the 800th typical charge–discharge operation.

Discharging performance and heat storage efficiency have always been the most
concerned problems in the designing of a heat storage device. Figure 6 shows the dis-
charging performance and heat storage efficiency of the small scale latent heat storage
unit during the 800 cycles. The high efficiency of heat storage benefits from the thick
insulation layer and rapid charging and discharging. However, it can still be seen that
after 800 cycles of charging and discharging, the heat storage capacity of the heat storage
device still has a slight decline, and it drops from 70.4 kWh to 69.1 kWh, the heat storage
performance decreases about 1.8%. When the output temperature is customized according
to different application scenarios, this phase change heat storage device with the maximum
heat storage temperature of 110 ◦C is still much higher than that of atmospheric water
storage device.
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4. Conclusions

Using the salt hydrates as PCM is a promising method to replace the traditional at-
mospheric hot water heat storage. In this paper, the feasibility of a new developed phase
change material named MNH90 is analyzed by the characterization of main thermophysical
parameters and the experimental cycling performance study of heat charging and discharging.
The main research conclusions received through the experiment can be listed as:

(1) The specific heat capacity of MNH90 at 20 ◦C is 1.6 J/g·K, and it increases slowly
with the increase of temperature. When the temperature rises to 120 ◦C, the specific
heat capacity reaches 4.1 J/g·K.

(2) The melting point of the material is 91.8 ◦C, the latent heat of phase change is 151.3 J/g,
and in the cooling stage, the solidification temperature of the material is about 68 ◦C.

(3) The heat storage density of MNH90 is about 420 MJ/m3, which is about 2.5 times of
that of water, assuming the temperature difference is 40 ◦C.

(4) With thick insulation layer, quick heat charging and heat discharging control method,
the heat storage system can get a higher performance. The cycling test shows that the
heat storage capacity decreases with the increase of cycle times, and the heat storage
performance decreases about 1.8% after 800 operation cycles.

In conclusion, this paper proves the main thermophysical properties of MNH90 and
its feasibility as a low temperature heat storage medium by experiments, and reveals the
operation characteristics of MNH90 phase change heat storage equipment, which can
provide some valuable information for the industrialization of this technology.
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