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Abstract: In a competitive electricity market, both electricity retailers and generators predict future
prices and volumes and execute electricity delivery contracts through power exchange. In such
circumstances, they may suffer from uncertainties caused by fluctuations in spot prices and future
demand due to their high volatility. In this study, we develop a unified approach using derivatives
and forwards on the spot electricity price and weather data to mitigate the cashflow fluctuation
for power utilities. We aim to clarify the applicability of our proposed methods and provide a new
and useful perspective on hedging schemes involving various electricity utilities, such as power
retailers, solar photovoltaic (PV) generators, and thermal generators. Moreover, we analyze the
risk of risk takers (such as the insurance companies in this study) in the derivatives market. In
addition, we perform empirical simulations to measure out-of-sample hedging effects on their
cashflow management using actual data in Japan.

Keywords: cashflow management of electricity businesses; electricity derivatives and forwards;
retailers and power producers; solar power and thermal energy; optimal hedging using nonparametric
techniques; empirical simulations

1. Introduction

In electricity markets, the transactions of electricity delivery contracts between power
retailers and generators are based on predictions of demand and supply that reflect the
actual consumption of the end-users as well as the renewable power generation in the
future. For example, the demand volume for power retailers largely depends on the future
temperature, whereas the power output from solar photovoltaic (PV) and other renewable
energy generation fluctuates over time according to the future weather conditions. In
addition, energy prices, such as oil and natural gas, affect the electricity price as well as
the supply and demand predictions, and so the spot electricity price is quite volatile in a
competitive power exchange market. In such a situation, power retailers and generators
suffer from the risk of simultaneous price and volume fluctuations, leading to large volatil-
ity in their cashflows, and adequate strategies for reducing the cashflow fluctuations are
required for power utilities. Therefore, financial instruments, including derivatives and
forwards on spot electricity prices and weather indexes, are considered effective tools [1,2].

There are several previous studies on electricity derivatives and weather derivatives,
and various methods that have been proposed, especially in the context of pricing. For
electricity derivatives, there is a relatively wide variety of studies on the pricing of option-
type derivatives (e.g., [3–6]), which are systematically reviewed in [1]. Other characteristic-
related works include, for example, Oum et al. [7], who proposed an expected utility-
based approach for constructing electricity derivatives with arbitrary nonlinear payoff
functions. Recently, there have been pricing methods for electricity derivatives with various
granularities and payoffs, such as “cap/floor futures”, where the underlying asset is the
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hourly intraday electricity price, traded on a weekly basis [8], and “day-ahead cap futures”
with the day-ahead price as the underlying asset, traded on a daily basis [9].

As for weather derivatives, various studies have been carried out, mainly on pricing
methods. There are a wide range of indices that can be used as underlying assets for
weather derivatives, such as temperature [10–20], wind [21–24], solar radiation [25], and
rainfall [26]; thus, the applicability of weather derivatives has been demonstrated by many
researchers. Recently, the research on the investigation of hedging effects has gained
attention as well. As an example of such previous studies, Bhattacharya et al. [27] have
illustrated the hedging effect of weather derivatives (using heating degree days (HDDs)
and cooling degree days (CDDs)) on the profit fluctuations of a solar PV generator using a
data-driven approach.

Instead of applying standard derivatives, unique derivatives based on nonparametric
regression techniques have been proposed to further improve the hedging effectiveness [28–34].
The approach of those studies is to estimate the nonlinear functions of the optimal payoffs
and/or the optimal contract volumes of the derivatives using generalized additive models
(GAMs [35,36]). That is, those studies focus on, for example, the fact that price volatility
can lead to losses for retail businesses that sell electricity at fixed prices [31] and clarify the
importance and effectiveness of strategies to effectively suppress fluctuations in cash flows.
Among them, our recent study [33] has demonstrated that derivatives based on temperature
and solar radiation are highly effective in hedging the risk of revenue fluctuations for
electricity retailers and solar PV generators, and a more recent study [34] has focused on
the methodological refinement of the choice of spline basis functions.

In this study, we systematically organize the theoretical aspects of our previous stud-
ies [33,34] to develop a unified approach using electricity and weather derivatives/forwards
and demonstrate a comprehensive analysis of various types of players. We aim to not only
to clarify the applicability of our proposed methods, but also to provide a new and useful
perspective on derivative trading schemes involving different electricity utilities and insur-
ance companies. In our empirical analysis, we assume three types of players—electricity
retailers, solar PV generators, and thermal power generators—and measure the hedging
effects on their cashflow management using electricity and weather derivatives (as well as
forward contracts). What is unique about this study is that we deal with “forwards” with
linear payoffs as well as “derivatives” with nonlinear payoffs for three different types of
electricity businesses and compare the hedging effects (and hedging errors) of both types
of hedge instruments from various perspectives. In addition, we apply the methodology of
previous studies on daily granular derivative contracts [33,34] to derivatives with hourly
granularity payoffs and show that empirical hedging effects are sufficiently high using out-
of-sample data despite the high volatility of hourly volume and price data. In this way, this
study provides valuable insights into the applicability of our method for high-granularity
hedging transactions for distributed power sources and peer-to-peer electricity markets,
which are expected to increase soon. More specifically, with the massive introduction
of distributed power sources, the number of electricity traders will diversify, and very
small businesses and (in some cases) individuals may engage in electricity trading. For
such traders, the need to control fine-grained cashflow fluctuation risk is expected to be
particularly large, and the hedging method in this study is expected to provide an effective
solution to such a need.

Furthermore, the new perspective provided by this study is not limited to the hedging
effect of electric utilities as hedgers, but also applies to the underwriting (residual) risk of
their counter parties, including insurance companies, as risk takers. That is, our previous
studies [33,34] focus on the perspective of improving the hedging effect of the electric
utilities (hedgers), while the reality of transactions from the risk taker’s perspective (i.e.,
whether there is a risk taker as a matter of reality, or what circumstances the risks are more
likely to be accepted) remains an open question. In this study, we explicitly introduce
counter parties of derivative and forward transactions, such as insurance companies, who
can profit if a commission is purchased for every transaction. Moreover, their risks may
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be averaged out by executing derivative contracts with power retailers and generators
simultaneously. This is because their cash flow directions may be different, or opposite for
the electricity purchase, and the payoffs of derivatives may be canceled out.

Based on the above discussions, this study reveals an interesting empirical result that
insurance companies (risk takers) can significantly reduce risk by simultaneously executing
individual electricity/weather forwards/derivatives with both generators and retailers,
compared to the aggregate risk for separate transactions (i.e., when risk underwriting
transactions with both parties are performed independently, or when risks are underwritten
by different insurance companies). In other words, by taking a comprehensive view of the
entire electricity trading market, including the sellers and buyers of electricity (actuals) and
derivatives, and the intermediaries of derivative contracts, this study presents a solution to
the problem of improving the efficiency of the entire market trading scheme, including the
reality of risk underwriting transactions, which has not been solved by previous studies.
Thus, this study provides an ambitious approach to obtain beneficial suggestions on not
only the applicability of the methodology but also the further extension of the market
model for the practical use of the methodology.

This paper is organized as follows: in Section 2, we introduce the minimum variance
hedging problems of cashflow fluctuations for three types of electricity utility players and
describe the overview for the market, including the derivative transactions; in Section 3,
we construct hedging schemes based on GAMs for given observation data and describe
their estimation and test procedures in detail; in Section 4, we perform empirical hedging
simulations based on actual data and estimate the optimal payoff functions/coefficients of
derivatives/forwards, and conduct an extensive empirical analysis including the hedging
effects and accuracy; in Section 5, we illustrate the empirical risk reduction for insurance
companies through the simultaneous transactions of derivatives; finally, in Section 6 we
provide a comprehensive discussion based on the results of our analysis.

2. Minimum Variance Hedging Problems of Cashflow Fluctuations

In liberalized electricity markets, it is common for electricity retailing companies
to purchase spot electricity through the central power exchange and deliver it to their
consumers (or demanders). On the other hand, power generation companies place sales
orders on power exchange and produce electricity based on the executed volume. In this
situation, their profit or loss may depend on the cashflows defined by the product of spot
electricity price and volume. In this section, we introduce the minimum variance hedging
problems to mitigate cashflow fluctuations for power retailers and generators.

2.1. Minimum Variance Hedging Problem for Power Retailers

Assume that there is a central power exchange that allows power retailers to procure
spot electricity every day at every hour. Each power retailer predicts the future demand
for end users (i.e., consumers) and places a buy order on the power exchange. Let St be the
spot electricity price that delivers a fixed amount of electricity at time t for a certain time
interval. The cashflow of this transaction is determined by the product of the executed
volume Vt and the spot price St. Since the retailer needs to equalize the demand and supply
every moment, the volume Vt is required to match the electricity demand of end-users; that
is, Vt ≡ Vdemand

t , where Vdemand
t stands for the total demand and the notation a ≡ b is used

to denote that a is defined to be b. Note that St and Vt are both volatile, and the cashflow
determined by the product is extremely volatile; that is, the cashflow volatility, denoted by
its variance, Var[VtSt], is supposed to be quite large. In this study, we aim to reduce the risk
of the cashflow fluctuation by using financial instruments such as derivatives or forwards.

We will now formulate the problem. Assume that there exist underlying assets or
indexes observed at time t ∈ {t0, . . . , t1}, where t0, . . . , t1 are contract periods of interest
corresponding to electricity delivery. Note that potential candidates for such variables are
weather indexes for weather derivatives or spot price St for electricity derivatives. Let Wt
be the value of weather indexes observed at time t. Note that Wt may be a multidimensional
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vector; that is, multivariate weather derivatives/forwards can be defined using vector
notation. In addition, we suppose that these derivative contracts are cash settlement
contracts without risk premiums; that is, the introduction of derivative or forward contracts
will not change the expected total cashflow (or, equivalently, the mean value of total
cashflow). A general formulation of variance minimization is given as follows:

Find optimal derivative contracts on St and Wt to minimize

Var[VtSt − payo f f (St, Wt)]

s.t. payo f f (St, Wt) = 0
(1)

where Var[·] stands for variance and a is the mean value (or expected value) of a.
In (1), payo f f (St, Wt) is defined by the payoff functions of the underlying variables,

(St, Wt), which may depend on time t. Moreover, because the volume Vt reflects consumer
demand, which largely depends on temperature, we select Wt ≡ Tt, where Tt is the value
of temperature at time t in the demand area. In this study, we focus on synthesizing
separate payoff functions only; that is, payo f f (St, Wt) is the sum of single variate functions
satisfying

payo f f (St, Wt) f (St) + g(Wt) (2)

In the case of forward contracts, the payoff functions are supposed to be linear on St
and Wt but we assume that the coefficients depend on time t as follows:

payo f f (St, Wt)δ(t)
{

St − FS
t

}
+ γ(t)

{
Wt − FW

t

}
(3)

where δ(t) and γ(t) are the numbers of forward contracts, and FS
t and FW

t are the forward
prices of spot electricity and weather indexes, respectively. Note that forward prices need
to be specified for computing forward cashflows, but as far as hedge errors are concerned,
as in our analysis, it is not necessarily to specify the forward prices explicitly. In our
formulation using GAM, the forward prices are incorporated in the time trend term, which
will be estimated separately.

In this study, we construct optimal payoff functions or optimal positions of forward
contracts based on the historical data of variables in (1) using statistical estimation tech-
niques. To this end, we split the data period into in-sample parameter estimation period and
out-of-sample performance evaluation period; that is, the entire data period t ∈ {0, . . . , t1}
will be split into t ∈ {0, . . . , t0 − 1} and t ∈ {t0, . . . , t1}, respectively. Note that when sta-
tistical estimation techniques are applied for problem (1), Var[·] and the overline notation
(e.g., St) may be interpreted as sample variance and mean, respectively.

2.2. Minimum Variance Hedging Problem for Solar PV Generators

The minimum variance hedging problem (1) defined in the previous subsection is for
power retailers, but in fact it can be said that it is the hedging problem of a load aggregator
who procures the total demand on behalf of a group of power retailers in the same area.
There, individual retailers place buy orders to the load aggregator which compiles all
orders to execute them in the power exchange market. In this case, the prediction errors of
consumer demand for individual retailers may be averaged out such that the gap between
the ordered volume and actual consumption decreases. Otherwise, retailers may suffer
from the imbalance risk as well, and we may need other instruments for the hedge such as
prediction error derivatives [31].

A similar argument may be applied for a group of solar power generators, where the
percentage of solar power generation is increasing rapidly but the power output largely
depends on solar radiation with uncertainty. Here, we consider an aggregator of solar PV
generators in the same area and assume that the aggregator complies with all the sales
orders from individual PV generators. Then, the total prediction error may be averaged
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out and the aggregator may focus on the risks of cashflow fluctuation. For the solar PV
aggregator, the cashflow at each period is defined by the product of spot price St and the
total volume (corresponding to the total PV output), and a similar hedging problem may
be formulated using (1), in which the volume Vt is now defined by the total PV output as
Vt ≡ Vsolar

t . In this case, an appropriate variable associated with Vsolar
t is the solar radiation;

thus, we select Wt ≡ Rt, where Rt is the value of the solar radiation index at time t in the
same area.

2.3. Minimum Variance Hedging Problem for Thermal Power Generators

Although we used the same notation to define the cashflows for the load aggregator
and the solar PV aggregator, the directions of cashflows are opposite. That is, for the load
aggregator, StVt provides the procurement cost corresponding to the cash outflow, whereas
for the PV aggregator, it provides the sales revenue corresponding to the cash inflow. In
fact, the load and the PV aggregators may become counterparties to each other; that is,
the load aggregator can purchase the PV output from the PV aggregator and deliver it to
end-users through the power transmission and distribution company.

However, direct transactions between retailers and solar PV generators are generally
difficult because demand and supply volumes are volatile and change over time. Hence,
we need to regulate the supply generations of thermal power in the electricity market. In
this study, we introduce thermal generators and consider their hedging problem.

To simplify the discussion, assume that there is a supply aggregator that compiles all
the generation stacks from thermal generators. We define the minimum variance hedging
problem for the supply aggregator using (1), where Vt represents the total supply volume
of thermal generators; that is, Vt ≡ Vthermal

t . In the electricity market, the volume of thermal
generators Vthermal

t should be balanced to match consumers’ demand minus the renewable
energy output. Although renewable energy power includes other resources such as wind
and biomass, we only focus on the effect of solar power. This is because, in the Japanese
electricity market tested in this study, the ratio of solar power introduction is much higher
than other renewable power resources, except for hydro energy. In the minimum variance
hedging problem for thermal generators, we set Vt ≡ Vthermal

t in (1) and selected Wt as the
temperature and solar radiation; that is, Wt ≡ [Tt, Rt]

T . The payoffs for the derivatives
and forwards are defined as

payo f f (St, Wt) = f (St) + g(Tt) + h(Rt) (4)

and
payo f f (St, Wt) = δ(t)

{
St − FS

t

}
+ γT(t)

{
Wt − FW

t

}
(5)

respectively, where h is another payoff function of Rt, and FW
t and γ(t) in (3) are now

column vectors.

2.4. Electricity Transaction Market Including Derivatives

In summary, we consider the following three types of hedging problems:

1. Power retailers’ hedge. Vt ≡ Vdemand
t : Total demand, Wt ≡ Tt: Temperature;

2. Solar PV generators’ hedge. Vt ≡ Vsolar
t : Total PV generation, Wt ≡ Rt: Solar radiation;

3. Thermal generators’ hedge. Vt ≡ Vthermal
t : Total thermal power generation,

Wt ≡ [Tt, Rt]
T : Temperature and solar radiation.

Figure 1 depicts the electricity and derivatives transactions considered in this study.
We assume that there is a derivatives market that enables power generators and retailers to
execute derivative contracts with arbitrary payoff functions. The power generators and
retailers first solve the hedging problems with an appropriate choice of variables, as shown
in items 1–3. Then, find a counterparty who agrees with the transaction to execute the
derivative contracts. Potential candidates of such counterparties are insurance companies,
and we assume that insurance companies can execute the electricity and weather derivative
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transactions with any payoff functions. Note that, since the net payoffs of derivatives
are supposed to be zero on average, the insurance companies can make a profit if a
small commission or transaction fee is purchased for each transaction. Furthermore,
since the insurance companies can make transactions with power retailers and generators
simultaneously, who may cause cashflows in opposite directions, the insurance companies’
risks may be reduced (see Section 5).

Figure 1. Transaction model of electricity and derivatives.

In the case of the forward contracts in (3), it may be possible to introduce market
makers (e.g., insurance companies or financial institutions) who provide fair bid and ask
prices and accept sell and buy orders from power generators and retailers. Note that market
makers can make a profit from the bid–ask spread, whose sizes are limited by regulations
in the market. If the numbers of short and long positions are the same for the same product,
the market makers do not have any risks. Therefore, the balance between the long and
short positions is important for estimating the market maker’s risk. In this study, we will
not analyze such balance risk between long and short positions for forward contracts, but
only demonstrate the risk reduction of insurance companies by simultaneously making
transactions of derivative contracts with power retailers and generators. A detailed analysis
of the balance risk for forward transactions will be left for future work.

Note that, since retailers will typically have already made electricity delivery contracts
for any consumed volume over longer durations, the cashflow risk with high volatility
in some hours would be a serious concern, as discussed in [9]. In addition, solar power
generators may be concerned about a significant drop or surplus in output because of
the weather, and so may suffer from unexpected high or low prices as well as volume
fluctuation for the power output. Therefore, a selective hedge against the price and volume
fluctuation in particular hours would be desirable. Considering the above, we will represent
hourly and daily periods using different indexes and define the variables accordingly after
this section. In that case, the subscript t will be used for a day index whereas m will be
used for an hour index. For example, the spot price on day t at hour m will be denoted as
St,m in Section 3 and thereafter.

3. Estimation and Test Procedures

In this section, we will explain the statistical estimation models to solve our hedging
problems. Since the basic idea is already explained in our previous literature [28,29,33], we
will briefly summarize our hedging models.

3.1. Variables Used for Hedging Problems

We will express the variables using the day and hour indexes. Let t ∈ {0, . . . , t0 − 1}
be the observation data period on a daily basis and m ∈ {0, . . . , 23} be an hour index.
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Then, the spot price delivering 1 kWh of electricity from hour m (to hour m + 1) on day t is
denoted by St,m. Furthermore, the volume is defined Vt,m, but depending on the situation
we may specify the category of the volume using a superscript such as Vdemand

t,m , Vsolar
t,m

and Vthermal
t,m , respectively, for the total volume of retailers (i.e., consumers’ demand), the

total PV generation, and the total thermal generation. In this study, we construct hedging
models for each m and demonstrate the hedge effects.

For the weather index data Wt,m, we used hourly temperature and solar radiation
data, denoted by Tt,m and Rt,m. Note that the choice of weather index data is differ-
ent for power retailers, solar PV generators, and thermal generators, and is given by
Wt,m = Wretail

t,m ≡ Tt,m,Wt,m = Wsolar
t,m ≡ Rt,m, and Wt,m = Wthermal

t,m ≡ [Tt,m, Rt,m]
T , respec-

tively. In addition, when weather data are available at multiple points in one region, we
compute a local demand weighted average for temperature and an installed capacity of
local PV weighted average for radiation, respectively, and create the temperature and
radiation indexes.

3.2. Minimum Variance Hedging Using Derivatives

Consider the minimum variance hedging problem with the payoff functions of
the derivatives in (2). To find the optimal payoff functions, we apply GAM for each
m ∈ {0, . . . , 23} as follows:

Vt,mSt,m = fm(St,m) + gm(Wt,m) + Calendarm(t) + εt,m (6)

where fm and gm are smoothing spline functions to be estimated in GAM and εt,m is a
residual satisfying zero mean condition, εt,m = 0.

In (6), Calendarm(t) contains day of week, long-term, and seasonal trends as

Calendarm(t) = β1Mont + · · ·+ β6Satt + β7Holidayst + Seasonal(t) + Longterm(t) (7)

where Mont, . . . , Satt, and Holidayst are day of week and holiday dummy variables that
take Mont = 1 if the day of t is Monday or Mont = 0 otherwise, and so on. Seasonal(t)
denotes a yearly cyclical smoothing spline function and reflects the seasonal trend in
Vt,mSt,m, whereas Longterm(t) is a smoothing spline function (e.g., a cubic spline function)
of the day variable t. These functions can be estimated using the day dummy variables.
Note that the coefficients and spline functions in (7) are different by hour m, but we omit
specifying this dependence for brevity. In addition, because the solar power may be
independent of the day of the week and holidays, we assume that βi ≡ 0, ∀i = 1, . . . , 7 for
solar PV generations.

For each m, GAMs can be estimated by minimizing the following penalized residual
sum of squares (PRSS):

PRSS :
N

∑
t=1
{εt,m}2 + J(λ), λ =

[
λ1, . . . , λj

]T ∈ <j (8)

where N is the number of observations for each variable. In (8), the first term is the sum of
squares for residuals, and the second term provides the smoothness constraint on spline
functions with smoothing parameter vector λ ∈ <j, where j is the number of smoothing
spline functions in GAMs, and the larger the λi, the smoother the ith spline function. The
smoothing parameter vector λ needs to be fixed a priori, but an optimal λ may be searched
based on the generalized cross-validation criteria, as shown in [35].

Then, the PRSS is minimized over smoothing spline functions and coefficients given λ
to construct the GAMs.

From (6), we have

Var [Vt,mSt,m − ( fm(St,m) + gm(Wt,m) + Calendarm(t))] = Var[εt,m] (9)
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Hence, minimizing the sample variance of εt,m with smoothing conditions may be
considered as PRSS minimization. Note that we can add the constraints fm(St,m) = 0 and
gm(Wt,m) = 0 when solving the PRSS so that payo f f (St,m, Wt,m) = 0 is satisfied. In this
case, we have Vt,mSt,m − Calendarm(t) = 0, and Calendarm(t) may be considered as the
time trend, such as day, seasonal, and long-term contained in Vt,mSt,m. In practice, the
deterministic term Calendarm(t) may be replicated by buying a bound that pays off the
same amount of Calendarm(t) at the settlement period. Consequently, we conclude that
the minimum variance hedging problem (1) with (2) can be formulated using GAM (6).

3.3. Minimum Variance Hedging Using Forwards

In the previous subsection, we explained that the optimal payoff functions of electricity
and weather derivatives may be found by applying GAM. Here, we show that the minimum
variance hedging problem (1) with (3), in which the payoff is defined by time-dependent
forward positions, may also be formulated using GAM.

Consider the following GAM with cross variables, St,m and Wt,m:

Vt,mSt,m = δm(t)St,m + γm(t)Wt,m + Calendarm(t) + εt,m (10)

where δm and γm are smoothing spline functions to be estimated and εt,m is a residual
satisfying zero mean condition, εt,m = 0. The smoothing spline functions, δm(t) and γm(t),
are given by a yearly cyclical smoothing spline function like Seasonal(t) in (7). Note that in
the case of the solar PV generators hedging problem, a long-term trend (like Longterm(t))
may be added.

In GAM (10), forward prices, FS
t,m and FW

t,m, are not specified explicitly, but we can
show that FS

t,m and FW
t,m may be extracted from Calendarm(t) by decomposing as

Calendarm(t) ≡ −δm(t)FS
t,m − γm(t)FW

t,m + dm(t) (11)

where FS
t,m and FW

t,m are forward prices satisfying δm(t)
{

St − FS
t,m

}
= 0

and γm(t)
{

Wt − FW
t,m

}
= 0, and dm(t) is an additional term that may be calculated by

(11) after FS
t,m and FW

t,m are found. The calculation of FS
t,m and FW

t,m requires solving ad-
ditional regression problems, but as far as hedge errors are concerned, we do not have
to explicitly specify FS

t,m and FW
t,m. Then, we see that minimizing the sample variance of

εt,m with smoothing conditions may be considered as the minimum variance hedging
problem (1) with (3), that is,

Var
[
Vt,mSt,m −

(
δ(t)

{
St,m − FS

t,m

}
+ γ(t)

{
Wt,m − FW

t,m

}
+ dm(t)

)]
= Var[εt,m] (12)

3.4. Empirical Test Procedure

As explained in the end of Section 2.1, our empirical test consists of parameter estima-
tion and performance verification based on in-sample and out-of-sample data, respectively.
Assume that the entire data period is given by t ∈ {1, . . . , t1} in which the hourly data are
also available. Our empirical test procedure is as follows:

Step 1. Given observation data of Vt,m, St,m and Wt,m, split the data period into
t ∈ {1, . . . , t0 − 1} and t ∈ {t0, . . . , t1};

Step 2. For each hourly period m, apply GAM (6) (or GAM (10)) to find optimal smooth
functions, fm and gm (or δm and γm), and calendar trend function, Calendarm;

Step 3. For the optimal smooth functions and Calendarm obtained in Step 2, compute the
out-of-sample hedge errors by

εout
t,mVt,mSt,m − ( fm(St,m) + gm(Wt,m) + Calendarm(t)), t ∈ {t0, . . . , t1}

or εout
t,mVt,mSt,m − (δm(t)St,m + γm(t)Wt,m + Calendarm(t)), t ∈ {t0, . . . , t1}

(13)
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Step 4. For the out-of-sample data of t ∈ {t0, . . . , t1}, evaluate the out-of-sample hedge
performance using the following variance reduction rate (VRR):

Var
[
εout

t,m
]

Var[Vt,mSt,m]
(14)

and the normalized mean absolute error (NMAE),∣∣∣εout
t,m

∣∣∣
|Vt,mSt,m|

(15)

4. Empirical Hedge Simulations

In this section, we conduct empirical simulations of our hedging problems and
demonstrate hedge performance using Japanese electricity market and meteorological
data. (In this study, we estimate GAMs using R 4.0.5 (https://www.R-project.org/, ac-
cessed on 27 October 2021) and the package mgcv [37] (https://cran.r-project.org/web/
packages/mgcv/index.html, accessed on 27 October 2021) to obtain the series of smooth-
ing spline functions, wherein the smoothing parameter is calculated by the generalized
cross-validation criterion. All figures are plotted using MATLAB 2021a (MathWorks, Inc.,
Natick, MA, USA).)

4.1. Data

We use the electricity price, volume, and weather data observed in the Tokyo area,
Japan. The data period is chosen from 1 April 2016 (when the Japanese electricity market
was fully liberalized) to 31 December 2019, in which we set the first three years (from 1
April 2016 to 31 March 2019) as the in-sample estimation period and the remaining 275 days
(from 1 April 2019 to 31 December 2019) was reserved for the out-of-sample performance
evaluation.

The following is the list of data used in our analysis:

1. Electricity price St,m [Yen/kWh]: JEPX spot price in Tokyo area (JEPX Tokyo area
price) delivering 1 kWh of electricity from hours m to m + 1 (downloaded from
http://www.jepx.org/market/index.html, accessed on 27 October 2021); since the
length of delivery is 30 min for JEPX spot prices, we compute the average of two
consecutive prices per hour; for example, we compute the average of 1:00–1:30 p.m.
and 1:30–2:00 p.m. delivery prices for the 1:00–2:00 p.m. price;

2. Volume Vt,m [kWh]: Hourly realized demand and supply data in the Tokyo area, in-
cluding the total demand (Vdemand

t,m ), the total solar power generation (Vsolar
t,m ), and the

total thermal power generation (Vthermal
t,m ) between hours m and m+ 1 on day t (down-

loaded from https://www.tepco.co.jp/forecast/html/area_data-j.html, accessed on
27 October 2021);

3. Temperature Tt,m [◦C]: We use hourly realized temperature data on day t in the
Tokyo area (downloaded from https://www.data.jma.go.jp/gmd/risk/obsdl/, ac-
cessed on 27 October 2021). A temperature index is constructed using the electricity
consumption-based weighted average of nine observation points (we used the yearly
local electricity consumption data in Tokyo area as of the end of March 2016, obtained
from https://www.tepco.co.jp/corporateinfo/illustrated/business/business-scale-
area-j.html, accessed on 27 October 2021);

4. Solar radiation Rt,m [MJ/m2]: We use hourly realized solar radiation data on day t in
the Tokyo area (downloaded from https://www.data.jma.go.jp/gmd/risk/obsdl/,
accessed on 27 October 2021). A solar radiation index is constructed using an installed
capacity of local PV weighted average of seven observation points (we used the
installation capacity data in Tokyo area as of the end of March 2019 (correspond-

https://www.R-project.org/
https://cran.r-project.org/web/packages/mgcv/index.html
https://cran.r-project.org/web/packages/mgcv/index.html
http://www.jepx.org/market/index.html
http://www.jepx.org/market/index.html
https://www.tepco.co.jp/forecast/html/area_data-j.html
https://www.data.jma.go.jp/gmd/risk/obsdl/
https://www.tepco.co.jp/corporateinfo/illustrated/business/business-scale-area-j.html
https://www.tepco.co.jp/corporateinfo/illustrated/business/business-scale-area-j.html
https://www.data.jma.go.jp/gmd/risk/obsdl/
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ing to the end of in-sample period), obtained from https://www.fit-portal.go.jp/
PublicInfoSummary, accessed on 27 October 2021).

Figure 2 shows the daily electricity price in the entire period, where the blue line is
the fluctuation of the daily spot price (i.e., the average of 30 min prices per day) and the
red line is the 60 days moving average. Figure 3 provides the volume data of solar PV
and thermal generations in total, as well as the total supply (which is the same as the total
demand) in the Tokyo area. Figure 4 shows the temperature index in the Tokyo area, where
the average temperature for 24 h per day and its 60 days moving average are plotted as the
blue and red lines, respectively. Similarly, Figure 5 provides the solar radiation index in
the Tokyo area. Note that the temperature and radiation indexes are constructed by taking
the weighted averages of several observation points by local electricity consumption and
installation capacities of local PV generation in Tokyo, respectively. Furthermore, note that
these figures are plotted daily by taking averages, but we construct hedging models based
on hourly data, as explained in the previous section.

Figure 2. Daily average price in Tokyo and its 60 days moving average in the period of 1 April 2016
to 31 December 2019.

https://www.fit-portal.go.jp/PublicInfoSummary
https://www.fit-portal.go.jp/PublicInfoSummary
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Figure 3. Daily fluctuations of thermal power and solar power generations, total demand, and their
60 days moving averages in the period of 1 April 2016 to 31 December 2019.

Figure 4. Daily average of temperature index in Tokyo and its 60 days moving average in the period
of 1 April 2016 to 31 December 2019.
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Figure 5. Daily average of solar radiation index in Tokyo and its 60 days moving average in the
period of 1 April 2016 to 31 December 2019.

4.2. Estimation Result for Power Retailers’ Hedges

First, we solved the minimum variance hedging problem for power retailers (or equiv-
alently, the hedging problem of the load retailer) by applying GAM (6) with Vt,m ≡ Vdemand

t,m
and Wt,m ≡ Tt,m. We estimated the optimal spline functions and other required parameters
in (6) based on the in-sample data. Then, we computed the out-of-sample hedge errors
based on Equation (13) to evaluate the hedge performance in terms of VRR and NMAE in
(14) and (15), respectively.

Panels (a) and (b) of Figure 6 represent the payoff functions estimated by applying
GAM (6), where the payoff functions of electricity derivatives fm for m = 2, 6, 10, 14, 18, 22
are plotted in panel (a) among 24 estimated functions and those of temperature derivatives,
gm, are shown in panel (b). These payoff functions satisfy fm(St,m) = 0 and gm(Wt,m) = 0
given the parameter estimation period and may provide negative values of the payoffs.
We see that the payoff functions for electricity derivatives increase monotonically, whereas
those of temperature derivatives increase with a larger temperature and a smaller temper-
ature for both sides. The latter is interpreted as the effects of temperature on electricity
demand. For example, the payoff function at 2 p.m. increases rapidly when the temperature
is higher than 25 ◦C, reflecting the electricity consumption in summer for the usage of air
conditioners. In addition, in the morning and the evening (e.g., 10 a.m. and 6 p.m.), the
payoff functions increase rapidly when the temperature is below 10 ◦C mainly from the
electricity consumption in winter.
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Figure 6. Results of minimum variance hedging with derivatives for electricity retailers’ cash flows, Vdemand
t,m St,m, based

on empirical data: (a) optimal payoff functions of electricity derivatives; (b) optimal payoff functions of temperature
derivatives; (c) out-of-sample VRR for each hour; (d) out-of-sample NMAE for each hour.

Panels (c) and (d) represent the out-of-sample hedge performance of our methodology,
which provide VRRs and NMAEs computed by Equations (14) and (15), respectively.
Note that both blue lines at the bottom of the figures are those obtained by using GAM
(6) for different values of m = 0, 1, . . . , 23, whereas other lines are obtained by applying
GAMs with fm (electricity derivative) and Calendarm only, gm (temperature derivative) and
Calendarm only, and Calendarm only, respectively. These lines are plotted as red, yellow,
and purple lines, respectively, in panels (c) and (d). Comparing the purple and red lines,
we see that the hedge performance is improved significantly by incorporating electricity
derivatives. Then, the VRRs and NMAEs are further improved by adding temperature
derivatives.

Furthermore, we solved the minimum variance hedging problem (1) with (3) to find
the optimal coefficients of forward contracts, δm and γm, by applying GAM (10) based on
in-sample data. Panels (a) and (b) of Figure 7 provide the estimation results, where the
estimated values of δm and γm are plotted, providing the coefficients of electricity forwards
and temperature forwards, respectively. The dates of the in-sample and out-of-sample
periods are assigned on the horizontal axes instead of the day and cyclical dummy variables
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used for the estimation of GAM (10). Since we assumed that the in-sample data period
was until 31 March 2019, the estimated functions after 1 April 2019 provide the predicted
values of the coefficients. We see that the coefficients of electricity forwards have two peaks
in a year, which reflect the demand peaks in summer and winter.

Figure 7. Results of minimum variance hedging with forwards for electricity retailers’ cash flows, Vdemand
t,m St,m, based on

empirical data: (a) coefficients of electricity forwards; (b) coefficients of temperature forwards; (c) out-of-sample VRR for
each hour; (d) out-of-sample NMAE for each hour.

The coefficients of temperatures reflect the effect of temperature on demand. For
example, in summer the demand has a positive correlation with temperature, whereas in
winter the correlation becomes negative so that the demand increases as the temperature
decreases. Panels (c) and (d) show out-of-sample VRRs and NMAEs. Like panels (c) and (d)
of Figure 6, we see that the hedge performance is improved significantly by incorporating
electricity forwards, which is further improved by adding temperature forwards.

4.3. Estimation Results for Solar PV Generators’ Hedges

Next, we demonstrate our empirical results for hedging problems with solar PV
generations. To the end, we applied GAMs (6) and (10) to solve the minimum variance
hedging problems with Vt,m ≡ Vsolar

t,m and Wt,m ≡ Rt,m, as with the previous subsection, but
the hour index m is restricted to the range of m = 8, . . . , 15 and the solar PV generations
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from 8 a.m. to 4 p.m. are considered. We estimated the optimal spline functions and other
required parameters in (6) and (10) based on in-sample data and computed out-of-sample
hedge errors.

Figures 8 and 9 present the empirical results. Panels (a) and (b) in Figure 8 represent the
payoff functions estimated by applying GAM (6), where the payoff functions of electricity
derivatives and radiation derivatives, fm and gm, for m = 8, . . . , 15 are plotted, respectively.
These payoff functions satisfy fm(St,m) = 0 and = 0 given the parameter estimation
period and may provide negative values of the payoffs. We see that both the payoff
functions for electricity and radiation derivatives increase monotonically, incorporating the
effects of electricity price and solar PV generation on the cashflow. Panels (c) and (d) in
Figure 8 provide out-of-sample VRRs and NMAEs, respectively, which were computed by
applying Equations (14) and (15) based on out-of-sample data. Similar to panels (c) and
(d) in Figure 6, the blue lines denote VRRs and NMAEs obtained using all the terms in
GAM (6), whereas other lines were obtained with fm (electricity derivative), Calendarm
only; gm (radiation derivative), Calendarm only; and Calendarm only. Although both
VRRs and NMAEs were not improved significantly by electricity derivatives compared
to Figure 6, we see that the combinations of electricity and radiation derivatives largely
improved VRRs and NMAEs. Thus, we conclude that radiation derivatives are effective
for hedging problems.

Figure 8. Results of minimum variance hedging with derivatives for solar PV generators’ cash flows, Vsolar
t,m St,m, based

on empirical data: (a) optimal payoff functions of electricity derivatives; (b) optimal payoff functions of solar radiation
derivatives; (c) out-of-sample VRR for each hour; (d) out-of-sample NMAE for each hour.
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Figure 9. Results of minimum variance hedging with forwards for solar PV generators’ cash flows, Vsolar
t,m St,m, based on

empirical data: (a) coefficients of electricity forwards; (b) coefficients of solar radiation forwards; (c) out-of-sample VRR for
each hour; (d) out-of-sample NMAE for each hour.

Panels (a) and (b) of Figure 9 provide the estimated values of δm and γm corresponding
to the coefficients of electricity forwards and radiation forwards, respectively. Like panels
(a) and (b) of Figure 7, the day dummy variables are replaced by the dates of the in-
sample and out-of-sample periods. In these figures, we see that both coefficients have
increasing trends, which incorporate the increase in total PV generation in the Tokyo area.
Furthermore, the periodicity of these coefficients reflects the seasonality of solar radiation in
a year. Panels (c) and (d) show out-of-sample VRRs and NMAEs, like Figure 8. From these
figures, we see that the hedge performance was improved significantly by incorporating
both electricity and radiation forwards.
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4.4. Estimation Results for Thermal Generators’ Hedges

Finally, we present our empirical simulation results for hedging problems with thermal
generations. To this end, we applied the following GAMs with Vt,m ≡ Vthermal

t,m and
Wt,m ≡ [Tt,m, Rt,m]

T , respectively, for constructing derivatives and forwards:

Vt,mSt,m = fm(St,m) + gm(Tt) + hm(Rt) + Calendarm(t) + εt,m (16)

Vt,mSt,m = δm(t)St,m + γ
temp
m (t)Tt,m + γrad

m (t)Rt,m + Calendarm(t) + εt,m (17)

where fm, gm and hm in (16) are smoothing spline functions, δm, γ
temp
m and γrad

m in (17)
are cyclic spline functions, and εt,m is a residual term satisfying εt,m = 0. Note that we
used a separate notation hm for a function of Rt in (16) to emphasize that gm and hm
are individual single variate functions. We estimated optimal spline functions and other
required parameters in (16) and (17) based on in-sample data and computed out-of-sample
hedge errors like those in the previous subsections.

Panels (a) and (b) in Figure 10 represent the estimated payoff functions, fm and gm,
for electricity derivatives and temperature derivatives, respectively. Like other payoff
functions, these functions satisfy fm(St,m) = 0 and gm(Wt,m) = 0 given the parameter
estimation period and may provide negative payoffs. We see that the shapes of both
payoff functions are like those in Figure 8 but have different scales in the y-axis. This is
because the volume covered by thermal generation was approximately 80% on average
with respect to the total demand for the period of our analysis. Panels (c) and (d) in
Figure 10 provide out-of-sample VRRs and NMAEs, respectively, which were computed
by applying Equations (14) and (15) based on out-of-sample data. In this test, radiation
derivatives were included for m = 8, . . . , 15 only, and we estimated the payoff functions of
radiation derivatives, as shown in panel (e). In these figures, note that VRRs and NMAEs,
including radiation derivatives, are plotted using blue lines, although they are almost
hidden by the red lines corresponding to VRRs and NMAEs without radiation derivatives.
To emphasize the difference between them, we further plotted VRRs and NMAEs with
and without radiation derivatives, as shown in panel (f). Then, we can observe that the
radiation derivatives contribute to the improvement of out-of-sample hedge performance.

Panels (a) and (b) of Figure 11 provide the estimated values for the coefficients of
electricity forwards and temperature forwards, respectively. In the hedging problems
with forwards, radiation terms were included for m = 8, . . . , 15 and their coefficients
were computed, as shown in panel (e). Like the previous figures, the day dummy vari-
ables were replaced by the dates of in-sample and out-of-sample periods. Furthermore,
panels (c) and (d) show out-of-sample VRRs and NMAEs. In these figures, the blue lines
provide VRRs and NMEs with radiation derivatives; however, they are almost completely
hidden. Then, we further investigated VRRs and NMAEs with and without radiation
forwards, as shown in panel (f). However, it turned out that the contribution of radiation
forwards to the improvement of hedge effect was weak and unstable compared to the case
of radiation derivatives, at least in the out-of-sample simulations.
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Figure 10. Results of minimum variance hedging with derivatives for thermal generators’ cash flows, Vthermal
t,m St,m:

(a) optimal payoff functions of electricity derivatives; (b) optimal payoff functions of temperature derivatives; (c) out-of-
sample VRR for each hour; (d) out-of-sample NMAE for each hour; (e) optimal payoff functions of radiation derivatives;
(f) out-of-sample VRR & NMAE with or without radiation derivatives for each hour.
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Figure 11. Results of minimum variance hedging with forwards for thermal generators’ cash flows, Vthermal
t,m St,m: (a) optimal

coefficients functions of electricity forwards; (b) optimal coefficients of temperature forwards; (c) out-of-sample VRR for
each hour; (d) out-of-sample NMAE for each hour; (e) optimal coefficients of radiation forwards; (f) out-of-sample VRR &
NMAE with or without radiation forwards for each hour.
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To compare the cross-sectional hedge performance, we computed the averages of
hourly VRRs and NMAEs in the out-of-sample period, corresponding to the averages of
“All” (the blue lines) in panels (c) and (d) of Figures 6–11, respectively. Table 1 provides the
averages of VRRs and NMAEs of minimum variance hedging problems for retailers, solar
PV generators, and thermal generators, where the averages are taken for m = 9, . . . , 16 in
the case of solar PV generators. If compared between minimum variance hedging problems
using derivatives and those using forwards for the same electricity utility players (i.e.,
retailers, solar PV generators, or thermal generators), we see that retailers and thermal
generators achieve both better VRRs and NMAEs using forwards, as emphasized by bold
letters in Table 1. On the other hand, in the case of solar PV generators, minimum variance
hedging using derivatives provides a better hedge performance.

Table 1. Averages of hourly VRRs and NMAEs in the out-of-sample simulations.

Retailers Solar PV Thermal

Average VRR (Derivatives) 0.0378 0.1796 0.0603
Average NMAE (Derivatives) 0.0493 0.1366 0.0716

Average VRR (Forwards) 0.0218 0.1958 0.0401
Average NMAE (Forwards) 0.0452 0.1506 0.0676

5. Reduction of Risks for Insurance Companies

In this study, we have assumed that the counter parties for derivative contracts are
insurance companies (see Figure 1). Then, as explained in Section 2, the risks of insurance
companies can be averaged out by executing derivatives or forward contracts with players
in different positions, such as power retailers and generators. In this section, we illustrate
that the risks of insurance companies can be reduced by executing derivative contracts
with such players simultaneously.

5.1. Basic Idea

Assume that there is a derivative contract in the market offered by an insurance
company whose payoff at t is denoted by Xt and satisfies Xt = 0. Then, the insurance
company’s expected cashflow from the derivative is given by −Xt = 0, and the insurance
company can make a positive profit by receiving a commission from a buyer if the risk of
cashflow fluctuation is small. However, there is a possibility that large cashflow fluctuations
lead to a significant loss to insurance companies, and so the insurance company needs to
evaluate the risk a priori; one measure of such risk is given by its variance.

We further assume that there exists another derivative contract offered by another
insurance company, whose payoff at time t is Yt and satisfies Yt = 0. Then, the aggregate
risk in the market from Xt and Yt may be given by the sum of variances, Var[Xt] + Var[Yt].
Instead of considering aggregate risk, one may introduce the risk of aggregate cashflow,
Xt + Yt, defined by Var[Xt + Yt]. This may be a situation of evaluating the risk of an
insurance company that is willing to offer both derivatives with payoffs, Xt and Yt, and
the following quantity provides a relative effectiveness of such position compared to the
aggregate risk in the market:

Var[Xt + Yt]

Var[Xt] + Var[Yt]
(18)

If Xt and Yt are independent in (18), we see that Var[Xt + Yt] = Var[Xt] + Var[Yt]
and that the quantity in (18) equals 1. On the other hand, if Xt and Yt are negatively
correlated, then Var[Xt + Yt] < Var[Xt] + Var[Yt] holds and the quantity in (18) becomes
less than 1, which leads to a reduction in variance by combining two cashflows. In this
sense, the quantity in (18) measures the variance reduction effect of the two cashflows for
the insurance company.
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In general, assuming that X(1)
t , . . . , X(n)

t are cashflows from n derivative contracts
executed with power retailers and generators, the insurance company’s VRR may be
defined as follows:

Insurance company′s VRR :
Var
[

X(1)
t + · · ·+ X(n)

t

]
Var
[

X(1)
t

]
+ · · ·+ Var

[
X(n)

t

] (19)

Furthermore, we define the insurance company’s NMAE as

Insurance company′s NMAE :

∣∣∣X(1)
t + · · ·+ X(n)

t

∣∣∣∣∣∣X(1)
t

∣∣∣+ · · ·+ ∣∣∣X(n)
t

∣∣∣ (20)

Note that the sum of cashflows in (20) is not an error, but we use the same terminology
as the previous definitions to avoid a redundant definition. Although we can introduce
insurance companies’ VRR and NMAE for cashflows from forward contracts as well, here
we focus on the cashflows from derivative contracts only; that is, we consider cashflows of
derivatives obtained by solving minimum variance hedging problems for power retailers
and generators.

5.2. Evaluation of Insurance Company’s VRRs and NMAEs Using Empirical Data

Now, we evaluate insurance companies’ VRRs and NMAEs using empirical data. Let
f retail
m , f solar

m , and f thermal
m be the payoff functions of the electricity derivatives obtained

by applying GAM (6) with Vt,m ≡ Vdemand
t,m and Wt,m ≡ Tt,m for power retailers, GAM

(6) with Vt,m ≡ Vsolar
t,m and Wt,m ≡ Rt,m for solar PV generators, and Vt,m ≡ Vthermal

t,m and
Wt,m ≡ [Tt,m, Rt,m]

T for thermal generators, where these payoff functions are estimated
using in-sample data, as shown in panel (a) of Figure 6, Figure 8, and Figure 10, respectively.

Assume that all transactions of electricity derivatives in hedging problems are exe-
cuted with the same insurance company. Since the direction of cashflow for exchanging the
electricity delivery contract through power exchange is opposite between power retailers
and generators, the insurance company is supposed to pay f retail

m (St,m) to retailers and
receive f solar

m (St,m) and f thermal
m (St,m) from power generators. Therefore, the aggregate

cashflow (i.e., cash-out from the insurance company) is given as

f retail
m (St,m)−

(
f solar
m (St,m) + f thermal

m (St,m)
)

(21)

Panels (a) and (b) in Figure 12 show the cashflows from the payoffs of electricity
derivatives, where the blue line is the payoff of derivatives that the retailer receives and
the red line is the sum of payoffs for generators (i.e., the solar power generator and the
thermal generator). Panel (a) represents cashflows corresponding to the electricity delivery
of 10–11 a.m. and panel (b) cashflows for 2–3 p.m. In these figures, the x-axis denotes the
dates of the in-sample and out-of-sample periods, in which the in-sample period is until 31
March 2019. The yellow lines provide the aggregate cashflows of (21).



Energies 2021, 14, 7311 22 of 28

Figure 12. Cash flows (CFs) from derivatives payoffs: (a) payoff of retailers, the sum of payoffs for thermal generators and
solar PV generators, and their aggregate payoff from electricity derivatives for 10–11 a.m.; (b) payoff of retailers, the sum of
payoffs for thermal generators and solar PV generators, and their aggregate payoff from electricity derivatives for 2–3 p.m.;
(c) payoffs of retailers and thermal generators and their aggregate payoff from temperature derivatives for 10–11 a.m.;
(d) payoffs of retailers and thermal generators and their aggregate payoff from temperature derivatives for 2–3 p.m.;
(e) payoffs of thermal generators and solar PV generators and their aggregate payoff from radiation derivatives for
10–11 a.m.; (f) payoffs of thermal generators and solar PV generators and their aggregate payoff from radiation derivatives
for 2–3 p.m.
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Similarly, panels (c) and (d) show the cashflows from payoffs of temperature deriva-
tives, and panels (e) and (f) those of radiation derivatives. In these cases, the aggregate
cashflows are given by

gretail
m (Tt,m)− gthermal

m (Tt,m) (22)

for temperature derivatives, and

− hthermal
m (Rt,m)− gsolar

m (Rt,m) (23)

for radiation derivatives, where the optimal payoff functions in (22) and (23) are obtained by
applying GAM (6) with appropriate variables. The superscripts of these functions denote
the problems we have solved. For example, gretail

m is obtained by solving the minimum
variance hedging problem for retailers and gretail

m (Tt,m) provides the retailer’s payoff of
temperature derivatives. The minus signs in front of payoff functions for power generators
indicate that the direction of cashflows defined by payoff functions is opposite from that
for retailers. For example, the payoff that the thermal generator receives is defined by
−gthermal

m (Tt,m).
Panels (a) and (b) of Figure 13 provide insurance companies’ VRRs and NMAEs of elec-

tricity derivatives, respectively, for each m = 0, . . . , 23, where the blue lines denote those
obtained by using in-sample data, the red lines denote those obtained using out-of-sample
data, and the yellow lines indicate the entire period data. Since the aggregate cashflow
is given by (21), the insurance company’s VRRs and NMAEs are computed by replacing
X(1)

t ≡ f retail
m (St,m),X

(2)
t ≡ − f solar

m (St,m), and X(3)
t ≡ − f thermal

m (St,m) in (19) and (20), re-
spectively. From these figures, we see that both VRRs and NMAEs are small in the case of
electricity derivative transactions, and the variance is reduced significantly by combining
cashflows from derivatives executed with retailers and generators.

Panels (c)–(f) provide insurance companies’ VRRs and NMAEs of temperature and ra-
diation derivatives, respectively, like panels (a) and (b) of electricity derivatives. In the case
of temperature derivatives, the aggregate cashflow of (22) consists of X(1)

t ≡ gretail
m (Tt,m)

and X(2)
t ≡ −gthermal

m (Tt,m), whereas that of (23) consists of X(1)
t ≡ −hthermal

m (Rt,m) and

X(2)
t ≡ −gsolar

m (Rt,m) in the case of radiation derivatives, respectively. Then, the VRRs and
NMAEs are computed based on (19) and (20). From these figures, we see that the risk
reduction effect is reasonably significant, although it is not as large as that of electricity
derivatives.
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Figure 13. Variance reduction rates (VRRs) and normalized mean absolute errors (NMAEs) for insurance companies’ cash
flows (CFs): (a) VRRs for CFs of electricity derivatives’ payoffs; (b) NMAEs for CFs of electricity derivatives’ payoffs;
(c) VRRs for CFs of temperature derivatives’ payoffs; (d) NMAEs for CFs of temperature derivatives’ payoffs; (e) VRRs for
CFs of radiation derivatives’ payoffs; (f) NMAEs for CFs of radiation derivatives’ payoffs.



Energies 2021, 14, 7311 25 of 28

6. Discussion

In this study, we have systematically organized the theoretical aspects of our previous
studies in [33,34] and developed a unified approach using derivatives and forwards on
the spot electricity price and weather data. We aim not only to clarify the applicability
of our proposed methods, but also to provide a new and useful perspective on hedging
schemes involving various electricity utilities, such as power retailers, solar PV generators,
and thermal generators. In our empirical analysis, we have measured the hedging effects
on their cashflow management using electricity and weather derivatives as well as forward
contracts. The key findings of our analysis are summarized below.

1. For the hedging problems using derivatives for the power retailers and the thermal
generators, the payoff functions of the electricity derivatives increase monotonically
with the underlying electricity price, but a nonlinear dependence is observed when
the electricity price is low during the day. This seems to reflect the relationship
between the PV generation and electricity prices. In general, the electricity price
increases with demand, but in the daytime solar radiation tends to increase, resulting
in pushing the electricity price in the lower direction;

2. The coefficients of the electricity forwards for power retailers’ and thermal generators’
hedges have two peaks in a year, which correspond to the demand increases in
summer and winter. On the other hand, the coefficients of temperature forwards
incorporate the correlation between the temperature and the demand. That is, the
demand increases with a higher temperature and decreases with a lower temperature
in summer, whereas in winter it increases with a lower temperature;

3. Both derivatives and forwards are generally effective for reducing the cashflow
fluctuations, but in the cases of power retailers’ and thermal generators’ hedging
problems the out-of-sample VRRs and NMAEs were better for hedging problems
using forwards. This may be explained by the fact that both cashflows for the power
retailers and the thermal generators are largely dependent on the electricity demand,
which may be better explained using the cyclic trend for the forwards than the spline
functions for derivatives;

4. On the other hand, in the case of the solar PV generators’ hedging problem, the
hedge errors were smaller for derivatives in terms of the VRRs and NMAEs. The
reason for this difference is that it seems that the radiation derivatives are more
effective for reducing the cashflow fluctuations for the solar PV generations. The
same phenomenon was observed in the hedging problem for the thermal generators,
where the radiation derivatives are more effective for reducing the risk of cashflow
fluctuations based on out-of-sample VRRs and NMAEs.

In our analysis, we have assumed that there exist counter parties of derivative and
forward transactions, such as insurance companies, and that the electricity utility players
can execute electricity and weather derivative transactions with any payoff functions.
Such insurance companies can profit if a commission is purchased for every transaction.
Moreover, as explained in Sections 2 and 5, their risks may be averaged out by executing
derivative contracts with power retailers and generators simultaneously. This is because
their cash flow directions may be different or opposite for the electricity purchase and the
payoffs of derivatives may be canceled out. We have illustrated insurance company risk
reduction using empirical simulations and obtained the following:

5. The fluctuations in the aggregate cashflow of the electricity derivative’s payoffs from
the hedging problems for power retailers, solar PV generators, and thermal generators
were reduced significantly compared to the sum of independent cashflow fluctuations.
This indicates that the insurance company can take and cancel out the risk in electricity
purchase by combining appropriate positions;

6. For temperature and radiation derivatives, the risk reduction effect for insurance
companies is not as significant as in the case of electricity derivatives; however, their
risks were reasonably reduced. Moreover, weather derivatives are useful products
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for insurance companies compared to other financial instruments because weather
indexes are not affected by human activities, at least in a short period. Therefore, fair
prices may be set using their mean values, and the risk of cashflow fluctuation may
be averaged out if the transaction period is sufficiently long.

Although we have incorporated the seasonal trend (i.e., the cyclic trend) in the co-
efficients of forwards in our analysis, we should be able to apply the result of [34] for
derivatives with cyclic trends using tensor product spline functions. Then, the hedging
effect could be further enhanced by designing derivatives with nonlinear payoffs that
change gradually by date. However, it is necessary to consider the tradeoff of different
advantages between derivatives and forwards in this regard. That is, while forwards have
a payoff function that depends only on the underlying asset (i.e., the hedger optimizes
the contract volume), derivatives have a payoff function that depends on the hedger’s
profit function (i.e., the hedger optimizes the payoff function itself). This means that the
forward market may allow liquid transactions among multiple players, while derivatives
are subject to bilateral contracts between the risk taker (insurance company) and the hedger.
Thus, whether to use derivatives to improve the hedging effectiveness or to use forwards
for the liquid transactions is an issue to be considered based on not only the results of the
empirical analysis but also the actual market environment and practical needs.

In addition, as a first step to verify the effectiveness of an efficient market-wide
hedging scheme, this study conducted an empirical analysis targeting the Tokyo area,
where a certain percentage of solar power generation exists, and the necessary public
data is sufficiently available. However, further improvements in the design of derivative
products, such as increasing the number of observation points to be taken into account in
the creation of the weather index, may be necessary when targeting areas with relatively
low population density. Moreover, if the introduction of solar power continues to increase,
the effectiveness of solar radiation derivatives for hedging solar volume risk will become
increasingly effective, and there is a possibility that this method can be applied more widely.
The expansion of such application areas and empirical analysis regarding the verification
of the versatility of the method will be a future task.

Furthermore, as described at the end of Section 2, it would be interesting to introduce
market makers (e.g., insurance companies or financial institutions) who provide fair bid
and ask prices and accept sell and buy orders from power generators and retailers in the
forward market. If the numbers of short and long positions are the same for the same
product, the market makers do not have any risks. Therefore, the balance between the long
and short positions is important for estimating the market maker’s risk. Moreover, the
inefficiencies of the market that can be assumed in practice, and the bid–ask spreads (or the
premiums demanded by the insurers) that they bring about, may be an additional issue to
be further investigated. These will be left for future study.
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