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Abstract: With the rapid development of underground caverns in the fields of hydraulic engineering,
mining, railway and highway, the frequency, and intensity of rockburst and dynamic instability
have gradually increased, which has become a bottleneck restricting the safe construction of deep
caverns. This paper presents a review of the current understanding of rockburst precursors and
the dynamic failure mechanism of the deep tunnel. Emphasis is placed on the stability of the
surrounding rock of the deep tunnel, the rockburst prediction method, and the dynamic failure
characteristics of the surrounding rock of the deep tunnel. Throughout the presentation, the current
overall gaps in understanding rockburst precursors and the dynamic failure mechanism of deep
tunnels are identified in an attempt to stimulate further research in these promising directions by the
research community.
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1. Introduction

China has experienced a rapid development in high-speed rail over the past 15 years,
and the national network has reached 35,000 km in total length since 2019. Railways in the
mountainous areas are made up of tunnels. By the end of 2019, more than 16,000 railway
tunnels (total length of 18,041 km) were fully operational in China. Meanwhile, more
than 3200 tunnels (total length of 7975 km) were in the planning stages [1,2]. Additionally,
a large number of subway tunnels, utility tunnels, and diversion tunnels are currently
under construction. Thus, tunnels are being constructed at an annual increasing rate of
7% worldwide for the next 5 to 10 years (equating to 5200 km of tunnels being built every
year) [3].

The increase in underground engineering can result in the consequent increment of
geohazards, and one representative example is the rockburst. Rockburst is a dynamic
geological disaster associated with the spalling, fragmentation, and ejection of rock due to
the sudden and violent release of elastic energy stored in the hard and brittle surrounding
rock under excavation or other loading disturbances. Rockbursts occur frequently and
violently with the increase of excavation depth [4–9]. Rockburst not only poses a severe
threat to mine workers and mechanical equipment, but also delays the construction period
and causes great economic losses.

Rockburst and the dynamic failure of surrounding rock have become a major problem
in deep underground tunnels [10–12]. According to incomplete statistics, in China, a total
of 660 rock bursts have occurred and 224 people have died in the past 10 years [13]; in the
United States, a total of 172 bursts have occurred between 1936 and 1993, resulting in a
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total of 87 fatalities and 163 injuries [14]. However, it should be mentioned that, although
more and more attention has been drawn to the research on rockburst in the past decades,
the review concerning rockburst precursors and the dynamic failure mechanism of the
deep tunnel is rather limited in number and scope. It is thus the intention of this study to
comprehensively review the rockburst precursors and the dynamic failure mechanism of
the deep tunnel. In doing so, a reference can be offered for the rockburst precursors and
the dynamic failure mechanism of the deep tunnel in the future.

This review is organized as follows: Section 2 presents a review of the stability of the
surrounding rock of the deep tunnel. Section 3 reviews the studies for rockburst prediction
methods. Section 4 presents the work applying numerical simulation techniques and
laboratory tests for the investigation of the dynamic failure characteristics of surrounding
rock of deep tunnels. Section 5 concludes the review and suggests future research directions.

2. Stability of the Surrounding Rock of the Deep Tunnel

Scholars have conducted plenty of work on the instability mechanisms, influential
factors, and the prevention measures of rock mass in tunnels under high stress by theoretical
analysis, laboratory experiment, physical model test, field monitoring, and numerical
simulation, and have achieved a lot of useful results. Zhu et al. [15] proposed a constitutive
model to describe the rock creep with a logarithmic function. Thus, the stability of the
surrounding rock of the underground circular tunnel was analyzed mechanically, and
the relationship between the artificial support structure and the surrounding rock was
discussed, and the result derived was a characteristic equation. Goodman and Shi [16]
established a block theory for evaluating the stability of discontinuous massive rock masses.
Zhang et al. [17] used a finite element method to identify unstable blocks and evaluate the
stability of underground caverns. The Underground Research Laboratory of the Atomic
Energy of Canada Limited carried out a series of field tests to study the damage process
of surrounding rock under excavation unloading and revealed the factors affecting the
stability of the surrounding rock of underground caverns [18–20]. Meng et al. [21] carried
out shear tests for the prediction of rockburst hazards induced by dynamic structural plane
shearing in deep hard rock tunnels, which was used to simulate the fault-slip rockburst
and proposed a slip-type rockburst based on the evolution characteristics of the AE b-
value method of prediction. Liang et al. [22] used far infrared and AE technologies to
monitor the progressive failure of a rock tunnel model under biaxial stress. Gong et al. [23]
conducted large scale true triaxial tests on the red sandstone samples with a prefabricated
hole for understanding the mechanism of slab buckling rockburst in deep tunnels in hard
rock. Liu et al. [24] studied the AE activities of coarse-grained granite and fine-grained
sandstone with prefabricated square and round holes under uniaxial loading. The simplex
positioning algorithm was used to study the temporal and spatial evolution of AE in the
process of rock rupture, and the characteristics of the AE activity, energy release rate, and
spatial correlation length were analyzed. Verma and Singh [25] used a numerical model
to predict the deformation and stability of the tunnel to be excavated. Saiang [26] used
the discrete–continuous coupling method to analyze the development and characteristics
of the rock mass explosion damage zone. Shreedharan and Kulatilake [27] used the
discrete element method to study the stability of two deep coal mine roadways under high
stress. Cai et al. [28] utilized the FLAC/PFC coupled method to study the AE activities in
underground excavations at the Kannagawa underground powerhouse cavern in Japan.

With the development of computer technology, some scholars have introduced artifi-
cial intelligence algorithms such as neural networks, genetic algorithms, and deep learning
to analyze the stability of the tunnel surrounding rock. Yang and Zhang [29] introduced
a hierarchical analytical method based on the neural networks to identify the important
degree of factors which controlled the stability of underground openings so as to recognize
the key factors. Feng et al. [30] used a data mining method to judge the stability of the
surrounding rock of underground caverns.
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Since the introduction of the New Austrian Tunnelling Method from the 1960s, sur-
rounding rock monitoring and measurement technologies have been widely applied and
developed as an important basis for determining the stability of surrounding rock [31–35].
This technology mainly uses strain gauges, stress gauges, multipoint displacement gauges,
etc., to closely monitor the changes in surrounding rock strain, stress, and displacement
during construction, thereby determining the corresponding support timing and support
plan, ultimately realizing dynamic construction. However, this technology can only obtain
the local displacement and stress information in the rock mass, and it cannot give a compre-
hensive evaluation of the overall stability of the rock mass structure. Meanwhile, it cannot
monitor the development and evolution of microfractures inside the rock mass, so it cannot
capture the precursor information of the macroscopic failure of the rock mass. Microseismic
monitoring technology, as a space monitoring technology capable of capturing microfrac-
tures in the rock masses, is widely used in various tunnels [36–43], mines [44–48], rock
slopes [49,50], and unconventional oil and gas exploration [51], carbon dioxide storage [52],
and other fields. It is used to identify potential failure zones in rock mass engineering, so
as to achieve the early warning and forecast of rock mass damage [53–55]. During the rock
mass failure, the energy accumulated inside is released in the form of stress waves, causing
microseismic signals [56,57]. By monitoring, analyzing, and processing the microseismic
signals, the time, the spatial location, and the intensity of the microseismic signals can be
obtained, and then qualitative and quantitative evaluations of regional rock mass stability
can be made.

The above research results have laid a good foundation for further understanding
of the failure characteristics and instability mechanisms of the surrounding rock of deep
underground caverns under complex conditions. With the emergence of a large number
of deep underground caverns in various fields, the occurrence environment of deep rock
masses has undergone major changes compared to shallow rock masses, which are mainly
manifested by high ground stress, high ground temperature, high karst water pressure,
and strong dynamic disturbance. On the one hand, the high ground stress environment
has brought many deep engineering disasters, among which rockbursts are the most
prominent and cause the most serious damage, often causing serious personal injuries
and deaths, equipment damage, and huge economic losses. On the other hand, under the
strong dynamic disturbance, the mechanical characteristics of deep rock masses and the
nonlinearity, uncertainty, and complexity of failure modes have become more prominent,
and the frequency and intensity of dynamic disasters in the surrounding rock of deep
underground caverns have increased significantly. The stability of the surrounding rock of
deep caverns has become the focus of attention of scholars. However, the existing theories
and methods still lag behind engineering practice and cannot provide effective guidance
for engineering. Rockburst and the dynamic instability of surrounding rock have become
key issues that restrict the safety of deep engineering construction. It is urgent for further
research on the mechanism of rockburst prediction and the dynamic failure of surrounding
rock under complex deep environments.

3. Rockburst Prediction Method

Since the first recorded rockburst in a British tin mine in 1738, scholars have carried
out a lot of research in theory, experiment, numerical simulation, and other aspects, trying
to understand the mechanism of rockburst and its influential factors, and on this basis to
realize the prediction and early warning of rockburst [58–70]. Scholars have explored the
mechanism of rockburst from the perspectives of stress [71], energy [72–74], stiffness [75,76],
instability [77], and fractal [78], and put forward the corresponding prediction index of
rockburst. According to different occurrence mechanisms, Kaiser [79] divided rockburst
into two categories: spontaneous rockburst and remote disturbance-induced rockburst.
The former is mainly related to the sudden release of the elastic energy accumulated in the
surrounding rock under excavation unloading, while the latter is caused by the disturbance
(blasting, mechanical vibration, rockburst stress, earthquake, etc.), and the damage caused
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by the disturbance is usually a certain distance away [80,81]. Yan et al. [82] found that
disturbances due to excavation, particularly blasting excavation, have a significant impact
on the scale and intensity of rockbursts, and summarized the rockburst prevention and
control methods based on blasting technology. Li and Weng [83] numerically studied the
dynamic fracturing behavior of underground caverns subjected to static geo-stress and
dynamic loading. Li et al. [84] pointed out that deep underground engineering rock mass
is inevitably affected by mechanical drilling, blasting, and other dynamic disturbances,
and the influence of dynamic disturbances should be considered when studying rockburst.
Li [85] summarized the current situation of rockburst support and put forward the ideas of
rockburst control.

A large number of rockburst cases show that the occurrence of rockburst needs to
meet two basic conditions: (1) the surrounding rock is hard, brittle, and relatively complete,
and can store a large amount of elastic strain energy [86]; (2) high stress environment
(including in situ stress and induced stress) [87–90], where the former is the internal cause
of rockburst, and the latter is the external cause.

The above research has improved the understanding of rockburst and laid a founda-
tion for the implementation of rockburst prediction and prevention measures in practical
engineering. Rockburst prediction is the basis of reducing and even eliminating rock-
burst hazards and is an important basis for guiding engineering construction. Due to
the complexity of the rockburst mechanism and its influencing factors, the prediction
methods of rockburst are not mature and still need to be improved, which can be roughly
divided into three categories [60–65]: (1) theoretical criteria, (2) case analysis, and (3) field
monitoring-based rockburst prediction methods.

3.1. Theoretical Criteria-Based Rockburst Prediction Method

The theoretical criteria-based rockburst prediction method mainly uses various cri-
teria, including stress [71], brittleness, energy [72–74], and stiffness [75,76], etc., which
contributes to the rockburst mechanism to judge the rockburst tendency of engineering the
surrounding rock. The widely used indexes are mainly the stress intensity ratio, the brittle-
ness coefficient, the rockburst proneness index, the impact energy index, and the modified
brittleness index, etc. These indexes are the basis for evaluating and predicting rockburst
risk, and are mainly determined by field geological survey, in situ stress measurement and
analysis, and in laboratory rock mechanics tests. These methods are mainly used in project
planning, design, and the preliminary analysis and prediction of rockburst tendency in the
construction stage [91,92].

3.1.1. Stress Criteria

The stress criteria are based on the intensity stress ratio (the ratio of the uniaxial
compressive strength of rock to the stress of surrounding rock) or the stress intensity ratio
(the ratio of the stress of surrounding rock to the uniaxial compressive strength of rock)
to judge the occurrence and grade of rockburst. Commonly used stress criteria mainly
include Tao Zhenyu criteria [71], Erlangshan Highway tunnel criteria [93], Norwegian
Barton criteria [94], Russense criteria [95], Turchaninov criteria [96], Hoek criteria [97], etc.,
as shown in Table 1. These criteria are proposed based on different engineering cases, so
the classification standards of rockburst are different, as well as the physical parameters
used to characterize the surrounding rock stress. The commonly used physical parameters
mainly include maximum shear stress, maximum principal stress, and axial stress.

3.1.2. Brittleness Coefficient

Brittleness is a significant property of rock and is the key internal cause of the rockburst
of deep buried hard rock under high stress. Based on different purposes and applicable
objects, scholars have proposed many rock brittleness coefficients. In 1974, Hucka and
Das [98] summarized the brittleness coefficients, and Zhou et al. [99] further analyzed
and summarized the characteristics of different brittleness coefficients. The brittleness
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coefficients, i.e., the ratio of uniaxial compressive strength to uniaxial tensile strength
(B1 = σc/σt, σc is the uniaxial compressive strength of rock, σt is the tensile strength) [100]
and the ratio of the difference between the uniaxial compressive strength and tensile
strength to their sum ((B2 = (σc − σt)/(σc + σt)) [101], have been widely used for the
evaluation of rockburst proneness. Peng et al. [100] and Wang et al. [102] pointed out that
the smaller the B1, the more violent the rockburst, and proposed the rockburst intensity
classification standard based on B1. However, Zhang et al. [97,103] and Li et al. [104]
found that the larger the B1, the larger the rockburst proneness, and they also proposed
corresponding rockburst classification standards. The two discrimination criteria are
contradictory and are listed in Table 2.

Table 1. Stress criteria for rockburst prediction.

Rockburst
Criteria

Erlangshan Highway
Tunnel

Tao Zhenyu
Criteria Hoek Turchaninov Russense Barton

σθ/Rc Rc/σmax σθ/Rc (σθ + σL)/Rc σθ/Rc Rc/σmax

No <0.3 >14.5 0.34 <0.3 <0.2 >5
Weak 0.3–0.5 14.5–5.5 0.42 0.3–0.5 0.2–0.3

2.5–5Medium 0.5–0.7 5.5–2.5 0.56 0.5–0.8 0.3–0.55
Strong >0.7 <2.5 >0.7 >0.8 >0.55 <2.5

Note: Rc is the uniaxial compressive strength of rock, σmax is the maximum principal stress, σθ is the maximum tangential stress, and σL is
the axial stress.

Table 2. Rockburst classification criteria based on brittleness coefficient B1.

Classification Criteria No Weak Medium Strong

Peng et al. [101], Wang et al. [102] >40 26.7~40 14.5~26.7 <14.5
Zhang et al. [97,103] <15 15~18 18~22 >22

Li et al. [104] <10 10~18 >18

3.1.3. Energy Criteria

The storage capacity of elastic strain energy in rock mass is an important internal
cause of rockburst. Cook [105] first established the relationship between rock mass residual
potential energy and rockburst disaster. Subsequently, scholars began to study rockburst
from the view of energy storage and release, and proposed many energy-based rockburst
discrimination indexes, such as the commonly used elastic energy index [106], improved
brittleness index [74], and impact energy index.

Neyman [106] proposed an elastic energy index to determine the level of rockburst
based on laboratory uniaxial loading and unloading tests. The index Wet was defined as
the ratio of the elastic energy released during unloading Φsp to the dissipated plastic strain
energy Φst. It is mathematically given as

Wet = Φsp/Φst (1)

In order to obtain the value of Wet, a series of tests were first carried out to determine
the average uniaxial compressive strength of the rock sample. On this basis, the uniaxial
compression loading and unloading tests were conducted. Rock samples were loaded to
80–90% of their average uniaxial compressive strength, and then unloaded, as shown in
Figure 1. The greater the Wet value, the greater the rockburst proneness [107].

In such tests, it started to unload when the load reached 80–90% of peak strength.
However, due to the heterogeneity of rock mass, the unloading stress determined by this
method and its peak strength may vary greatly with different samples, which greatly
affected the accurate acquisition of Wet. To solve this problem, Aubertin [74] proposed an
improved brittleness index (BIM), which was also calculated based on uniaxial compression
tests in which unloading was not required. The calculation diagram is shown in Figure 2.
The loading was up to the peak stress, and the unloading curve was the straight line that
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passed through the peak stress point as the slope of the elastic modulus at the half of the
peak strength. The improved brittleness index (BIM) can be calculated by Equation (2).

BIM = A1/A3 (2)

where A1 is the area under the loading curve and represents the total strain energy in the
rock sample under uniaxial compression; A3 is the area under the assumed unloading
curve passing through the peak point. A3 represents the peak elastic strain energy stored
in the rock sample. The value of BIM is greater than or equal to 1, and a smaller BIM
value means larger elastic energy released and higher rockburst proneness. The evaluation
criteria of rockburst proneness based on BIM are shown in Table 3.
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Table 3. Evaluation criteria of rockburst proneness based on BIM.

BIM Rockburst Proneness

1.0–1.2 Strong
1.2–1.5 Medium

>1.5 Weak
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Impact energy index (F) is also based on the complete stress–strain curve of rock
samples under uniaxial compression and is defined as the ratio of stored energy before the
peak to that after the peak, as shown in Equation (3).

F = A1/A2 (3)

where A1 is the area under the pre-peak stress–strain curve, and A2 is the area under the
post-peak stress–strain curve. For brittle rocks, the F-value is greater than 1, that is, the
stored energy is greater than the dissipated energy, indicating that the rockburst may occur.
The larger the F-value, the more violent the rockburst.

3.2. Case Analysis-Based Intelligent Method

The case analysis-based prediction method of rockburst is mainly based on the heuris-
tic algorithm [108], machine learning methods [109–111], data mining technology [112,113],
and other mathematical tools, by analyzing a large number of engineering rockburst cases
and considering multiple factors to establish a comprehensive prediction method of rock-
burst. Compared with the theoretical criteria-based rockburst prediction method, the
case analysis-based prediction method takes into account the comprehensive functions
of many factors, so that the calculation results are more reliable. In these methods, stress,
strength, and energy-related parameters are usually used as input factors and the actual
rockburst intensity as output parameters. Based on a large number of rockburst case data,
the algorithm is continuously trained and optimized, and the correlation between the input
factors and the output parameters is established to predict the possibility of rockburst
in target engineering. The accuracy and reliability of this method mainly depend on the
quantity and quality of the case data [114].

Recently, with the emergence of a large number of rockburst disasters in hydraulic
engineering, transportation, mining, and other fields, as well as the rapid development
of artificial intelligence methods like machine learning, the case analysis-based intelligent
method has been further developed. Li et al. [110] proposed a rockburst prediction method
based on the theory of logistic regression classifiers. Adoko et al. [112] developed five differ-
ent fuzzy inference systems for rockburst prediction based on a fuzzy reasoning system, an
adaptive neural fuzzy reasoning system, and field measurement data. Gong et al. [115] es-
tablished a comprehensive distance discriminant model of rockburst intensity classification
and prediction that considered the lithology, stress level, and energy of the surrounding
rock. Ge et al. [116] proposed a new method based on the combination of artificial neural
networks (ANN) classifiers as weak classifiers by using the AdaBoost algorithm in data
mining. Wang et al. [117] established a new model for predicting the classification of
rockburst based on the efficacy coefficient method by considering the key influential factors
of rockburst comprehensively. Based on the technique for order preference by similarity to
ideal solution, Zhou et al. [118] chose five indices, including uniaxial compressive strength
σc, the ratio of rock compressive tensile strength σc/σt, the stress coefficient of rock σθ/σc,
the elastic energy index of rock Wet, and the integrality coefficient Kv as the predictor
variables of rockburst. Twenty rockburst cases were taken as the training and testing
samples, according to the classification standard of rockburst, the supports, and weighs
of the predictor variables were calculated by rough set theory, and the RS-TOPSIS model
of rockburst prediction was established. Dong et al. [119] established a random forest
model for predicting rockburst proneness. Zhou et al. [120] used ten supervised learning
algorithms to predict rockburst based on 246 rockburst cases and compared the prediction
results of different algorithms. Afraei et al. [113,121,122] established several rockburst
proneness evaluation models based on the evaluation of different influencing factors.

3.3. Field Monitoring-Based Rockburst Prediction Method

The field monitoring-based rockburst prediction method mainly includes the micro-
gravity method [123], the electromagnetic radiation method [124], the drilling cuttings
method, the AE method [125], the electrical resistance method [126], the computed tomog-
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raphy method [127], and the microseismic monitoring method [128–130]. These methods
watch the changes in a physical parameter, like stress and strain, resistance, microseismicity,
AE, electromagnetic radiation, etc., to indirectly reflect the changes of physical and mechan-
ical properties of rock mass during construction and mining. In this way, the corresponding
relationship between the monitoring information and the rock mass stability is established,
and the evolution of the monitoring physical parameter during the development process of
rockburst is further obtained, which can be used as the precursor information of rockburst
so as to predict the occurrence of rockburst. The most important advantage of the field
monitoring method is that it can receive feedback information in time, so as to effectively
guide the construction and ensure the project safety. Among these methods, microseismic
monitoring technology has been widely used in all kinds of underground engineering
and has been proved to be an effective tool to reveal the mechanism of rockburst and give
predictions [131–136]. Microseismic monitoring can obtain the time, location, and intensity
of fracture in rock mass. Most importantly, it can locate the rock mass instability zone [137].
Based on the microseismic monitoring technology, scholars have carried out a large number
of studies on the rockburst development process and obtained the microseismic precursor
information about the evolution of microseismic parameters, such as the microseismic
event number, cumulative released energy, b-value, and the spectrum characteristics of the
microseismic waveform, etc. [138].

The above methods have enriched the knowledge of rockburst prediction. However,
due to the complexity of the rockburst mechanism and the influencing factors, accurate
rockburst prediction is still challenging and the current accuracy cannot effectively meet the
needs of the safe construction of a deep hard rock underground cavern. Further exploration
and development of rockburst prediction methods are needed.

4. Dynamic Failure Characteristics of Surrounding Rock of Deep Tunnels

The surrounding rock of deep underground caverns is subjected to numerous dynamic
disturbances caused by blasting, earthquakes, rock caving, and excavation, besides gravity
and tectonic stress. For deep rock mass, because the stress concentration around the cavern
is more significant, the influence of dynamic disturbance on the stability of the surrounding
rock is more prominent. With the continuous increase of the depth of underground caverns,
more and more attention has been paid to the stability of the surrounding rock of deep
tunnels under dynamic disturbance [139–143]. Li et al. [83] used FLAC3D software to
simulate the characteristics of the strain energy density and the fracturing zone of tunnels
under dynamic disturbance with different lateral pressure coefficients. Manouchehrian
and Cai [144] used Abaqus to study the influence of weak planes on rockburst occurrence
in tunnels under static and dynamic loadings. Zhu et al. [145] used the RFPA-Dynamics
to simulate the rockburst caused by coupled static geo-stress and dynamic disturbance
around the deep underground opening and indicated that the dynamic disturbance was
one of the most important triggers responsible for the rockbursts around the underground
opening. Yilmaz and Unlu [146] used FLAC3D to simulate the damage development of
rock mass under blasting loading. Yan et al. [147] used PFC to analyze the characteristics
of the surrounding rock damage zone of a deep tunnel under blasting excavation loading
and in situ stress transient unloading, respectively. Lu et al. [148] investigated the process
of release of in situ stress accompanying rock fragmentation by blasting to determine the
dynamic response of reserved surrounding rock mass, such as vibration. Lu et al. [149]
studied the influence of the thickness and strength of overburden strata on the rockburst
failure process of an underground roadway by using UDEC.

Numerical methods are used to study the failure characteristics of underground
caverns under dynamic disturbance, and the influence of different factors of dynamic
disturbance (amplitude, duration, applied direction, etc.) on the stability of underground
caverns. However, due to the combined high static stress and dynamic disturbance, the
uncertainty and complexity of mechanical behavior, the deformation and failure mechanism
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of rock engineering will become more prominent, which will undoubtedly restrain the
accuracy of numerical simulation and bring huge challenges to numerical methods.

Laboratory tests can visually reflect the mechanical properties, deformation, and
failure evolution and stability characteristics of rock mass, and obtain visual knowledge
that cannot be obtained by numerical simulation and verify the numerical simulation
results [150–155]. Therefore, many scholars have investigated the dynamic failure charac-
teristics of the surrounding rock based on laboratory tests. Liu et al. [156,157] carried out
impact rockburst test on sandstone samples with a central hole under true triaxial static
loading and vertical dynamic loading to analyze the fragmentation characteristics of the
sandstone fragments. Du et al. [158] studied the failure behaviors of granite, red sandstone,
and cement mortar under true triaxial unloading and then local dynamically disturbed
loading and found that the rockburst and slabbing were closely related to the rock type,
stress path, and dynamic disturbance. Su et al. [159,160] compared the ramp and cyclic
dynamic disturbances-induced rockbursts in terms of the failure phenomenon, damage evo-
lutions, and energy characteristics under true triaxial conditions with a low–intermediate
strain rate of 2~5‰/s.

However, the dynamic loading used in the above tests are all cyclic loading with
low strain rate and low amplitude, and the failure characteristics of the samples under
such loading are affected by fatigue characteristics, which are significantly different from
those under dynamic disturbance with a high strain rate [161,162]. Many scholars have
experimentally studied the dynamic mechanical properties and failure characteristics of
rock-like materials under the combined action of high static stress and high strain rate
impact loading [163–166]. For instance, Tang et al. [167] conducted the dynamic response
tests of a polymethylmethacrylate simulated tunnel under coupled biaxial static stress and
high strain rate dynamic disturbance. Li et al. [168] observed the crack propagation of
polymethylmethacrylate semicircular arch roadway specimens under stress wave loading.
However, the dynamic failure characteristics of deep underground caverns under high
static stress and high strain rate dynamic disturbance should be further systematically
investigated in future research for better application in deep rock engineering practice.

5. Conclusions and Future Perspective

A comprehensive review was performed on the rockburst precursors and dynamic
failure mechanisms of surrounding rock. The research presented in this review has been
widely accepted and applied in engineering practices involving tunnel, cavern, and road-
way stability problems. However, they have some weaknesses due to the complexity of
rockburst and the uncertainty of the influencing factors, and hence require improvements
in some respects.

(1) Due to the complexity of the mechanism and the influencing factors of rockburst,
rock physical and mechanical properties, and the environment of deep rock mass, the
accurate forecasting rock burst is still challenging. The accuracy of rock burst prediction
methods could not effectively meet the needs of underground cavern construction in
deep hard rock. Further exploration and development of rock burst prediction methods
are required;

(2) The accuracy and reliability of the case analysis-based rockburst prediction method
mainly depended on the quantity and quality of rockburst cases. Current studies are
commonly based on tens of rockburst cases; thus, the reliability and applicability of the
established prediction model are not satisfied. Recently, a large number of rockburst disas-
ters have emerged in the fields of hydraulic engineering, transportation, and mining, and
artificial intelligence methods, such as machine learning, have been rapidly developed. The
increasing number of rockburst cases and the rapid development of artificial intelligence
methods lay the foundation for the further development of the case analysis-based rock-
burst prediction methods. Therefore, it is necessary to establish a new case analysis-based
rockburst prediction method by applying machine learning in rockburst case analyses;
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(3) To study the dynamic failure mechanism of surrounding rock, numerical simu-
lations are mainly used. However, under the combined action of high static stress and
dynamic disturbance, the uncertainty and complexity of mechanical behavior, the defor-
mation and failure mechanism of rock engineering become more prominent, which will
undoubtedly restrain the accuracy of numerical simulation and bring huge challenges to
numerical methods. On the other hand, laboratory tests can directly reflect the overall
mechanical characteristics, deformation, and failure, and the stability characteristics of rock
mass, and can obtain a direct understanding that cannot be obtained from numerical simu-
lation, as well as verify the numerical simulation results. However, the dynamic loads used
in the above tests are all periodic cyclic loads with low strain rate and low amplitude. The
sample failure under such loading is affected by the fatigue characteristics, which is quite
different from the failure caused by dynamic disturbance with a high strain rate. Therefore,
it is necessary to further study the dynamic failure characteristics of surrounding rock
under the combined action of high static stress and high strain rate dynamic disturbance.
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