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Abstract: This paper analyzes the mathematical model of electrohydrodynamic (EHD) fluid flow in
a circular cylindrical conduit with an ion drag configuration. The phenomenon was modelled as a
nonlinear differential equation. Furthermore, an application of artificial neural networks (ANNs)
with a generalized normal distribution optimization algorithm (GNDO) and sequential quadratic pro-
gramming (SQP) were utilized to suggest approximate solutions for the velocity, displacements, and
acceleration profiles of the fluid by varying the Hartmann electric number (Ha2) and the strength of
nonlinearity (α). ANNs were used to model the fitness function for the governing equation in terms of
mean square error (MSE), which was further optimized initially by GNDO to exploit the global search.
Then SQP was implemented to complement its local convergence. Numerical solutions obtained by
the design scheme were compared with RK-4, the least square method (LSM), and the orthonormal
Bernstein collocation method (OBCM). Stability, convergence, and robustness of the proposed al-
gorithm were endorsed by the statistics and analysis on results of absolute errors, mean absolute
deviation (MAD), Theil’s inequality coefficient (TIC), and error in Nash Sutcliffe efficiency (ENSE).

Keywords: electrohydrodynamic flow; circular cylindrical conduit; Hartmann electric number;
artificial neural networks; generalized normal distribution optimization; neuro soft computing

1. Introduction

Electro fluid systems have attracted a large number of researchers in recent years due to
their wide range of applications in engineering and industrial processes [1,2]. The influence
of electric fields on fluids has been studied from a theoretical point of view in the recent
past to create novel processes [3]. The interaction of hydrodynamics and electrodynamics in
dielectric fluid flow in the presence of an electric field is referred to as electrohydrodynamics
(EHD) [4,5]. It is the study of the motion of ionized fluid and controls transportation
phenomena in fluid flow. EHD flows have a variety of applications in different fields
such as electrostatic precipitators [6,7], designs of dielectric pumps [8], the flow of ions in
diverter tokamak reactors [9], thermal management of microelectronics by using electro
gas dynamical pumps [10], application of Taylor cone EHD jets for electrospray of liquid
atomization [11], electro-fluid control of colloidal particles near electrodes [12], MEMS
devices [13], inkjet devices [14], propulsion of small scale naval vessels [15], processing of
nickel particle flows and their regulation in medical powder [16], etc.

McKee et al. [17] in 1997, for the first time, dealt with the electrohydrodynamic (EHD)
flow of fluid in an ion drag configuration in a circular cylindrical conduit, which was
governed by a nonlinear boundary value problem (BVP). They studied velocity profiles
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by obtaining perturbation solutions due to variations in small and large parameters gov-
erning the nonlinear problem. For large values of strength of nonlinearity (α), they used
the combination of Ranga-Kutta methods and the finite difference method to calculate
the numerical solutions for fluid velocity. Further, they concluded that for α � 1 and
α� 1, the perturbation solutions were expanded to series solutions with O(1) and O(nα),
respectively. Paullet [18], in 1999, proved the existence and authentication of solutions
to the EHD flow of fluid in the cylindrical conduit. The results obtained by [18] for a
larger value of α were qualitatively different from those obtained by [17]. Statistics showed
that for α� 1 results by [17] diverged because the perturbation solutions were expanded
to O(1/α) instead of O(1) [18]. Mastroberardino [19] used the homotopy perturbation
method to find analytical solutions for the velocity profile of EHD flow by varying the
values of the nonlinearity parameter and the Hartmann electrical number. Panday [20]
used two semianalytical techniques based on an optimal homotopy analysis method and
the homotopy asymptotic method to solve the EHD problem by varying different values of
the parameters. Further, [21] developed a new homotopy perturbation method (NHPM)
that depended on two components of homoptopy series to study the EHD flow equation.
Moghtadaei [22] used the hybridization of the spectral homotopy analysis method (SHAM)
and the spectral collocation method (SCM) to investigate the EHD problem in ion drag
configuration. Pradip Roul [23,24] developed a new approximate method, namely the dis-
crete Adomian decomposition method (DADM), to approximate the solution of a strongly
nonlinear singular boundary value problem describing the electrohydrodynamic flow of a
fluid in an iron drag configuration in a circular cylindrical conduit. Further, [25] used the
differential transformation method to find an analytical solution for the velocity profile
by varying the strength of nonlinearity (0 < α <1). This assumption helped overcome the
limitation of nonlinearity and singularity. Various numerical and analytical techniques such
as the pseudospectral collocation method [26], spectral collocation method [27], discrete
optimized homotopy analysis method (DOHAM) [28], DTM-Pade’ approximation [29],
least square method [30], Galerkin Method, Collocation Method [31] and optimal B-spline
collocation method [32,33] have been used. The electrohydrodynamic (EHD) flow of fluid
has been studied by various numerical and analytical approaches but due to the singularity
and nonlinearity in the nature of its mathematical model, it is difficult for traditional
techniques to find its approximate solutions. In this paper, we have solved the EHD flow
of fluid in a circular cylindrical conduit with an ion drag configuration numerically by
applying a stochastic technique based on artificial neural networks (ANNs). In recent times,
ANNs have been widely used to solve the number of problems arising in petroleum engi-
neering [34], thermal engineering [35–38], civil engineering [39], biological models [40,41],
and wire coating dynamics [42]. These applications of stochastic techniques are motivating
factors for authors to analyze, explore, and investigate a nonlinear singular model of the
EHD flow of fluid. In this paper, we designed an evolutionary soft computing technique to
optimize the mathematical model of the electrohydrodynamic flow of fluid with an ion
drag configuration by using the hybridization of the generalized normal distribution opti-
mization (GNDO) algorithm and sequential quadratic programming (SQP). Contributions
of the given study are highlighted through the following salient features:

- This paper developed a neuroevolutionary soft computing paradigm to analyze the
mathematical model of electrohydrodynamic (EHD) flow of fluid in the circular
cylindrical conduit by exploiting the global search efficiency of GNDO and local
search support of SQP. The design technique is named ANNs-GNDO-SQP.

- The proposed algorithm was implemented on the EHD problem to study the effect
of variations in the nonlinearity parameter and the Hartmann electrical number on
w∗(r∗), w ∗ ′(r∗), and w ∗

′′
(r∗).

- Approximate solutions obtained by the ANNs-GNDO-SQP algorithm were compared
with RK-4, the least square method (LSM), and the orthonormal Bernstein collocation
method (OBCM).
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- The performance of the design paradigm was validated through statistics of the fitness
function, absolute errors, mean absolute deviation, error in Nash Sutcliffe efficiency,
and Theil’s inequality coefficient.

2. Problem Formulation

In this section, we present the mathematical overview of the governing equation.
Consider a circular cylindrical conduit in an axisymmetric coordinate system of radius

(r) with insulating conduit walls, as illustrated though Figure 1. An electric field
(→

E0

)
is

produced in fluid by applying voltage (V). Current density in a dielectric medium for a
single ionized particle is defined as [20,43]

→
l = ρ f

[
→
v + K

→
E0

]
, (1)

where K is the ion mobility, and ρ f denotes the charge density of ions in fluid. The velocity
of the fluid in generalized form is given as

→
l = (0, 0, l(r)),

→
v = (0, 0, w(r)), ρ f = ρ(r), (2)

where, the pressure gradient (∂p/∂z) is assumed to be constant. By using Equation (2), the
Naiver Stokes equation reduces to

r
∂p
∂z

= rρ f E0 + µ
d
dr

[
r

dw
dr

]
, (3)

where µ denotes the viscosity (dynamic) of the EHD fluid. The velocity profiles of fluid
depend on time scales such as U and L which determine the coupling between ions
and fluid.

tc =
ε0

Kρ0
, t f =

L
U

, (4)

where, ε0 denotes the permittivity constant of free space, tc is the relation time of charge, t f
is the time of fluid transport, and ρ0 denotes the charge density at the inlet screen. From
Equation (1), assuming that l(z = 0) = l0 the charge density can be defined as

ρ f (r) =
l0

KE0 + w(r)
. (5)

In order to calculate the velocity profile of the EHD fluid, Equations (3)–(5) are inte-
grated to obtain a nonlinear differential equation which is given as

∂p
∂z

=
rl0E0

KE0 + w
+

µ

r
d
dr

[
r

dw
dr

]
, (6)

with the boundary conditions defined at the center and wall of a conduit as

w′(r) = 0 at r = 0; w = 0 at r = a. (7)

Since, velocity is bounded at r = 0, defining dimensionless variables r∗ = r/a and
w∗ = −(w/KE0α) we obtain,

d2w∗

dr∗2 +
1
r∗

dw∗

dr∗
+ Ha2

[
1− w∗

1− αw∗

]
= 0, (8)

with

w∗′(r∗) = 0 at r∗ = 0; w∗ = 0 at r∗ = 1, (9)
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where α = K
j0

∂p
∂z − 1 is the strength of nonlinearity, and Ha2 =

√
l0a2

µK2E0
represents the

electric Hartmann number.

Figure 1. Schematic of the EHD flow in a circular cylindrical conduit.

3. Design Methodology

In this section, the structure of the design methodology is presented to solve the EHD
problem with ion drag configuration. The methodology consisted of two steps. Initially,
an approximate solution model for differential equations based on mean square error was
constructed. Secondly, an optimization process of the fitness function was carried out by
utilizing the hybridization of GNDO and SQP.

3.1. ANN Modeling

In this section, mathematical modeling of electrohydrodynamic (EHD) fluid flow in
an ion drag configuration is emphasized by using artificial neural networks (ANNs). Feed-
forward ANNs were utilized to model approximate solutions ŵ∗(r∗) for Equation (8) as

ŵ∗(r∗) =
m

∑
i=1

αi[ f (ζir∗ + βi)], (10)

since, the nth order continuous derivative of Equation (10) exists, therefore, the first and
second-order derivatives are defined as

dŵ∗(r∗)
dr∗

=
m

∑
i=1

αi
d

dr∗
[ f (ζir∗ + βi)], (11)

d2ŵ∗(r∗)
dr∗2 =

m

∑
i=1

αi
d

dr∗
[ f (ζir∗ + βi)], (12)

where, W = (α, ζ, β) = (α1, α2, . . . , αm, ζ1, ζ2, . . . , ζm, β1, β2, . . . , βm) are weights in ANNs
architecture, m represents the number of neurons and f is a connection function or acti-
vation function. For instance, we consider the log-sigmoid function. Application of the
log-sigmoid function will model Equations (10)–(12) as

ŵ∗(r∗) =
m

∑
i=1

αi

(
1

1 + e−(ζir∗+βi
)), (13)

dŵ∗(r∗)
dr∗

=
m

∑
i=1

αiζi

(
e−(ζir∗+βi)(

1 + e−(ζir∗+βi)
)2

)
, (14)
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d2ŵ∗(r∗)
dr∗2 =

m

∑
i=1

αiζ
2
i

(
2e−2(ζir∗+βi)(

1 + e−(ζir∗+βi)
)3 −

e−(ζir∗+βi)(
1 + e−(ζir∗+βi)

)2

)
, (15)

ANNs architecture for the EHD flow of fluid in terms of input, hidden, and output
layers is shown in Figure 2.

Figure 2. Architecture of ANNs for the mathematical model of the EHD flow of fluid.

3.2. Formulation of the Fitness Function

In this section, an objective function known as the fitness function is formulated in a
mean square error sense for the nonlinear EHD problem.

Minimize Θ = Θ1 + Θ2, (16)

where, Θ1 and Θ2 are error functions corresponding to the nonlinear differential equation
and boundary conditions, which are defined as

Θ1 =
1
N

N

∑
m=1

(
d2w∗m
dr∗2 +

1
r∗

dw∗m
dr∗

+ Ha2
[

1− w∗m
1− αw∗m

])2

, (17)

and

Θ2 =
1
2

((
dw∗

dr∗
(0)− 0

)2
+ (w∗(1)− 0)2

)
, (18)

where, N = 1
h , and h represents the mesh points.

3.3. Optimization Process

In this section, an optimization process of ANNs based fitness function is incorpo-
rated by hybridization of the generalized normal distribution optimization algorithm and
sequential quadratic programming. The detailed flow chart of the ANNs-GNDO-SQP
algorithm is shown in Figure 3.
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Figure 3. Workflow schematic of the proposed methodology for solving the EHD flow of fluid.

3.3.1. Generalized Normal Distribution Optimization Algorithm

The GNDO algorithm is a novel metaheuristic algorithm inspired by the classical
generalized normal distribution theory [44]. It is a global search technique that is widely
used for parameter extraction; unlike other metaheuristics, the GNDO algorithm is easy to
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implement requiring an initial population size and essential termination conditions. The
working procedure of GNDO is based on two processes, which are explained as

- Exploitation

Exploitation refers to the process of finding the best solution around the search space
consisting of the current positions of all individuals. A distribution model for optimiza-
tion based on a relationship between the distribution of individuals and their normal
distribution is given as

Ωt
i = Φ̂i + P̂i × Ĥ, i = 1, 2, 3, . . . , N, (19)

where, Ωt
i , P̂i, Φ̂i and Ĥ, are the trial vector, standard variance, mean position (generalized),

and penalty factor respectively. These parameters are defined as

Φ̂i =
1
3
(

xt
i + xt

Best + M
)
, (20)

M =
∑N

i=1 xt
i

N
, (21)

P̂i =

√
1
3

[(
xt

i − Φ̂
)2

+
(

xt
Best − Φ̂

)2
+ (M− Φ̂)

2
]
, (22)

Ĥ =

{ √
− log(h)× cos(2πh1), if a ≤ b√

− log(h)× cos(2πh1 + π), otherwise.
(23)

here, M denotes the mean position, a, b, h, and h1 are random numbers from 0 to 1 and Φ̂
is the current position of the individual. xt

i is the ith individual, and xt
Best is the current

best individual.

- Exploration

A process of searching entire population space for finding the global best solution is
called exploration. In GNDO, exploration of search space is based on randomly selected
individuals, which can be expressed as

Ωt
i = xt

i + (1− β)× (|h2| × v2)︸ ︷︷ ︸
Global information sharing

+ β× (|h3| × v1),︸ ︷︷ ︸
Local information sharing

(24)

here, β denotes the adjustment parameter, h1 and h2 are constants between 0 and 1, and v1
and v2 are trial vectors that are defined as

v1 =

{
xt

i − xt
pl
′ , if f

(
xt

i
)
< f

(
xt

a1
)
,

xt
a2 − xt

i , otherwise,
(25)

v2 =

{
xt

a2 − xt
a3, if f

(
xt

p2

)
< f

(
xt

a3
)
,

xt
a3 − xt

a2, otherwise.
(26)

where, a1, a2, and a3 are integers. An overview of the working procedure of GNDO
is provided in pseudocode as Algorithm 1. Recently, the GNDO algorithm has been
applied to study the parameter extraction photovoltaic models [44] and heat transfer in
temperature fins [45].

3.3.2. Sequential Quadratic Programming

The SQP algorithm is a nonlinear programming technique that the research community
has extensively used to solve a number of real world problems arising in different fields of
engineering and applied mathematics. In this paper, the SQP algorithm was implemented
to refine the process and weights obtained by the GNDO during the global search phase.
Currently, SQP algorithms are used to find approximate solutions for two-block nonconvex
constrained optimization problems [46], real power loss minimization in radial distribution
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systems [47], dynamic realtime optimization framework for cycling energy systems [48],
measurement error in invariance testing [49], and maximum likelihood-based measurement
noise covariance estimation [50].

In the present study, we exploited the global search ability of the GNDO algorithm
with the sequential quadratic programming with the “fmincon” environment of MATLAB
to calculate the approximate solutions using an ANN structure for the EHD flow of fluid.
The detailed working procedure of the design algorithm is shown in Figure 3. The ANN-
GNDO-SQP algorithm has a simple structure and is easy to implement. GNDO updates
the position of an individual using generalized normal distribution formula, and SQP
complements its local convergence. The experimental analysis showed that the proposed
algorithm converged to the best solutions for a number of real-world problems by training
the weights from the interval [−5, 5]. The convergence of design scheme was slightly
affected by increasing the domain. The parameter settings for execution of the proposed
algorithm are shown through Table 1.

Table 1. Parameter settings for the execution of the ANN-GNDO-SQP algorithm.

Parameter Setting Parameter Setting

Algorithm GNDO Bounds [lower, upper] [−5, 5]

Max. function evaluations 125,000 Search Agents 60

X-tol. (TolX) 10−18 Tol. Fun. 10−18

Algorithm SQP Bounds [lower, upper] [−5, 5]

X-tol. (TolX) 10−18 Tol. Fun. 10−18

Max. function evaluations 150,000 Max. Iterations 1500

Algorithm 1. Pseudo code for hybridized ANNs-GNDO-SQP algorithm.

Global Search Phase
1: Generalized normal distribution optimizer: Start
2: From the Population of size N and with bounds (L,U), the candidate solutions are signified with 3: an equal number of neurons
involved in the ANN structure,
W = 4 : [αi, ζi, βi] i = 1, 2, 3 . . . . N.
5: Population: Generate population P of m candidates drawn from a normal distribution as follows:
6: P=[C1,C2,C3,...,Cm]t,
7: α=[α1,α2,α3,...,αm], ζ=[ζ1,ζ2,ζ3,...,ζm] and β=[β1,β2,β3,...,βm].
8: Output: The global best weights of the GNDO algorithm, i.e., CGNGOBest.
9: Initializations: Initialize population P.
10: Fitness evaluation: Find the fitness value of each individual C in P and achieve the so far best
11: solution xBest. The iteration is updated as t = t + 1.
12: Main Loop
13: while (t ≤ (Max_iter)) do
14: for if i = 1 : N
15: p is randomly generated between 0 and 1.
16: if p > 0.5
17: Exploitation: The current best solution xBest is selected. M, δ, µ, and η are calculated using
18: Equations (19)–(23) to perform exploitation.
19: else
20: Exploration: The current best solution xBest is selected to perform exploration using
21: Equations (24)–(26).
22: end if
23: end for
24: The iteration is updated as t = t + 1.
25: end while
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26: Termination: Stop GNDO for any of the following

• 27: Fitness Θ ≤ 10−20, TolFunc ≤ 10−20.
• 28: Predefined iterations achieved.

29: Storage: Store CGNGOBest, Fitness values, and Function evaluations.
30: Generalized normal distribution Optimizer: End
31: Local Search Phase
32: Sequential Quadratic Programming: Start
33: Inputs: CGNGOBest as initial point.
34: Output: Best weighted vector of GNDO-SQP, i.e., CGNGO−SQP
35: Initialization: Start-Point as CGNGOBest, assignment for bounds, iterations, and other settings.
36: Termination: Adaption process ends for any of the following conditions:

• 37: Fitness Θ ≤ 10−20, TolFunc. ≤ 10−20.
• 38: Function Evaluation ≤ 200, 000
• 39: Maximum iterations = 1500

40: Fitness evaluation: Evaluate fitness value Θ for each weight vector in C.
41: Fine-tuning: Use ‘fmincon’ for SQP. Update parameters of C for each generation of SQP and 42: calculate fitness of modified C.
43: Storage: Accumulate weights vector CGNDO SQP, functions evaluations, fitness value, and 44: iterations.
45: Sequential quadratic programming: End
46: Data Generation: Simulate the above procedure 100 times to obtain data of fitness values and 47: unknown variables in ANN
structure to solve nonlinear mathematical model of EHD flow of 48: fluid.

4. Simulation and Discussion

In this section, the design algorithm was implemented on the EHD flow to calculate
the approximate solutions for the velocity, displacements, and acceleration profiles of the
fluid by varying the Hartmann electric number

(
Ha2) and the strength of nonlinearity (α).

To demonstrate the accuracy of the proposed algorithm, the results were compared with the
orthogonal Bernstein collocation method (OBCM) [20] the least square method (LSM) [30],
and numerical solutions obtained by an implicit Runge-Kutta method (bvp5c), using
MATLAB. Velocity profiles for different values of the Hartmann electric number and
nonlinearity parameter are illustrated in Figures 4 and 5 respectively. From Figure 4,
it can be seen that for fixed values of the nonlinearity parameter (α = 0.5, 1.0, 1.5, 2.0)
an increase in the Hartmann electric number

(
Ha2) causes an increase in the velocity

profile, while Figure 5 shows that an increase in the nonlinearity parameter with a fixed
Hartmann electric number

(
Ha2 = 1, 2, 6, 10

)
causes a decrease in the velocity profile of

the EHD flow of fluid. The strength of nonlinearity has the adverse effect on the velocity
profile against the Hartmann electric number. Moreover, it can be seen that a plug flow
profile appears for small values of α with significantly large values of Ha2. Statistics of
w∗(r∗), w∗

′
(r∗) and w∗′′ (r∗) for different values of Ha2 and α are dictated in Tables 2 and 3.

The results for w∗(0) obtained by the ANN-GNDO-SQP algorithm were compared with the
orthogonal Bernstein collocation method (OBCM) and numerical solutions for α = 0.5, 1
and 2 with Ha2 = 1, 2, 6, 10, 20, and 50 as shown in Table 4. Absolute errors in our
solutions are plotted in Figure 6. The design scheme overlapped the analytical solution
and had minimum absolute errors in comparison with the least square method (LSM) and
OBCM as shown in Table 5. In order to show the superiority of ANN-GNDO-SQP, we
investigated the effect of large values of Ha2 and α on the velocity of the fluid. Paullet [18]
showed that solutions of Equation (8) with Equation (9) were bounded by 1/(1 + α), so in
case of α = 4.0, 8.0 and 10.0, the results were bounded by 0.2, 0.1, and 0.09. Due to strong
nonlinearity in the differential equation Equation (8), numerical solver “bvp5c” could not
calculate the numerical solution for large values of Ha2, and α. Approximate solutions
by the design algorithm for large values of Ha2 = 205, 075 and α = 4810 are shown in
Figure 7. In addition, Figure 8 dictates the influence of variations in α (20, 50, 100) on
the velocity profile of the fluid with Ha2 = 49 and 81. The results showed that for larger
values of the Hartmann electric number, the solutions were essentially independent of Ha2

outside the boundary layers, i.e., for (r∗ < 0.9). With the increasing value of α and Ha2,
the problem stiffened, and the absolute errors decreased.
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Figure 4. (a–d) Shows the plots of velocity profiles for variations in Ha2 with different values of the nonlinearity parameter.

Table 2. The values of w∗(r∗), w∗
′
(r∗), and w∗′′ (r∗) for different variations in the Hartmann electric number and nonlin-

earity parameter.

Ha2 = 0.5, α = 0.5 Ha2 = 1.0, α = 1.0 Ha2 = 2.0, α = 2.0

r* w*(r*) w*
′

(r*) w*”
(r*) w*(r*) w*

′
(r*) w*” (r*) w*(r*) w*′ (r*) w*” (r*)

0.0 0.113707 −1.8 × 10−5 −0.21732 0.203413 −1.5 × 10−6 −0.37182 0.280907 −1.2 × 105 −0.35570
0.2 0.109323 −0.04398 −0.22213 0.195938 −0.07504 −0.38117 0.273559 −0.07543 −0.41490
0.4 0.096052 −0.08891 −0.22754 0.173164 −0.15355 −0.40669 0.249274 −0.17273 −0.57393
0.6 0.073667 −0.13522 −0.23622 0.134072 −0.23872 −0.44729 0.201780 −0.31000 −0.80677
0.8 0.041820 −0.18368 −0.24908 0.077048 −0.33327 −0.49994 0.121959 −0.49656 −1.05659
1.0 0 −0.23505 −0.26486 0 −0.43924 −0.56076 4.60 × 107 −0.73015 −1.26981
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Figure 5. (a–d) shows the behavior of velocity profile under the influence of variations in the nonlinearity parameter for
different values of Ha2.

Table 3. The values of w∗(r∗), w∗
′
(r∗), and w∗′′ (r∗) for different variations in the Hartmann electric number and nonlin-

earity parameter.

Ha2 = 10, α = 0.6 Ha2 = 20, α = 1 Ha2 = 6.0, α = 2

r* w*(r*) w*
′

(r*) w*”
(r*) w*(r*) w*

′
(r*) w*” (r*) w*(r*) w*′ (r*) w*” (r*)

0 0.59728 −0.00023 −0.32778 0.499319 7.7 × 10−5 −0.02410 0.330538 0.00015 −0.07121
0.2 0.590027 −0.07732 −0.48115 0.498676 −0.00788 −0.06765 0.328857 −0.01924 −0.14224
0.4 0.562424 −0.21495 −0.97371 0.494716 −0.03973 −0.31859 0.320736 −0.07203 −0.45074
0.6 0.493672 −0.51095 −2.13311 0.475000 −0.19778 −1.57414 0.292544 −0.24034 −1.36954
0.8 0.335957 −1.1406 −4.36641 0.379997 −0.91787 −6.59433 0.206793 −0.67357 −3.04216
1 0 −2.33152 −7.67030 0 −3.24594 −16.7489 −1.04 × 105 −1.44529 −4.55480
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Table 4. Comparison of values obtained by the ANN-GNDO-SQP algorithm for w∗(0) with OBCM [20] and numerical
solution for different values of nonlinearity parameter and Hartmann electric number.

α = 0.5 α = 1 α = 2

Ha2 Numerical OBCM
ANN-

GNDO-
SQP

Numerical OBCM
ANN-

GNDO-
SQP

Numerical OBCM
ANN-

GNDO-
SQP

1 0.20700807 0.20700815 0.20700807 0.20341385 0.20341579 0.20341385 0.19459639 0.19459641 0.19459639
2 0.34471303 0.34472730 0.34471303 0.32545491 0.32545427 0.32545491 0.28092892 0.28092892 0.28092892
6 0.57002550 0.57002550 0.57002550 0.47017920 0.47017854 0.47017920 0.33053379 0.33053209 0.33053379
10 0.62896071 0.62896071 0.62896071 0.49202969 0.49202968 0.49202969 0.33297071 0.33296462 0.33297071
20 0.66043310 0.66043311 0.66043310 0.49932528 0.49932510 0.49932528 0.33332506 0.33339417 0.33332506
50 0.66650870 0.66650608 0.66650870 0.49999536 0.49994762 0.49999536 0.33337147 0.33366547 0.33337147

Figure 6. Absolute errors in our solutions obtained by the proposed algorithm for calculating w∗ (r∗) of the EHD flow of
fluid for (a) same values of parameters and (b) different values of nonlinearity parameter and Hartmann electric.

Table 5. Comparison of absolute errors in our solutions obtained by the ANN-GNDO-SQP algorithm with the orthogonal
Bernstein collocation method [20] and the least square method [30].

Ha2 = 0.5, α = 0.5 Ha2 = 1.0, α = 1.0

t LSM OBCM ANN-GNDO-SQP LSM OBCM ANN-GNDO-SQP

0 8.2992 × 10−6 3.2023 × 10−8 5.2979 × 10−13 8.1842 × 10−5 1.9384 × 10−6 2.1171 × 10−13

0.1 6.3358 × 10−6 3.1447 × 10−8 3.6864 × 10−11 6.4341 × 10−5 1.9004 × 10−6 3.3179 × 10−11

0.2 4.0286 × 10−6 2.9727 × 10−8 2.4690 × 10−12 3.7985 × 10−5 1.7900 × 10−6 5.2357 × 10−12

0.3 2.4205 × 10−6 2.7018 × 10−8 4.3508 × 10−11 2.1086 × 10−5 1.6178 × 10−6 1.5269 × 10−11

0.4 1.9436 × 10−6 2.3538 × 10−8 1.6113 × 10−11 1.5688 × 10−5 1.3997 × 10−6 2.4361 × 10−15

0.5 2.0378 × 10−6 1.9552 × 10−8 9.7373 × 10−12 1.6862 × 10−5 1.1536 × 10−6 9.3444 × 10−12

0.6 2.1622 × 10−6 1.5327 × 10−8 6.6434 × 10−11 1.8463 × 10−5 8.9738 × 10−7 4.7320 × 10−12

0.7 2.0455 × 10−6 1.1106 × 10−8 3.0112 × 10−11 1.6495 × 10−5 6.4579 × 10−7 1.0880 × 10−12

0.8 1.2410 × 10−6 7.0791 × 10−9 2.2059 × 10−11 1.0793 × 10−5 4.0942 × 10−7 6.1656 × 10−12

0.9 1.0002 × 10−6 3.3638 × 10−9 1.4333 × 10−10 5.5085 × 10−6 1.9391 × 10−7 2.1467 × 10−14
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Figure 7. Results of velocity profile for the EHD flow of fluid with larger valu es of (a) the nonlinearity parameter and (b)
Ha2 achieved by the proposed algorithm.

Figure 8. (a–c) shows the approximate solutions and (b–d) dictates the absolute errors in results obtained by the ANN-
GNDO-SQP algorithm for Equation (8) with Ha2 = 49 and 81.
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To check the performance and validity of the proposed ANN-GNDO-SQP algorithm,
we defined different statistical operators along with their global form. The performance
operators were fitness functions, Theil’s inequality coefficient (TIC), mean absolute devia-
tions (MAD), Nash Sutcliffe efficiency (NSE), and error in Nash Sutcliffe efficiency (ENSE).
A mathematical formulation of these indices is defined as in [45].

TIC =

√
1
n ∑n

i=1
(
w(ri)− ŵ∗

(
r∗i
))2√

1
n ∑n

i=1(w(ri))
2 +

√
1
n ∑n

i=1
(
ŵ∗
(
r∗i
))2

, (27)

MAD =
1
n

n

∑
i=1

(|w(ri)− ŵ∗(r∗i )|), (28)

NSE =

{
1− ∑n

i=1
(
w, (ri),−, ŵ∗,

(
r∗i
))2

∑n
i=1(w, (ri),−, w, (ri))

2 , w(ri) =
n

∑
i=1

(w, (ri)) (29)

ENSE = [1− NSE ], (30)

where, w(ri) denotes the analytical solution, while ŵ∗
(
r∗i
)

represents the approximate solu-
tion by the ANN-GNDO-SQP algorithm. Global values of fitness function and performance
indices can be calculated as

GFit =
1

Rn

Rn

∑
j=1

Fit, GTIC =
1

Rn

Rn

∑
j=1

TIC, GMAD =
1

Rn

Rn

∑
j=1

MAD, GENSE =
1

Rn

Rn

∑
j=1

ENSE. (31)

To study the optimization behavior of the objective function, 100 independent ex-
ecutions of the ANN-GNDO-SQP algorithm were carried out. Convergence of fitness
function and TIC for Equation (17) depending on different values of α and Ha2 are shown
in Figure 9. Fitness value for each case lay around 10−4 to 10−8 and 10−4 to 10−7, respec-
tively. Average values of mean absolute deviations (MAD) of the solutions are shown in
boxplots in Figure 10. Normal probability curves are plotted in Figure 11 for the values
of ENSE. Furthermore, Table 6 depicts the stability analysis of the design algorithm. For
100 independent runs, the results in each run were in good agreement with the exact
solutions. The accuracy of the design algorithm can be seen from values of ENSE that
are approximately equal to zero for each case. Statistical analysis of the values of fitness
function and performance indices are shown in Table 7. Global values of these indicators
lay around 10−5 to 10−7 which shows the robustness and accuracy of the design scheme.

Table 6. Stability analysis in terms of fitness value, mean absolute deviations, Theil’s inequality coefficient, and error in
Nash Sutcliffe efficiency of the design algorithm when executed for 100 multiple runs.

Fitness Value MAD TIC ENSE

10−6 10−7 10−8 10−4 10−5 10−6 10−4 10−5 10−6 10−6 10−7 10−8

Ha2 = α = 0.5 100 100 100 100 100 89 100 99 47 100 90 50
Ha2 = α = 1.0 100 93 48 100 100 92 100 43 12 50 34 14
Ha2 = α = 2.0 99 55 38 100 83 23 99 57 19 76 47 22
Ha2 = 6, α = 2 75 16 2 100 61 0 100 68 2 81 29 6

Ha2 = 20, α = 1 75 10 0 100 48 0 100 57 3 68 15 3
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Figure 9. (a,b) shows the behavior of fitness value and (c,d) represents the convergence of the value of TIC during the
optimization procedure of Equation (17), by the ANN-GNDO-SQP algorithm.

Figure 10. Boxplots for the analysis of the mean absolute deviation obtained by the design scheme during 100 independent
runs for (a) same and (b) different values of nonlinearity parameter and Hartmann electric number.
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1.43 × 10−7 1.12 × 10−5 2.15 × 10−5 1.03 × 10−5 1.38 × 10−4 1.29 × 10−4 7.86 × 10−6 1.20 × 10−4 1.19 × 10−4 5.23 × 10−8 1.75 × 10−5 4.01 × 10−5
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Computational complexity analysis (CCA) was evaluated for the proposed algorithm
based on the average time taken to calculate unknown neurons in the ANN structure
using the GNDO-SQP algorithm. The execution time of the ANN-GNDO-SQP algorithm
for different values of the nonlinearity parameter and Hartmann electric number in the
EHD flow problem in terms of minimum, mean, and standard deviations are shown in
Table 8. The results showed the consistency and efficiency of the proposed algorithm. All
calculations and evaluation for this research were performed on an HP laptop EliteBook
840 G2 with intel (R) Core (TM) i5-5300 CPU @ 2.30 GHz, 8.00 GB RAM, 64 bits, operating
in Microsoft Windows 10 Education edition, running R2018a version of MATLAB.

Table 8. Computational complexity analysis of the proposed algorithm for different values of the nonlinearity parameter
and Hartmann electric number.

GNDO SQP ANN-GNDO-SQP ANN-PSO-IPA

Cases Min. Mean Std. Min. Mean Std. Min. Min.

Ha2 = α = 0.5 4.6280 s 5.297 s 0.5796 s 0.1180 s 0.1467 s 0.0255 s 4.746 s 5.6643 s
Ha2 = α = 1.0 4.5540 s 4.7603 s 0.1837 s 0.1380 s 0.1463 s 0.0097 s 4.692 s 5.5877 s
Ha2 = α = 2.0 5.1220 s 5.6727 s 0.6375 s 0.1360 s 0.1733 s 0.0499 s 5.258 s 5.5285 s
Ha2 = 6, α = 2 4.5510 s 4.6330 s 0.0886 s 0.1350 s 0.1407 s 0.0051 s 4.686 s 5.3493 s

Ha2 = 20, α = 1 4.6200 s 4.7697 s 0.1690 s 0.1340 s 0.1668 s 0.0642 s 4.754 s 5.5411 s
Ha2 = 50, α = 2 4.5410 s 4.5607 s 0.0224 s 0.1400 s 0.1523 s 0.0150 s 4.681 s 5.3898 s

5. Conclusions

In this paper, we analyzed the mathematical model of the electro hydrodynamic
(EHD) flow of fluid in a circular cylindrical conduit with an ion drag configuration. The
problem was modelled by the boundary value problem with strong nonlinearity due to
the rational function form of the nonlinearity of the EHD flow’s equation. The solution of
such a nonlinear differential equation is always a difficult task for any traditional, as well
as modern, numerical techniques. Therefore, to calculate the velocity profile of the EHD
flow we designed a neuro soft computing technique based on artificial neural networks.
Our key contributions are summarized as follows:

• We developed a neuroevolutionary soft computing paradigm to analyze the mathemat-
ical model of the electrohydrodynamic (EHD) flow of fluid in the circular cylindrical
conduit by exploiting the global search efficiency of GNDO algorithm and local search
support of SQP.

• The ANN-GNDO-SQP algorithm is an unsupervised learning mechanism that has a
simple structure and is easy to implement. It does not require any prior information
about the problem aside from the essential initial and terminal setting of parameters
in GNDO-SQP for the execution.

• The design scheme known as the ANN-GNDO-SQP algorithm was implemented to
study the effect of variations in the nonlinearity parameter and Hartmann electrical
number on w∗(r∗), w∗

′
(r∗), and w∗′′ (r∗) of the fluid.

• The results concluded that an increase in Hartmann electric number
(

Ha2) with fixed
values of nonlinearity parameter caused an increase in the velocity profile, while
an increase in the nonlinearity parameter with a fixed Hartmann electric number
possessed an inverse relation with the velocity of the fluid.

• The results obtained by the proposed algorithm were compared with the least square
method and orthogonal Bernstein collocation method. Statistics showed that the
ANN-GNDO-SQP algorithm overlapped the exact solutions and analytical solution
with minimum absolute errors.

• The results of performance measures show that the proposed algorithm is accurate,
reliable, and efficient in solving real-world problems.
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