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Abstract: Short-term residential load forecasting is the precondition of the day-ahead and intra-day
scheduling strategy of the household microgrid. Existing short-term electric load forecasting methods
are mainly used to obtain regional power load for system-level power dispatch. Due to the high
volatility, strong randomness, and weak regularity of the residential load of a single household, the
mean absolute percentage error (MAPE) of the traditional methods forecasting results would be too
big to be used for home energy management. With the increase in the total number of households,
the aggregated load becomes more and more stable, and the cyclical pattern of the aggregated load
becomes more and more distinct. In the meantime, the maximum daily load does not increase
linearly with the increase in households in a small area. Therefore, in our proposed short-term
residential load forecasting method, an optimal number of households would be selected adaptively,
and the total aggregated residential load of the selected households is used for load prediction. In
addition, ordering points to identify the clustering structure (OPTICS) algorithm are also selected to
cluster households with similar power consumption patterns adaptively. It can be used to enhance
the periodic regularity of the aggregated load in alternative. The aggregated residential load and
encoded external factors are then used to predict the load in the next half an hour. The long short-term
memory (LSTM) deep learning algorithm is used in the prediction because of its inherited ability to
maintain historical data regularity in the forecasting process. The experimental data have verified
the effectiveness and accuracy of our proposed method.

Keywords: residential electric load forecasting; adaptive load aggregation; deep learning; home
energy management; load cluster

1. Introduction

The different kinds of appliances have increased significantly in households, and the
residential electrical load has maintained a medium–high growth rate over the years. In the
meantime, with the development of renewable energy technologies, rooftop photovoltaic
and distributed electric vehicles are also widely involved in home energy management [1–3].
Therefore, the household microgrid will be established by household appliances, rooftop
photovoltaic, distributed electric vehicles, and battery energy storage devices [4–6]. The
constructed household microgrid can dispatch the residential electricity flexibly, provide
demand-side response capability, and, finally, improve the economic performance of the
microgrid operational management.

Short-term residential load forecasting is the precondition of the day-ahead and intra-
day scheduling strategy of the household microgrid. Accurate short-term load forecasting
results can be used to form a more reasonable home energy scheduling plan [7–9]. Since

Energies 2021, 14, 7820. https://doi.org/10.3390/en14227820 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-5148-340X
https://doi.org/10.3390/en14227820
https://doi.org/10.3390/en14227820
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14227820
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14227820?type=check_update&version=2


Energies 2021, 14, 7820 2 of 21

dispatching management is only applied in the large-scale regions in the traditional power
grid, existing electric load forecasting methods are mainly used to obtain regional power
load for generation scheduling, transaction scheduling, and network dispatching [10,11].
These load forecasting methods can be mainly grouped into three categories, including
similar day or similar time interval-based forecasting methods, frequency component-based
forecasting methods, and meteorological factor-based load forecasting methods.

Similar day or similar time interval-based load forecasting methods use the historical
load data at the same time in the related and nearby days to obtain the load value at
some time on the prediction day [12]. In these methods, similar day identification and
data smoothing algorithms are the most important procedures. Algorithms such as Euclid
distance or density clustering have been proposed and used to find the most suitable
similar day or similar time interval [12,13]. In the meantime, several data smoothing
algorithms are also applied in the forecasting process to efficiently find the laws of the
relevant historical data and the forecasting load value on the prediction day, including
the least square regression algorithm [14], support vector machine [15], artificial neural
network [16], etc. The principle of these methods is essentially based on the electrical
consumption patterns on the day of the week, which are directly determined by human
activity. Nowadays, these methods are easy to realize and widely applied in the field.

Frequency component-based forecasting methods would decompose the electric load
series into components with daily periodicity, weekly periodicity, climate-vulnerable low
frequency, and randomness-determined high frequency. In addition, corresponding al-
gorithms are optimally designed to forecast these several components separately. In
references [17–20], variational mode decomposition and wavelet transform algorithms are
used to decompose time series load data separately into several components with different
frequencies. These methods use the power consumption patterns of all components instead
of the entire load regularity. The influence of the random and abnormal load disturbance
on the forecasting result can be reduced because of the effective decomposition and special
signal processing for different components.

In contrast to the first and second kinds of methods, meteorological parameters
are directly used as input factors in meteorological factor-based load forecasting meth-
ods. In these methods, in addition to historical time series of electric load, intraday
meteorological parameters and accumulative effect factors of historical meteorological
parameters are specially converted to several input variables by numerical value map-
ping [21–24]. These variables are combined with the power consumption data to form
multi-dimensional input parameters for the following forecasting algorithms, including ar-
tificial neural network [21–23], support vector machine [24], and the mutation of these two
algorithms. This kind of method intensifies the influence of the meteorological parameters
on the electric load forecasting, and then the prediction accuracy can be further improved
and the forecasting error can be reduced.

The abovementioned three kinds of short-term electric load forecasting methods have
been widely applied in the field for system-level load forecasting over the years. The
forecasting error of the power consumption in the whole country, province, or city can
be controlled under 0.5%, as stated in some reports [25]. The precondition of all these
methods is that the predicted load should have a remarkably regular pattern. Due to the
randomness of human activities, the residential electric load of a single-family dwelling or
limited multi-family houses has high fluctuation and ruleless trajectory. Therefore, when
traditional electric load forecasting methods are applied in home energy management, the
mean absolute percentage error (MAPE) would be greater than 40% [26].

Different from the summing electric load in a city or a region, volatility and uncertainty
exist in residential power consumption. The external factors, including the routine of life,
human occupancy, and household appliances, will directly affect the short-term individual
power consumption. Reference [27] analyzes the characteristics of residential electric load
based on the nature of different appliances and the routine of life. Due to the burdensome
and insatiable data collection, a physical model is automatically inferior to the data-driven
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electric load forecasting model. With the development of the smart meter and Internet of
Things technologies [28], data-driven residential load forecasting algorithms have gained
the attention of scholars. References [29,30] summarize the data-driven forecasting methods
that are applied in building energy management. In these methods, feature generation
from the daily timetable, clustering algorithms, and deep learning networks are used to
forecast the building energy consumption. In [31], convolutional neural networks (CNN)
and long short-term memory neural networks (LSTM) are combined to forecast the electric
load of a four-story building robustly and reliably. To improve the LSTM capability to deal
with the varying length of input features, the attention mechanism is integrated into the
LSTM algorithm to improve the prediction performance [32]. The attention mechanism is
also used to improve the prediction accuracy for a sudden increase in power usage [33].
Compared with the load prediction of a whole building or a whole floor, the electric
load prediction at a single-unit level is more difficult because of the greater randomness.
In [34], an LSTM algorithm is used to achieve power consumption patterns and human
behaviors in real time. It can improve the load prediction adaptivity in home appliances
configuration. Furthermore, appliance consumption sequences are integrated into the
LSTM algorithm to especially improve prediction accuracy for the volatile problem in [35].
In the meantime, modified LSTM algorithms are also proposed in [36,37] to adaptively
assign weights to temporal features and extract spatial characteristics effectively. These
methods provide several effective algorithms to forecast the individual electric load, and
the prediction process can be adopted for reference by future research. However, the
prediction results show that the prediction error for a single unit is still too big to be
applied in the field. The mean absolute percentage error (MAPE) nearly reaches 30–40%
for different experimental data. Therefore, the prediction load results cannot be directly
used for home energy management.

In this paper, a novel short-term residential load forecasting framework will be pro-
posed to fill the gap between the electric load forecasting of a single-family unit and that of
a whole city. Firstly, characteristic analysis of residential electric loads will be conducted
to verify the necessity of load aggregating. Secondly, an optimal aggregated electric load
algorithm is proposed and discussed by using typical load clustering algorithms. Thirdly,
a LSTM-based residential load forecasting model is proposed and discussed with the
input parameters of the adaptive load aggregation and the encoded external factors. The
experimental data has verified the effectiveness and accuracy of our proposed method.

2. Power Consumption Analysis of Household Appliances

The residential electric load consists of different home appliances. These residential
electric loads can be grouped into three categories. The first kind of load works at a
relatively consistent time every day, including appliances such as rice cookers, kitchen
ventilators, and refrigerators. The second kind of load is directly determined by external
factors, including heating, air-conditioning, and electric fans. The third kind of load would
work every day, but the corresponding operation time would vary and be influenced by
the routine life of the host family, including the electric water heater and laundry machine.

Nowadays, the residential electric load is mainly collected by intelligent electric meters
and used by the marketing departments of electric utilities. Globally, the sampling intervals
of residential load are in the range of 15 min to one hour in the field [38]. In this section,
the historical data of residential electric load would be analyzed to obtain the statistical
characteristics based on typical quantitative indicators.

2.1. Quantitative Indicators of Residential Electric Loads

Based on the collected historical data and the requirement of load prediction, the
following five indicators would be used to describe the characteristics of residential
electric load.

(1) maximum daily load
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The maximum daily load is the maximum value of selected residential electric load in
a whole day and is represented by Pmax in this paper.

(2) mean daily load
The mean daily load is the mean value of selected residential electric load in a whole

day and is represented by Pv in this paper. It will be calculated by

Pυ =
1

N × ∆t

N

∑
i=1

Pi × ∆t (1)

where Pi represents the ith sampling data of selected residential electric load, ∆t represents
the sampling interval of the smart meter, N represents the total sampling number in a
whole day, and N × ∆t equals 24 h.

(3) mean daily loading rate
The mean daily loading rate, γ, is the ratio of mean daily load to the maximum daily

load, which is expressed by

γ =
Pυ

Pmax
(2)

(4) minimum daily loading rate
The minimum daily loading rate, β, is the ratio of minimum daily load, Pmin, to the

maximum daily load, Pmax, and is calculated by

β =
Pmin
Pmax

(3)

(5) daily volatility index
The dispersion degree of sample data is usually analyzed and obtained by statistical

analysis technique. The coefficient of dispersion can be used to analyze the volatility of the
daily electric load. The daily volatility index of residential electric load, FL, is calculated by

FL =

√√√√ 1
N − 1

N

∑
i=1

(Pi − Pv)
2/Pv (4)

2.2. Characteristic Analysis of Residential Electric Loads

Among the public datasets about residential electric load, three datasets are used
widely in the papers. They include the data from Smart Grid Smart City (SGSC) project
in Australia [39], the data from the Smart Metering project in Ireland [40], and the data
from the Smart-star project in the USA [41]. The SGSC project comprises historical electric
load data of 10,000 households recorded from 2012 to the 2014 under a sampling interval of
30 min, while the load data of about 4000 households from 2009 to 2010 was recorded under
the same sampling interval in the Smart Metering project. Unlike the abovementioned
datasets, the electric load data and external factors are detailed and recorded for about
400 households from 2013 to 2016 in the Smart-star project, and the sampling interval
reaches 1 min for several individuals.

Due to the good readability and complete continuity of the recorded data, the set from
the SGSC project will be used in our research after the comparison. Firstly, the characteristic
of a single-unit residential electric load is analyzed over a long period of time. Secondly, the
load characteristics of different units are analyzed and compared with each other. Thirdly,
the difference between a single-unit load and the aggregated load of multiple units is
detailed analyzed, and the results will be used for the following load prediction method in
this paper.

2.2.1. Electric Load Characteristics of a Single Unit

As an example, take the residential electric load of the customer numbered as 10006414.
The corresponding recorded power consumption data from February 2012 to March 2014
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is selected as sample data. The indicators of the selected data are calculated to illustrate the
load characteristics.

The obtained maximum daily loads of the customer with number 10006414 for
750 consecutive days are shown in Figure 1. Statistical analysis has been performed to
obtain the distribution of the maximum daily loads. The most probable maximum daily
load is in the range of (0.5 kW, 1.0 kW), which accounts for 37.5% of the total 750 days. The
proportion of maximum daily load with the range of (1.0 kW, 1.5 kW), 20.0%, is similar to
that with the range of (1.5 kW, 2.0 kW), which equals 21.6%. The proportions of maximum
daily loads with the range of (2.0 kW, 2.5 kW) and the range of (2.5 kW, 3.0 kW) equal 11.2%
and 5.9%, respectively. In addition, the maximum daily load changes with the seasons. For
example, as shown in Figure 1, the values of maximum daily loads from April to October
are bigger than those from November to March.

Figure 1. The maximum daily loads of the customer numbered as 10006414 from February 2012 to
March 2014.

Other characteristics of residential load for the customer with number 10006414 have
also been analyzed. The other corresponding quantitative indicators of residential electric
loads for these 750 days are also analyzed and given as follows.

The mean daily load of customer 10006414 is mainly located in the range of (0.2 kW,
0.4 kW), and the corresponding proportion equals 63.2%. In the meantime, the mean daily
load increased significantly in the period from the middle of May to the beginning of
August. The proportions of mean daily loads with the range of (0.4 kW, 0.6 kW) and the
range of (0.6 kW, 0.8 kW) equal 21.9% and 7.9%, respectively.

The mean loading rate mainly varies in the range of 0.2 to 0.4. It is much less than
the loading rate of a provincial region, which usually equals 0.8. These results show that
the residential load is more volatile than the regional load. Furthermore, the minimum
loading rate is in the range of 0.05 to 0.15. In other words, the peak–valley difference of the
residential load is very big, and it is far below that of industrial loads. The corresponding
daily volatility index is in the range of 0.15 to 0.3. The high volatility and big peak–valley
difference of residential load bring an enormous challenge for the short-term residential
load prediction.

2.2.2. Electric Load Characteristics of Different Units

Ten households are randomly selected from the SGSC set data, and the corresponding
load characteristics are analyzed and compared with each other based on the historical
data in March 2013.

The maximum daily loads of the selected ten units are shown in Figure 2. The results
show that no noteworthy associations exist between two maximum daily loads curves. For
example, the maximum value of the maximum daily loads of customer 10006414 appears
on 13 March and equals 2.306 kW, while the minimum value appears on 1 March and equals
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only 0.206 kW. The maximum value of the maximum daily loads of customer 10006704
appears on 6 March and equals 7.126 kW, while the minimum value appears on 3 March
and equals 2.608 kW. There are obvious differences between the maximum daily loads of
customer 10006414 and that of customer 10006704.

Figure 2. The maximum daily loads of the selected ten customers in March 2013.

The mean daily loads and the daily volatility indicators of these ten selected units
are also analyzed, and some quantitative indicators are given in Table 1 for intuitive and
clear comparison.

Table 1. Quantitative indexes of electric loads of selected customers.

Quantitative
Indexes

Customer Id: 10006414 Customer Id: 10006486

Pmax/kW Pv/kW γ β FL Pmax Pv γ β FL

10 March 1.614 0.380 0.235 0.062 0.212 0.880 0.402 0.457 0.216 0.214

20 March 2.020 0.313 0.155 0.045 0.158 1.368 0.310 0.226 0.045 0.248

30 March 1.676 0.385 0.230 0.050 0.208 1.106 0.365 0.330 0.081 0.258

Quantitative
Indexes

Customer Id: 10006572 Customer Id: 10006630

Pmax/kW Pv/kW γ β FL Pmax/kW Pv/kW γ β FL

10 March 1.546 0.507 0.328 0.132 0.152 4.710 1.009 0.214 0.042 0.252

20 March 1.390 0.563 0.405 0.138 0.197 4.380 0.786 0.179 0.043 0.188

30 March 0.756 0.428 0.566 0.278 0.200 4.720 0.835 0.177 0.040 0.224

The mean daily load analysis results show that some customers consume similar daily
electric quantities among these days, and some customers are different. For example, the
mean daily loads of customer 10006414 fluctuate within a small range of (0.2 kW, 0.4 kW),
and the mean daily loads of customer 10006572 also fluctuate within a small range of
(0.4 kW, 0.6 kW). Unlike these two customers, the mean daily load of customer 10006684
varies on a large scale. The values fluctuate sharply from 2 kW to 6.5 kW on 3 March,
9 March, and 15 March, while the values remain in the range of (1.8 kW, 1.9 kW).

Compared to the irregular patterns of residential loads, the daily volatility indicators
of the selected ten customers are within the same range, located from 0.15 to 0.25. How-
ever, further analysis indicates that the daily volatility index variation curves of any two
households are different. These results are caused by the similar household appliances and
different working processes in these selected units.

The electric loads of eighty selected households are used to form the distribution
probability of mean daily loading rates, and the distributions on three selected days are
shown in Figure 3. For the same eighty households, the distribution probability of mean
daily loading rates is different on 1 March, 5 March, and 10 March in 2013. On 1 March,
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the maximum probability of the mean daily loading rates appears in the range of (0.1 kW,
0.15 kW), while the maximum probability of the rates appears in the range of (0.15 kW,
0.2 kW). In the meantime, the mean daily loading rates of these selected eighty households
are distributed in a wide range, especially in the range of (0.05 kW, 0.4 kW).

Figure 3. The distribution probability of mean daily loading rates of eighty selected customers: (a) 1 March; (b) 5 March;
(c) 10 March.

2.2.3. Electric Load Characteristics of a Single Unit and Total Loads of Multiple Units

The abovementioned analysis results show that the electric load of a single unit
has weak regularity. If the traditional load prediction methods are applied for the load
forecasting of a single unit, a big forecasting error would inevitably appear. Based on the
field data and historical experience, the daily volatility index of the total electric load of a
whole region is very small because the load fluctuations of all units balance themselves out.
With the increase in households in the region, the pattern of the total electric load becomes
more and more stable, but too many residents in one region would exceed the scale limit of
the microgrid, and then reduce the operational flexibility of the microgrid.

Quantitative indicators of the total electric load of the abovementioned selected ten
households are analyzed and shown in Figure 4. Furthermore, another ten households are
added to the cluster, and the indicators of the total electric load of twenty households are
analyzed. The quantitative indicators of these total residential electric loads are also listed
in Table 2.

Figure 4. The quantitative indexes of total electric loads of the ten selected residents: (a) maximum daily load; (b) mean
daily load; (c) daily load rate; (d) minimum daily load rate; (e) volatility index.



Energies 2021, 14, 7820 8 of 21

Table 2. Quantitative indicators of the total electric load of the selected multiple households.

Quantitative
Indexes

Ten Households Twenty Households

Pmax/kW Pv/kW γ β FL Pmax/kW Pv/kW γ β FL

10 March 19.674 6.194 0.315 0.119 0.166 23.278 8.950 0.384 0.156 0.163

20 March 19.866 5.533 0.279 0.086 0.154 25.378 9.799 0.386 0.129 0.150

30 March 11.178 5.512 0.493 0.181 0.225 17.448 9.410 0.539 0.203 0.180

There is some regular pattern in the total power consumption of the selected ten
households. As shown in Figure 4a, the maximum daily loads of the total load of the ten
households appears as local minimums on 6 March, 12 March, 16 March, 23 March, and
30 March, and the corresponding values equal 9.232 kW, 11.252 kW, 12.3256 kW, 11.222 kW,
and 11.178 kW, respectively. The maximum daily loads of the total load of the ten house-
holds appear as local maximums on 10 March and 20 March, and the corresponding values
equal 19.674 kW and 19.866 kW. The maximum daily loads of the total load contain spe-
cific periodic components expect for some fluctuations between 6 March and 16 March.
The maximum daily loads of the total load of the twenty households have more stable
regularity. More precisely, the first local minimum of maximum daily loads of the total
load appears on 6 March, which equals 12.226 kW. Then, the maximum daily load of the
total load increases to the first local maximum value, occurring on 10 March, which equals
23.728 kW. Subsequently, the maximum daily load of the total load decreases to the second
local minimum value, occurring on 14 March, which equals 14.462 kW. The maximum
daily loads of the total load vary with the same periodic pattern in the following days.

Moreover, the maximum value of maximum daily loads for the total load of the ten
households in March 2013 equals 20 kW, while the maximum value of maximum daily
loads for the total load of the twenty households only equals 25 KW. In the meantime, the
maximum value of maximum daily loads for a single household with number 10006704
among these selected twenty households unexpectedly reaches 7 kW on 6 March. Therefore,
the maximum daily load does not increase linearly with the increase in households in a
small area during a period of time. The optimal aggregation of residential loads would
smooth the electric load under a small enough region to ensure the flexibility of the
energy management.

As shown in Figure 4b, the mean daily loads of the total load of the ten households
fluctuate within the range of (5 kW, 6.5 kW), and some outlier data exist in the curve. For
example, the mean daily load of the total load of the ten households on 24 March equals
7.1 kW. For the twenty households, the mean daily loads of the total load vary within the
range of (8 kW, 11 kW), and only one point does not locate in this range, which appears
on 2 March and equals 12.1 kW. The mean daily load becomes more regular with the total
number of houses increasing.

The mean daily loading rates of the total load of the selected ten households are
analyzed in March 2013, and the results show that these rates are in the range of (0.3, 0.55).
The results also show that the mean daily loading rates of the total load of the selected
twenty households are in the range of (0.4, 0.65). In contrast with these aggregated loads,
the mean daily loading rates of a single household are located in the range of (0.1, 0.3),
which is discussed in Section 2.2.2. This comparison result demonstrates that the total
load is tending towards stability with the total number of houses increasing. The analysis
results of daily volatility indexes are also used to verify this result again. Compared with
the daily volatility indexes of a single household within the range of (0.15, 0.25), the daily
volatility indexes of the total load of the ten selected households are in the range of (0.16,
0.24), and the indexes of the twenty selected households are in the range of (0.15, 0.23).
This result shows that the daily volatility indexes reduce slightly when the total number of
households increases.

Compared with the quantitative indicators of a single household given in Table 1 and
those of the aggregated load given in Table 2, the residential load of a single household
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has high volatility, strong randomness, and weak regularity. With the increase in the total
number of households, the total aggregated load becomes more and more stable, and
the cyclical pattern of the aggregated load becomes more and more distinct. Therefore,
in our proposed short-term residential load forecasting method, the optimal number of
households would be selected, and the total aggregated residential load of the selected
households is used separately for prediction.

3. A Novel Short-Term Residential Electric Load Forecasting Method
3.1. Basic Principle of Our Proposed Method

Short-term residential electric load forecasting is used to predict the power consump-
tion in the next hours. In our proposed method, the aggregated load of multiple households
is used, instead of that of a single household. The total number of households is determined
by the minimum households when the short-term prediction result of the corresponding
aggregated load meets the precision requirements. The detailed residential load prediction
process of our proposed method is shown in Figure 5.

Figure 5. The detailed residential load prediction process of our proposed method.

We would extract the mean daily load rate, γ, and the minimum daily load rate, β,
from the raw residential load data first. Then, the historical daily load of each household is
clustered by the ordering points to identify the clustering structure (OPTICS) algorithm,
using indexes γ and β. Thirdly, the residential load would be aggregated adaptively
according to the classified results of all households. The basic principle of household
classification is that the households with the same number of clusters for historical data
would be classified into one category. Additionally, the households with a number of
clusters greater than two are all classified into one category. The aggregated load data
and the corresponding time-related features are used as the input parameters of the long
short-term memory (LSTM)-based forecasting model. Finally, the total load predicted
results are obtained using all selected and aggregated load forecasting results.

3.2. Optimal Number of Total Aggregated Households

As discussed in Section 2.2, the pattern of the total electric load becomes more and
more stable with the increase in the total number of aggregated households. The total
aggregated residential loads would smooth the electric load under a small enough region
to ensure the flexibility of the energy management. The randomness and fluctuation of the
residential load are determined by the human life routine and home appliances; thus, it is
related to the city in which these households are located.
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In this paper, we use a typical LSTM-based load forecasting method to identify the
optimal number of total aggregated households. The relationship between the prediction
MAPE and the number of total aggregated households can be obtained through a great deal
of load prediction processes under different numbers of randomly selected households.
The optimal number is identified as the minimum number of households when the MAPE
meets the requirement of the microgrid dispatch.

3.3. Adaptive Density-Based Spatial Clustering Algorithm for the Residential Load

The analysis results in Section 2.2 show that obvious differences exist in the power
consumption patterns of different households. To enhance the regularity of the aggregated
residential load further, the households with similar patterns in the optimally selected
households will be clustered as one group. Then, the corresponding load of each group
is used separately for prediction. In our proposed method, the OPTICS algorithm will be
used to identify households with similar patterns.

Typical clustering algorithms include K-means, density-based spatial clustering of
applications with noise (DBSCAN), and OPTICS. The comparison results among these
algorithms are given in Table 3.

Table 3. Comparison results among different clustering algorithms.

Clustering Algorithm Basic Principle Advantages Disadvantages

K-means

The sample set is divided into
K clusters according to the

distance between the samples
and core points of clusters.

It has low computational
complexity, fast convergence,

and strong interpretability.

a. The number of clusters, K,
needs to be preset;

b. It is difficult to converge when
the algorithm is applied in

non-convex datasets;
c. It is sensitive to noise samples.

DBSCAN It relies on a density-based
notion of clusters.

a. It is suitable in discovering
clusters of arbitrary shape;
b. It is not sensitive to the

noise samples.

a. The clustering quality is poor
when the density of sample
distribution is not uniform;

b. Two parameters, including
reachable distance threshold and

sample number of clusters
threshold, needs to be preset.

OPTICS

It is an extended DBSCAN
algorithm for an infinite

number of distance
parameters.

It does not limit us to one
global parameter setting in
traditional density-based

clustering algorithms.

The time complexity of this
algorithm increased a little.

Due to the high volatility and strong randomness of residential load, it is not possible
to identify the clustering number of the selected households in advance. In the meantime,
some daily loads are irregular and should be regarded as outliers. Although there are some
other extensions of K-means algorithms to select a proper cluster number or remove the
outliers automatically [42,43], the improved K-means algorithms would be too complicated
to find a proper cluster number and remove the outliers simultaneously. Therefore, the K-
means algorithm is not suitable for our proposed method. Two parameters of the DBSCAN
algorithm directly affect the reasonability of the clustering results, including the distance
from a neighborhood point to a defined core point and the minimum number of samples in
a cluster, but the selection of these two parameters has no paradigm. Improperly selected
parameters would significantly reduce the effectiveness of the DBSCAN algorithm. In
contrast, a variable neighborhood radius is used in OPTICS algorithm to avoid the influence
of improper parameters on the clustering result. The samples can be clustered adaptively
based on the distribution density. In this paper, the OPTICS algorithm is used to realize
load clustering.

The detailed residential load clustering process is given as follows.
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Step 1: The quantitative indicators of all residential electric loads in the objective
area are analyzed and used for the distance calculation in the clustering algorithm. In
our proposed method, the mean daily loading rate, γ, and the minimum daily loading
rate, β, are selected as the key parameters for load clustering. These two parameters of ith
historical daily load of the kth household are represented by γk,i and βk,i, respectively. The
distance between the quantitative indexes of ith day and jth day of the kth household is

represented by dk,i,j, and can be expressed by dk,i,j =

√(
γk,i − γk,j

)2
+
(

βk,i − βk,j

)2
.

Step 2: The historical loads of the kth household in the past D days are clustered
by the OPTICS algorithm. The detailed process is illustrated as follows, which includes
Algorithms 1 and 2. These historical loads of the kth household would be clustered as NCk
classes. The pth class includes Np days, which are denoted as Dk,p,1, Dk,p,2, . . . , Dk,p,Np.

Algorithm 1 The Clustering Subprocedure 1

input: D: total number of historical days, dk,i,j: distance between the ith day and jth day of the kth
household, MinPts: minimum samples in the neighborhood area, Ω: set of core samples, N: size
of the set Ω, cd(o): the core distance of element o, rd(j, o): reachable distance from element j to
element o.
output: results queue M.
1 foreach item o ∈ Ω do
2 Mark item o and put it into results queue M
3 Calculate the reachable distance of any element j (dk,o,j ≤ dset):

rd(j, o)= max
{

cd(o), dk,o,j

}
4 The unmarked elements belonging to the neighborhood area of o are sorted in ascending order.
And put the elements into seeds queue P.
5 If p = ∅, then jump to the line 1 and move to the next element.
6 If p 6= ∅, foreach item q ∈ p, mark item q and put it into results queue M.
7 If q ∈ Ω, the unmarked elements belonging to the neighborhood area of q are put into seeds
queue P. And calculate the reachable distance of any elements belonging to queue P.
8 If q /∈ Ω, do nothing
9 end
10 end

Algorithm 2 The Clustering Subprocedure 2

input: M: results queue, dset: distance set value, ρset: set value for noise point treatment.
output: NCk subsets after the clustering process
1 foreach item s ∈ M do
2 If rd(s, o) ≤ dset, item s is assigned to the current cluster
3 If rd(s, o) > dset & cd(s) ≥ ρset, item s is identified as an outlier
4 If rd(s, o) > dset & cd(s) < ρset, item s is assigned to another cluster
5 end

Step 3: All households in the region are aggregated into several groups based on the
clustering results in step 2. The detailed process is given as follows.

Step 3.1: If the number of clusters for kth household equals that for jth household, the
kth household and jth household would be aggregated as one group. All households would
be divided into NH classes, and the number of households in the mth class is represented
by Nm.

Step 3.2: If the number of households in the mth class exceeds the threshold Nset,
the mth class should be divided into small groups again. The number of clusters for any
household in the mth class is represented by U. For any household b, the corresponding
cluster id is sorted in descending order according to the days contained in the cluster.
The historical days in the qth cluster id of household b is represented by set N(b,q), and
the elements of N(b,q) are represented by Db,q,1, Db,q,2, . . . , Db,q,Nq. The household x and
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household y in the mth class would be aggregated into one group if the following criteria
were met.

(1) k1 × [|N(y,1)| + |N(y,2)|] ≤ |N(x,1)| + |N(x,2)| ≤ k2 × [|N(y,1)| + |N(y,2)|].
Generally, k1 is set as 0.7 and k2 is set as 1.3.

(2) |N(x,1) ∩ N(y,1)| ≥ k3 × |N(x,1) ∪ N(y,1)|. Generally, k3 is set as 0.25.
(3) |N(x,2) ∩ N(y,2)| ≥ k4 × |N(x,2) ∪ N(y,2)|. Generally, k4 is set as 0.15.
According to the abovementioned three steps, residential loads in the predicted area

can be clustered and aggregated adaptively. The results would be used as the input of
LSTM to realize short-term residential load forecasting.

3.4. LSTM-Based Short-Term Data Prediction for Residential Load

LSTM is one kind of recurrent neural network (RNN). In LSTM, the cell state is added
to the hidden layer, and the forget gate parameter is used to update the cell state. Therefore,
cell state can be further used to identify the signals which need to be abandoned and the
signals which are required to be reserved in the next step. This characteristic can be applied
to maintain the dependency relationship in the long time series without vanishing and
exploding gradients problems. The inherited ability to maintain historical data regularity
can improve prediction accuracy in the future. Therefore, LSTM is selected as the deep
learning algorithm to predict the short-term load in the next hours in our proposed method.

The LSTM-based short-term data prediction process for residential load is shown in
Figure 6. In our method, a proper K look-back time step is defined to select the length of
time series of historical load as the input data. In the meantime, time-related feature data
are also extracted and used to form the input matrix.

Figure 6. The LSTM-based short-term residential load prediction process.

(a) The time series of historical load under selected K look-back time step, which is
represented by E = {et−K, et−K+1, . . . , et−2, et−1};

(b) The daily load data are related to the timetable each day. Hence, the time t in each
day is encoded into t/dx according to the load sampling interval dx;

(c) The pattern of historical data is related to human life routine, which is usually inextri-
cably linked to the day of the week. Hence, the sorted number of days of the week
related to the historical data is encoded into 0 to 6.

The input matrix would be preprocessed to avoid the influence of different dimensions
of data and improve the convergence rate by the min–max normalization. The constructed
input matrix X ∈ R3×k is then used as the input data of our proposed LSTM-based
forecasting model. The constructed load forecasting LSTM network consists of one input
layer, two hidden layers, and one output layer. The input layer contains three cells, and
each hidden layer contains twenty memory cells. Each memory cell is a self-recurrent unit,
and it is preserved subsequently at the k look-back time steps. The input vector M for the
memory cell consists of the output element of the input layer at time t and this memory
cell output at the previous time step.
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The residential load data of similar days at the same time are relevant to the load
value of the prediction day at the prediction time, as well as the load data at the previous
time window. Therefore, the look-back time steps should be set as the integral multiple of
the total sampling number, 24 h/dx, of a whole day.

4. Simulation and Results Discussion
4.1. Experimental Datasets and Criteria in the Proposed Load Prediction Process

In this paper, the residential load set from the SGSC project is used in our short-term
residential load prediction. The recorded residential load of 50, 100, 150, and 200 randomly
selected households is used to verify our proposed method. The corresponding period of
time is from 1 March 2013 to 31 March 2013. These load data are divided into two subsets,
including the training set and test set. In the training set, the data from 1 March to 24
March of 1152 samples are selected to train the constructed LSTM network. Furthermore,
336 load samples from 25 March to 31 March are used to test our proposed short-term load
forecasting method.

In the forecasting method, several parameters, especially the hyperparameters of the
LSTM network, are predefined according to our rich experience in load forecasting.

a) Thirty-one history days are used in our experimental datasets, hence, the min-
imum number of points in the neighbors, MinPts, is set as five in the OPTICS
clustering algorithm.

b) The short-term load forecasting result is used for microgrid power dispatch. Hence,
the high computational efficiency is needed in our scenario. The learning rate is set as
0.01 initially, with an Adam optimizer to reduce the LSTM network learning time. In
the meantime, the number of iterations is set as 150 to avoid continuous oscillation.
To effectively evaluate the load forecasting result, MAPE of the prediction load is
used in the cost function.

c) The sampling time interval of the historical load data is 30 min. Hence, there are
48 samples in a whole day. The look-back time step of the LSTM network is set as
48; therefore, the load at the same time of the previous day and the load before the
prediction time can be both used to reveal the forecasting load value.

d) The rolling load prediction strategy is adopted for the short-term residential load
forecasting in this paper. In our following experiments, the constructed LSTM network
outputs one prediction result after each prediction process without loss of generality.

4.2. Short-Term Residential Load Forecasting Results of a Single Household

The short-term load forecasting tests are carried out for each household by our pro-
posed LSTM-based forecasting method. The MAPE values of 48 forecasting results on
31 March are calculated for each of the 200 selected households. The distribution of the
corresponding 200 MAPE values is shown in Figure 7.

As shown in Figure 7, the distribution of MAPE values on 31 March for the selected
200 households is analyzed according to the twelve divided ranges. The vertical axis
represents the total number of residential households within the corresponding range.
Only one MAPE value is below 10% among these 200 households, while the MAPE values
of other households are greater than 10%. Notably, ten MAPE values are even greater than
200%. The vast majority of individual forecasting errors are greater than the average MAPE
values of 200 households, which equals 74.6%. This result shows that the forecasting error
of any individual forecast has high variability, and the short-term load prediction accuracy
of a single household cannot meet the requirements of home energy management.
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Figure 7. Histogram of MAPE values of forecasting results on 31 March for the selected 200 households.

4.3. Results of Residential Load Clustering

The minimum daily loading rate and the mean daily loading rate mentioned in
Section 2.2 are used as the key parameters of daily load clustering for individual customers.
The clustering results of daily load curves of the selected 200 households can be obtained
by the OPTICS algorithm. The total number of clusters for each household will be used
for the adaptive load aggregation. The clustering results for some selected households in
March 2013 are shown in Figure 8, and the clustering results are detailed given in Table 4.

As shown in Figure 8, the average series of each cluster is plotted with bold lines.
Figure 8a shows the historical load curves clustering results of the customer number
10006704. The total number of clusters equals 1. This means that the customer has only
one pattern of power consumption, and the peak electricity consumption is concentrated
in the morning and evening hours. Figure 8b shows that the total number of clusters
equals 2 for the customer number 10006414. This indicates that there are two main forms
of electricity consumption for this household. In the one power consumption pattern, the
peaks concentrated in the morning and evening hours. In the other pattern, electricity is
consumed throughout the whole day. Figure 8c,d represent the scenarios where the total
number of clusters is 3 and 4, respectively. Figure 8c can reflect the electricity consumption
characteristics of residents with less electricity consumption before 10:00 a.m. and with
three main electricity consumption behaviors, while Figure 8d indicates that the household
has four electricity consumption behaviors. It indicates that the residents have stronger
regularity of living electricity consumption in these two scenarios.

As given in Table 4, when the total number of clusters equals 1, the number of
outliers is 21, and when the number of clusters is 2, the number of outliers is 18. The
number of outliers accounts for 2/3 of the total days, which shows the poor regularity
of electricity consumption for these households. When the number of clusters equals 3
or 4, the number of outliers is less than 1/3 of the total days, and the number of clusters
is evenly distributed. This indicates that the electricity load has a strong regularity, and
also reflects the reasonableness of aggregating households with more than three clusters
into one category, because they represent households with regular electricity consumption.
The clustering results of fifty randomly selected households show that the users with two
clusters reach 50%, while the users with four clusters only account for a small percentage,
2%. This result also verifies that it is reasonable for households with more than three
clusters to be aggregated into one category.
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Figure 8. Clustering results of daily load curves of selected residents (a) Customer id:10006704; (b) Customer id: 10006414;
(c) Customer id: 10006486; (d) Customer id: 10006674.

Table 4. Clustering results of some selected households shown in Figure 8.

Clustering Results Customer Id: 10006704 Customer Id: 10006414

Cluster id 0 outliers 0 1 outliers

Number of clusters 10 21 7 6 18

Clustering Results Customer Id: 10006486 Customer Id: 10006674

Cluster id 0 1 2 outliers 0 1 2 3 outliers

Number of clusters 11 9 7 4 6 6 5 5 9

Therefore, in this paper, households with the same number of clusters were aggregated
into one category when the clusters are below three and all the households with more than
three clusters were aggregated into one category. Groups of 50, 100, 150, and 200 customers
are randomly selected and clustering analysis is processed based on the historical load
data, and the final categories of the households are shown in the following Table 5.
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Table 5. Load aggregation results for the number of households of different sizes.

Households 50 100 150 200

Final Category id 1 2 3 1 2 3 1 2 3 1 2 3

Number of households 10 26 14 14 49 37 25 76 49 33 106 61

It can be seen from Table 5 that the number of households of category 1 always
accounts for about 1/5 of the total number of households. The number of households in
category 2 always accounts for about 1/2 of the total number of households. It indicates
that the vast majority of households have certain electricity consumption patterns. Hence,
it is necessary to forecast the load of the households with poor and strong electricity
consumption patterns separately in our proposed method.

4.4. Results of Short-Term Residential Load Forecasting

Based on the aggregation results of 50, 100, 150, and 200 households, the load fore-
casting for each aggregation category was performed separately, and the MAPEs of the
summing forecasting load are given in Table 6.

Table 6. MAPE of the short-term load forecasting results for different total numbers of households.

Households 50 100 150 200

MAPE of the total load prediction 15.6% 11.5% 9.1% 8.5%

MAPE of the adaptive aggregated load prediction 14.3% 10.2% 8.3% 7.7%

As given in Table 6, the forecasting error of the total load prediction, as well as
the adaptive aggregated load prediction, decreases sharply with the increase in the total
number of households. In the meantime, the MAPE of the adaptive aggregated load
prediction is always lower than that of total load prediction from 50 to 200 households.
This result confirms the effectiveness of the proposed method. For our proposed method,
50 households are predicted with a MAPE of 14.3% and 100 households are predicted
with a MAPE of 10.2%. When the number of households reaches 150, the MAPE of both
the traditional method and our proposed method are both below 0.1, which meets the
requirement of load forecasting accuracy when dispatching a microgrid. In general, for
150 households, the load forecasting results can achieve the accuracy requirement, and
the number of households is not too large. Therefore, 150 would be an ideal number of
households to construct a microgrid.

The detailed forecasting results at 48 points on 31 March for 150 and 200 households
are shown in Figure 9. We can find that the fitting effect of our proposed method is
significantly better than traditional methods. This verifies the advantage of our proposed
method. The prediction accuracy of 200 households is significantly better than that of
150 households, which meets the analysis results expressed in the previous section. In
general, the prediction accuracy of 150 households meets the requirement of prediction
accuracy for microgrid construction.

To further verify the effectiveness of our proposed method, the data from 1 March
to 24 March, totaling 1152 samples, are selected to train the constructed LSTM network.
Additionally, 336 load data samples from 25 March to 31 March are used to test our
proposed short-term load forecasting method. The forecast results for 150 households are
shown in Figure 10.
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Figure 9. The detailed forecasting results at 48 points on 31 March (a) 150 households; (b) 200 households.

Figure 10. The detailed forecasting results at 336 points from 25 March to 31 March.

As shown in Figure 10, the short-term load forecasting of our proposed method
is always better than that of traditional methods during the whole week. The average
MAPE of our proposed method during the week is 8.2%, while the average MAPE of the
traditional method is 8.9%. A large number of forecasting results in this paper confirm the
effectiveness of the proposed method. However, when the peak–valley value of the load is
predicted, the overall effect of load forecasting is unsatisfactory. The reason is that various
hyperparameters are not optimized in our method. This problem would be solved in our
future work.

4.5. Sensitivity of Look-Back Time Steps of the LSTM Network

In our proposed method, the look-back time step, k, is selected as 48 to reveal the
relationship between the historical load data and the prediction load. In this section,
different look-back time steps are selected to analyze the load forecasting accuracy. The
MAPE of the prediction results for 6 and 48 time steps in the LSTM network on 31 March
are given in Table 7.

Table 7. MAPE of load forecasting results for different look-back time steps in the LSTM network.

Look-Back Time Steps 50 100 150 200

K = 48 14.3% 10.2% 8.3% 7.7%

K = 6 18.3% 11.9% 9.4% 7.8%

As given in Table 7, for the households with the number of 50, 100, and 150, the
MAPE of prediction results on 31 March is different when different look-back time steps
are selected in the load forecasting process. For the households with the number of 50, the
MAPE reaches 14.3% when the time step equals 48, while the MAPE reaches 18.3% when
the time step equals 6. The MAPE for the 48 look-back time steps is lower than that for
the 6 look-back time steps. Similar results can be conducted for the households with the
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number of 100, 150, and 200. The reason is that the residential load at the prediction time is
usually related to the load at the same time on the previous day.

4.6. Comparison with Traditional Methods

Two other traditional prediction methods, SVR-based and BPNN-based load forecast-
ing, are used to compare with our proposed method. The setting parameters for these two
traditional load forecasting methods are given in Table 8. The comparison results with
traditional methods for the 150 selected households are given in Table 9. The MAPEs of the
short-term load forecasting results on 31 March for three methods are calculated and given
in this table. To verify the advantages of our proposed method clearly, the load forecasting
results are obtained based on two load processing methods. In the first prediction process,
the total load data is directly used as the input parameters of the artificial intelligence
algorithms. In the second prediction process, the aggregated load data in Section 4.3
will be used separately as the input parameters of the forecasting model. The MAPE
values in Table 9 represent the final predicted result errors of the summing aggregated
load forecasting results. The content has been revised to avoid misunderstandings of our
comparison results.

Table 8. Hyperparameters setting for LSTM, BPNN, and SVR.

BPNN
hidden layers hidden nodes epochs

2 20 150

SVR
kernel function C gamma

rbf 1000 1

Table 9. The MAPE values of load forecasting results by our proposed method and traditional methods.

Forecasting Method Forecasting the Total
Load Directly

Forecasting the Aggregated Load
Separately and Summing

Our proposed method 9.1% 8.3%

SVR-based method 9.4% 11.2%

BPNN-based method 10.9% 10.2%

The comparison results show that our proposed method has the best load forecasting
results whether the residential load is aggregated or not. When the total load is forecasted
directly, the MAPE of our proposed only equals 9.1%, which is lower than traditional
methods. When the aggregated load is forecasted separately, the MAPE of our proposed
method equals 8.3%, while the MAPE of the SVR-based method equals 11.2% and the
MAPE of the BPNN-based method equals 10.2%. In all cases, our proposed method gets
the best MAPE value.

The load forecasting results vary under multiple runs for our LSTM-based method or
the BPNN-based method. The reason should be the random initialization of weights of
trainable layers or parameters in the artificial intelligence models. We select the average
of several runs in the comparison. We run the constructed LSTM and BPNN models by
fifty runs. In each run, the aggregated load data in Section 4.3 will be used separately
as the input parameters of the forecasting model. The MAPE values represent the final
predicted 48 results errors of the summing aggregated load forecasting results. The average
and variance of the MAPE values for the LSTM-based method are 8.19% and 6.13 × 10−6,
respectively, while the average and variance of the MAPE values for the BPNN-based
method are 10.12% and 2.56 × 10−5, respectively. A Student t-test showed that the differ-
ence was statistically significant, where t = −24.22 and p = 0.000. Therefore, the results of
our method are better than those from the traditional algorithms.
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We have recorded the computational time of our proposed method and the traditional
methods to make the comparison more comprehensive. Each run of the residential load
forecasting includes the training process and 48 prediction processes. The program runs
on GPU (Graphics Processing Units), whose type is NVIDIA GeForce GTX 1650. The
results show that the computational time of our proposed method is around ten minutes,
while the computational time of BPNN-based and SVR-based algorithms is around one
second. The training time of the LSTM-based model is much longer than that of traditional
methods due to the complicated structure of the LSTM-based model. It is worth noting
that the computational time of our proposed method is much shorter than half an hour.
Therefore, our proposed method can be sufficiently used for hourly load forecasting in
microgrid dispatching.

5. Conclusions

A novel short-term residential electric load forecasting method based on adaptive
load aggregation and deep learning algorithms is proposed and discussed in this paper. An
adaptive load aggregation method is proposed based on the number of clusters of historical
load data of each household. Households with the same number of clusters are aggregated
into one category when the cluster number is below three. All the households with more
than three clusters were aggregated into one category. The LSTM-based network with
proper look-back time steps is used to forecast the total aggregated load of each category.
The look-back time steps are set as the ratio of 24 h to the load sampling interval. This
can take into account the load at the same time on the previous day and the load before
the prediction time because of the good performance of the LSTM network at storing and
accessing long-term information. A large number of experiments using the monitoring
load data from the SGSC project show that 150 households are the proper scale to construct
a microgrid, because the corresponding MAPE of load prediction for 150 households is
less than 10% and meets the requirement of the microgrid dispatch. Our proposed method
can significantly improve the load forecasting accuracy for the residential load with high
volatility, strong randomness, and weak regularity, and it is very important in microgrid
planning and operation.
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