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Abstract: Kalman filter (KF) is often based on two models, which are phase angle vector (PAV) model
and orthogonal vector (OV) model, in the application of distorted grid AC signal detection. However,
these two models lack rigorous and detailed derivation from the principle of dynamic modeling.
This paper presents a phase angle vector dynamic (PAVD) model and an orthogonal vector dynamic
(OVD) model, which are combined with Kalman filter for detecting distorted grid AC signal. They
reveal that the state noise covariance of the dynamic model−based KF is related to the sampling cycle,
and overcome the defect of more detecting error for conventional model−based KF. Experiment and
evaluation results show that the proposed KF algorithms are reasonable and effective. Therefore, this
paper contributes a guiding significance for the application of KF algorithm in harmonic detection.

Keywords: distorted AC signal; Kalman filter; phase angle dynamic model; orthogonal vector
dynamic model; state noise covariance; sampling cycle

1. Introduction

The Kalman filter (KF) plays an increasingly important role in the real−time detec-
tion of grid AC signal [1]. It was first applied to the power signal processing field by
Dr. A. A. Girgis in 1981 [2–4]. It mainly applies to the following fields: fundamental
and harmonic components detection of grid voltage/current [5–10], phase−locked loop
synchronization [11–15], power quality detection and compensation equipment [16–20],
power disturbance feature extraction and machine classification [21–24], and etc. In these
applications, two conventional models, phase angle vector (PAV) model and orthogonal
vector (OV) model, are mainly used. The phase angles were used as vectors to establish
a state-space model which could be called the phase angle vector (PAV) model through
cosine expansion [3]. The orthogonal vector was used to establish a state-space model that
could be called the orthogonal vector (OV) model [4]. However, the state noise covariance
of the two models is only a given value based on empirical statistics of the AC signal. It is
selected as a fixed value, such as Q = 0.05× I (I represents the unit matrix), when AC signal
is the grid voltage [10,11]. It is selected as a fixed value, such as Q = 0.01 × I, when the
AC signal is the sampling current [20]. It is mainly to avoid big tracking error and enable
to detect response without time delay. With the development of computer hardware and
sensor technology, the sampling cycle is getting smaller, and the accuracy requirements are
getting higher. The detecting accuracy of the fundamental and harmonics components for
the conventional detecting model−based KF algorithm cannot meet the requirements of
modern engineering applications.

The current issue is that the detecting accuracy of the fundamental and harmonics
components for the conventional detecting model–based KF algorithm cannot meet the
requirements of modern engineering applications. There is no fixed rule as references
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to find the fixed value by applying different sampling cycles. As a result, the detection
accuracy cannot achieve the expected goal.

Also, the discretization model lacks of theoretical basis. In view of the fact that the
previous literature did not detailedly derive the PAV and OV model from the principle of dy-
namic modeling. This paper proposes a phase angle vector dynamic (PAVD) model−based
KF (PAVD−KF) algorithm and the orthogonal vector dynamic (OVD) model−based KF
algorithm (OVD−KF) through model derivation according to the stochastic process the-
ory [12]. It reveals that the state noise covariance of the conventional detecting model is
related to the sampling cycle.

This paper contributes:

(1) We derive the discretization model from the continuous differential equation in
accordance with stochastic process theory, to find the value law of fixed value of
covariance under different sampling cycles.

(2) We greatly improve the detecting accuracy of fundamental and harmonics compo-
nents, enabling the detection results to meet the requirements of modern engineering
applications of AC current and voltage signal.

Section 1 introduces the Kalman filter mainly applies to the following fields and
model−based KF existing problems. In Section 2, the related works about conventional
PAV and OV model are introduced. In Section 3, the PAVD and OVD models are rederived
according to of stochastic process theory. Then, the PAVD−KF and OVD−KF algorithms
are proposed. In Section 4, the performances of PAVD−KF and OVD−KF algorithms are
evaluated and compared by the experimental current and voltage sampling data. Section 5
concludes the paper.

2. Related Work

In this section, we proposed the expression of distorted AC signal first, and introduce
the conventional PAV−KF and OV−KF algorithms then.

2.1. Distorted AC Signal

The waveform of the distorted AC signals sampled at time t can be expressed as

s(t) =
N

∑
i=1

Ai(t) sin[iω0T + θi(t)] +
N

∑
i=1

wi(t) (1)

where i = 1, 2, 3, · · · , N, T denotes the sampling cycle. For the fundamental frequency of

50 Hz, ω0 = 100π.
N
∑

i=1
Ai(t) sin[iω0T + θi(t)] represents the fundamental and harmonic

components.
N
∑

i=1
wi(t) is the state noise of fundamental and harmonic components.

2.2. PAV Model

The vector of fundamental and harmonic components is expressed as
Xk =

[
x1 y1 · · · xn yn

]T , where x1 = A1 cos θ1, y1 = A1 sin θ1,xn = An cos θn,
yn = An sin θn.

The measurement equation of model is expressed as [3]

zk = HkXk + Vk =


cos(ω0kT)
− sin(ω0kT)

...
cos(nω0kT
− sin(nω0kT)



T
x1
y1
...

xn
yn


k

+ Vk (2)
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The state equation of model is expressed as

Xk+1 = ΦkXk + Wk =


1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
...

0 0 · · · 1 0
0 0 · · · 0 1




x1
y1
...

xn
yn


k

+


Wx1

Wy1
...

Wxn

Wyn


k

(3)

The covariance matrix of state noise Wk can be expressed as

Qk = E
[
WkWT

k

]
= σ2

PAV I2n×2n (4)

2.3. OV Model

Considering a signal Ak sin(ωktk + θk) with amplitude Ak, angular frequency is ωk
and phase is θk [4,11]. Let xk = Ak sin(ωktk + θk), yk = Ak cos(ωktk + θk), initially, consider
Ak+1/k ≈ Ak, ωk+1/k ≈ ωk and θk+1/k ≈ θk. At the time tk+1 = tk + T, the signal xk can be
expressed as

xk+1 = Ak+1 sin(ωktk + ωkT + θk) = xk cos(ωkT) + yk sin(ωkT) (5)

where, T is the sampling cycle. Additionally,

yk+1 = Ak+1 cos(ωktk + ωkT + θk) = −xk sin(ωkT) + yk cos(ωkT) (6)

the state−space is extended for detection of distorted AC signal existed n frequencies
harmonic components.

The vectors are expressed as Xk =
[

x1 y1 · · · xn yn
]T

k , where,
x1k = A1k sin

(
ωktk + θ1k

)
, y1k = A1k cos

(
ωktk + θ1k

)
, xnk = Ank sin

(
nωktk + θnk

)
,

ynk = Ank cos
(
nωktk + θnk

)
.

Then, the state and measurement equation is expressed as [4]
Xk+1 =

 Φ1 · · · 0
... · · ·

...
0 · · · Φn

Xk + Wik

zk =
[

1 0 · · · 1 0
]
Xk + Vk

(7)

where, the state transition matrixes Φi are shown below as

Φi =

[
cos(iωkT) sin(iωkT)
− sin(iωkT) cos(iωkT)

]
(8)

The covariance matrix of state noise Wki
can be expressed as

Qik = E
[
Wik Wik

T
]
= σ2

OV I2n×2n (9)

in (4) and (9), I2n×2n is a unit matrix. σ2
PAV and σ2

OV are selected as 0.05, when AC signal is
sampling voltage [10,11]. σ2

PAV and σ2
OV are selected as 0.01, when AC signal is sampling

current [20].
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2.4. PAV-KF and OV-KF Algorithm

The discrete PAV−KF and OV−KF algorithm for detecting distorted AC signal can be
expressed as follow by combining PAV and OV model.

X̂k+1/k+1 = ΦkX̂k+1/k + Kk+1
(
Zk+1 − HkX̂k+1/k

)
Kk+1 = ΦkPk+1/k HT

k
(

HkPk+1/k HT
k + Rk

)−1

Pk+1/k+1 = ΦkPk+1/kΦT
k − Kk+1HkPk+1/kΦT

k + Qk

(10)

The amplitude and the phase angle for the fundamental and harmonic components
can be calculated as follows.

Aik+1
=
√

x̂2
ik+1

+ ŷ2
ik+1

(11)

φik+1
= arctan

(
x̂ik+1

ŷik+1

)
(12)

3. PAVD-KF and OVD-KF Algorithm

In Section 3, we construct the AC signal continuous differential equation of phase
angle vector and orthogonal vector, and derive the discretization PAVD and OVD model in
accordance with stochastic process theory. Next, we combine the proposed models with
KF algorithm, to obtain PAVD−KF and OVD−KF algorithm.

3.1. PAVFIGURE
D-KF Algorithm

The phase angle vectors of fundamental components in (2)−(3) are expressed as{
x(t) = A cos θ
y(t) = A sin θ

(13)

The first derivative can be expressed as

d
dt

[
x(t)
y(t)

]
= A

[
x(t)
y(t)

]
+ B

[
wx(t)
wy(t)

]
(14)

where, wx(t) and wy(t) are the input white noise, wx(t)⊥wy(t). wx(t) ∼ (0, σ2
w), wy(t) ∼

(0, σ2
w). Where, A =

[
0 0
0 0

]
, B =

[
1 0
0 1

]
.

Equation (11) is discretized, and the state equation can be obtained as follows [25].[
x
y

]
k+1

= Φk

[
x
y

]
k
+ Wk (15)

where,

Φk = eAT = L−1([sI − A]−1) =

[
1 0
0 1

]
(16)

Wk =
∫ (k+1)T

kT
eA[(k+1)T−τ] · B · w(τ)dτ (17)

The covariance matrix of state noise Wk can be expressed as

Qw = E
[
WkWT

k

]
= σ2

w

[
T 0
0 T

]
= σ2

wT
[

1 0
0 1

]
(18)

from (18), an important conclusion can be known that Qw is related to sampling cycle T.
The state−space dimension of the distorted AC signal is extended under the consider-

ation of fundamental and harmonic components. The state-space formulas of PAVD model
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are the same as the conventional PAV model (2)−(3). The difference is that the state noise
covariance in (4). The state noise covariance of the PAVD model is

Qk = σ2
PAVD I2n×2n = ρTI2n×2n (19)

where, σ2
PAVD is the state noise covariance of PAVD model. ρ ≤ 1 is a coefficient. When

high detection precision is required, ρ is selected as a small value. When dynamic fast
detecting is required, ρ is selected to a large value. Then, the discrete PAVD−KF algorithm
can be obtained by combining model (2), (3), (15) and KF algorithm.

3.2. OVD−KF Algorithm

In the two−dimensional space, the circular movement of the object along the midpoint
is projected on the x, y axis as a pure sine and a pure cosine waveform. It is shown in
Figure 1.
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It can be expressed as {
x(t) = Am sin(ω0t + θ)
y(t) = Am cos(ω0t + θ)

(20)

where, Am is the amplitude, ω0 is the angular frequency, and θ is the phase angle.
The first derivative of (10) can be expressed as{ .

x(t) = ω0 Am cos(ω0t + θ) + wx(t) = ω0y(t) + wx(t).
y(t) = −ω0 Am sin(ω0t + θ) + wy(t) = −ω0x(t) + wy(t)

(21)

where, wx(t) and wy(t) are the input white noise, wx(t)⊥wy(t). wx(t) ∼ (0, σ2
w), wy(t) ∼

(0, σ2
w).
The state equation can be obtained from (21).

d
dt

[
x(t)
y(t)

]
= A

[
x(t)
y(t)

]
+ B

[
wx(t)
wy(t)

]
=

[
0 ω0
−ω0 0

][
x(t)
y(t)

]
+

[
1 0
0 1

][
wx(t)
wy(t)

]
(22)

Equation (22) is discretized, and the state equation can be obtained as follows [25].[
x
y

]
k+1

= Φk

[
x
y

]
k
+ Wk (23)

where,

Φk = eAT = L−1([sI − A]−1) =

[
cos(ω0T) sin(ω0T)
− sin(ω0T) cos(ω0T)

]
(24)

Wk =
∫ (k+1)T

kT
eA[(k+1)T−τ] · B · w(τ)dτ (25)
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The state noise covariance matrix can be expressed as

Qw = E
[
WkWT

k

]
= σ2

w

[
T 0
0 T

]
= σ2

wT
[

1 0
0 1

]
(26)

from Equation (16), an important conclusion can be drew that Qw is related to the sampling
cycle T.

The state-space dimension of the distorted AC signal is expanded under the consider-
ation of fundamental and harmonic components. The state and measurement equations of
OVD model are the same as the conventional OV model (4) and (5). The difference is that
state noise covariance matrix of the OV model in (6). That is

Qk = σ2
OVD I2n×2n = ρTI2n×2n (27)

where σ2
OVD is the covariance of OVD model. ρ ≤ 1 is a coefficient. When high detection

precision is required, ρ is selected as a small value. When dynamic fast detecting is required,
ρ is selected to a large value.

Then, there are the combinations of the model (7), (8), (27), and KF algorithm. The
discrete OVD−KF algorithm can be obtained.

4. Experiment and Evaluation

In this section, we conduct the detection of the current and the voltage with the
sampling cycle of 10 µs and 40 µs. Then, comparing the detecting results for fundamental
and harmonics components in PAVD−KF and PAV−KF algorithm, and in OVD−KF and
OV-KF algorithm. At the last, we come to a conclusion of these results.

4.1. Experiment and Evaluation for AC Current Detection
4.1.1. Experiment Settings

As an experimental example, we sample the AC distorted current signal. Experiment
platform consists of AC grid (380 V, 50 Hz), oscilloscope (Tektronix GDS−2102) and
nonlinear load (the three−phase rectifier, R = 100 Ω and L = 1.5 mH). It is shown in
Figure 2. The AC current signals are sampled by the oscilloscope. Sampling cycles are
selected as 10 µs and 40 µs. The experiment sampling current data and spectrogram
are shown in Figures 3 and 4. The HRI of harmonic components are measured to be
approximately 24% of 5th, 10% of 7th, 10% of 11th, 5% of 13th, 5% of 17th, 4% of 19th by
spectrum analysis.
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HRI is defined as follows
HRIn =

In

I1
× 100% (28)

where I1 is the voltage rms value of fundamental component, In is the voltage rms value of
n−th harmonic components.
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The measurement noise covariance R of the algorithms is all selected as 0.06 A, that
is the measurement error of the sensor. The initial covariance matrices are selected as
P0/0 = 1000× I14×14. The state noise covariance is selected as Qk = 0.01× I14×14 in (4).
The state noise covariance is selected as Qk = 0.01× T × I14×14 in (19).

4.1.2. Detection Results for PAVD−KF Algorithm

Two algorithms of PAV−KF and PAVD−KF are evaluated and compared. The evalua-
tion results for sampling cycle 10 µs and 40 µs are shown in Figures 5 and 6.
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4.1.4. Summary for AC Current Detecting

It can be seen from Figures 5 and 8, when Q = 0.01 × I, the detecting errors of the
conventional PAV−KF and OV−KF algorithms are big. In particular, the detecting errors
of the conventional algorithms for sampling cycle 40 µs are rather big. The errors are too
big to affect the normal operation.

Corresponding to it, when Q combines with the sampling cycle, Q = 0.01 × T × I,
regardless of the fundamental or harmonic components, the proposed detecting accuracies
in PAVD−KF and OVD−KF algorithm are much higher than the conventional algorithms.

4.2. Experiment and Evaluation for AC Voltage Detection
4.2.1. Experiment Settings

The AC signal is grid voltage as an experimental example. Experiment platform is
shown in Figure 9. The experiment of superimposing harmonics in fundamental voltage
is carried out through a programmable power supply device. The AC voltage signals are
sampled and the sampling cycles T are selected by the oscilloscope of Tektronix GDS−2102.
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Figure 9. Experiment platform. (a) Voltage sampling experiment platform. (b) Principle diagram of experiment platform.

The harmonics ratio for voltage (HRU) is defined as follows

HRUn =
Un

U1
× 100% (29)

where U1 is the voltage rms value of the fundamental component, and Un is the voltage
rms value of n−th harmonic components.

Experiment voltage data for sampling cycle 10 µs is in Figure 10. Experiment voltage
data for sampling cycle 40 µs is in Figure 11, and the HRU of harmonic components all are
set as 5% of 3rd, 10% of 5th, and 8% of 7th.
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Figure 10. Experiment voltage for sampling cycle 10 µs. (a) The sampling voltage data. (b) Spectro-
gram of sampling voltage data.
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Figure 11. Experiment voltage for sampling cycle 40 µs. (a) The sampling voltage data. (b) Spectro-
gram of sampling voltage data.

The R of the algorithms are all selected as 3.11 V, that is the measurement error of the
sensor. The initial covariance matrices of algorithms are selected as P0/0 = 1000× I10×10.
The state noise covariance matrix of algorithms is selected as Qk = 0.05× I10×10. The state
noise covariance matrix of algorithms is Qk = 0.1× T × I10×10.

4.2.2. Detection Results for PAVD−KF Algorithm

PAVD−KF and PAV−KF algorithms are evaluated and compared. The detecting
results of the sampling cycle 10 µs and 40 µs are shown in Figures 12 and 13.
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4.2.3. Detection Results for OVD−KF Algorithm

OVD−KF and OV−KF algorithms are evaluated and compared. The detecting results
of the sampling cycle 10 µs and 40 µs are shown in Figures 14 and 15.
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4.2.4. Summary for AC Voltage Detecting

It can be seen from Figures 12 and 13 that the amplitudes of the fundamental compo-
nents of the conventional model−KF algorithm detecting are fluctuating, the stability of
its detection shows poorly. Specifically, when we use the sampling cycle 40 µs, the error
is too big to be ignored. From Figures 14 and 15, we know that detecting errors of the
harmonics components for the conventional OV−KF algorithm are also big, though the
error seems smaller compared to PAV−KF. Corresponding to it, the detecting accuracies of
the fundamental and harmonic components for the OVD−KF algorithm are higher than
that of the OV−KF algorithm.

Generally, when Q = 0.05 × I, the conventional algorithms could basically meet the
engineering requirements with some big errors under different sampling cycle conditions.
When Q = 0.05 × T × I, all the novel algorithms could fulfill the requirements.

4.3. Summary for Experiment and Evaluation

In general, when using the fixed value, the error of PAV model is the biggest, neither
current nor voltage can meet the demand. OV model performs better, when using the
sampling cycle 10 µs, the voltage can be used normally, and the current error is too big to
be used. But when using the sampling cycle 40 µs, both current and voltage cannot operate
normally.

The proposed algorithms in this paper, whether it is PAVD model or OVD model, it
is related to the sampling cycle, so the voltage and current detecting results can meet the
engineering requirement.

Take PAV model with 40 µs in current and voltage tracking for example, the conventional
methods produce big errors when Q = 0.01 × I detecting the current and Q = 0.05 × I detect-
ing the voltage. Only when Q = 0.00001 × I detecting the current, the accuracy of it would
be almost close to that of our proposed algorithm, as Figure 16 shows. When Q = 0.0005 × I
detecting the voltage, the accuracy would satisfy the requirement, as Figure 17 shows.
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5. Conclusions

This paper presents the PAVD−KF and OVD−KF algorithm derived from the stochas-
tic process theory. It enhances the knowledge about the Kalman algorithms applied to the
harmonic detection of the distorted AC grid. It gives a rule that the KF algorithms in the
application of distorted grid AC signal detection is related to the sampling cycle and their
state noise covariance cannot be simply considered as a constant.

This paper applies the actual current and voltage data of the sampling cycle 10 µs and
40 µs to detection and evaluation. The conventional algorithms have big errors in general
and unable to meet engineering requirements. When using a fixed value of covariance, if
we are going to obtain the ideal results, we need to spend a lot of time debugging (trying
to make up) the parameters. Also, there is no theoretical source to set the fixed value of
covariance. To solve it, we propose the algorithms to save much time and workload to get
the ideal results. Besides, we make the algorithms more feasible and effective based on
stochastic process theory. From which the results show that the proposed PAVD−KF and
OVD−KF algorithms are effective and improve the dynamic detecting accuracy of grid
AC signal significantly. This paper would provide a reference for the application of KF
algorithms to harmonic detection, power quality control and grid synchronization in the
future.
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