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Abstract: This paper presents a description and the results of simulations and laboratory tests of
proposed methods for dependent torque control in a Switched Reluctance Motor (SRM). The proposed
methods are based on Dependent Torque Motor Control (Rising Slope), DTMC(RC), and Dependent
Torque Motor Control (Falling Slope), DTMC(FC). The results of these studies were compared with
those on the Classical Torque Motor Control (CTMC) method. Studies were conducted for each of
the analyzed control methods by determining the efficiency of the drive and the RMS of the source
current and analyzing the vibrations generated for each of the control methods. The harmonics of the
phase currents, which caused an increase in the level of vibrations generated, were determined. The
usefulness of the proposed methods for controlling SRMs was assessed based on simulations and
experiments. Additionally, the natural frequencies of the stator of the tested SRM were determined
by a simulation using the Ansys Maxwell suite. The levels of vibration acceleration generated by the
SRM were compared for the considered control methods.

Keywords: dependent torque control; Switched Reluctance Motor; torque ripple minimization

1. Introduction

Switched Reluctance Motors (SRMs) belong to a group of machines with electronic
commutation. They are highly efficient, have a simple design, and lack permanent magnets
and windings on the rotor. This makes SRMs less expensive to manufacture than Induction
Machines (IMs), especially Permanent Magnet Machines (PMMs). The very simple design
of an SRM and the typical half-bridge power supply make the drive exceptionally resistant
to faults and able to operate in the case of partial faults [1–3]. Switched reluctance machines
are being continuously developed for applications in aviation [3–5] and electric cars [6–10]
as an alternative to more expensive and more failure-prone drives with induction and
permanent magnet machines. It should be noted that SRMs have a very wide range of
speed control and a constant power operation. This is especially beneficial in electric
vehicle drive applications. Unfortunately, despite their many advantages, SRMs also have
disadvantages, including a high ripple torque generation, noisy operation and high ripple
in the current drawn from the power source.

Torque ripples can be minimized structurally by increasing the number of phases and
poles of the machine and optimizing the shape or span of its poles [11–14]. Algorithmic
methods are a second group of methods used for reducing torque ripple. In general, there
are methods based on a torque sharing function (TSF) [15–17] or on direct instantaneous
torque control (DITC) [18,19]. The modifications of these methods, in addition to the
main purpose of reducing torque ripple, also enable the reduction in losses in the machine
windings [16,19–21]. An important problem in SRMs is the reduction in the source current
ripple, which affects the RMS current and thus the level of losses occurring in the power
source. In the case of an electric vehicle drive, an increase in the RMS current drawn causes
the battery to discharge faster. A ripple reduction in the current drawn from the power
source is discussed in papers [22–24]. Paper [22] describes a control method used to limit

Energies 2021, 14, 8203. https://doi.org/10.3390/en14248203 https://www.mdpi.com/journal/energies

https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://orcid.org/0000-0001-8726-5172
https://orcid.org/0000-0002-9097-0988
https://orcid.org/0000-0003-1640-0642
https://orcid.org/0000-0001-6038-4075
https://doi.org/10.3390/en14248203
https://doi.org/10.3390/en14248203
https://doi.org/10.3390/en14248203
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/en14248203
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en14248203?type=check_update&version=1


Energies 2021, 14, 8203 2 of 18

the capacitance included in the DC-link, which limits the amount of energy transferred from
the motor to the power system. In [23], the classical power supply system was modified in
such a way as to enable the regulation of the voltage powering the motor windings. Such
a solution allows the reduction in the ripple of the current drawn from the battery pack.
In [24], a modification of the power supply circuits and control algorithms was applied so
that the power factor correction (PFC) was close to one when supplied from the power grid.
A partial reduction in the source current ripple was achieved algorithmically at specific
operating points of the SRM [25]. A different method of reducing both torque ripple and
source current ripple was used in paper [14], based on the suitable shaping of the rotor
poles. In [25], a Dependent Current Control is presented. The authors of this study have no
knowledge of other attempts at using Dependent Torque Control in an SRM drive system.

The purpose of this paper is to present the results of studies determining the effect
of the proposed methods of dependent torque control on the properties of a Switched
Reluctance Motor. The details of the methods and the results of the simulation and
experimental studies are presented in the following sections. As a result of these studies,
it was found that the transition between the tested control algorithms at a given point
of operation caused a change in the level of vibrations generated in the machine. Thus,
the authors conducted tests to determine their cause. The conclusion section presents the
advantages and disadvantages of the proposed control methods and the conclusions drawn
from the results of the study.

This paper is organized as follows. In Section 2, the parameters of the tested machine,
a diagram of the power supply, and a description of the classic torque control method are
presented. The idea of the proposed Dependent Torque Control method is described in
Section 3. The results are shown in Section 4 (simulation) and Section 5 (experimental). In
Sections 6 and 7, the study results and the enclosed conclusions are summarized.

2. Switched Reluctance Drive
2.1. Studied Object

The studied object is a four-phase SRM with an 8/6 structure powered by a half-bridge
converter. A diagram of the machine’s power supply is shown in Figure 1.
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Table 1. Basic parameters of SRM.

Switched Reluctance Motor

Phase number 4
Poles stator/rotor number 8/6
Rated voltage 48 V
Max. mechanical power 3.3 kW
Rated speed 4500 rpm
Stator pole width 20◦

Rotor pole width 20.5◦

Phase winding resistance 14 mΩ

2.2. Classical Torque Current Control

The use of a torque sharing function to minimize the torque ripple requires an ad-
justment of the phase currents in a way that maintains the required shape of the torques
generated by each phase [14,16,17]. Figure 2 shows examples of the waveforms of phase
currents, phase torque sharing functions (with cosine slopes) [15], and derivatives of torque
sharing functions, with an indication of the individual phases: outgoing (k − 1), current (k)
and incoming (k + 1).
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where Tref(k) is the reference torque of the k-th phase, Te(k) is the instantaneous torque of the 
k-th phase, and ΔT is the hysteresis of the controllers. 
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The reference method adopted is Classical Torque Motor Control (CTMC), where three-
level hysteresis delta torque controllers are used to control the torques of the individual
phases. The operation of a single-phase torque controller is described by the control
function:

SCTMC
k =


−1 i f (Te(k) ≥ Tref(k) + ∆T)

0 i f (Tref(k) − ∆T < Te(k) < Tref(k) + ∆T)
1 i f (Te(k) ≤ Tref(k) − ∆T)

, (1)

where Tref(k) is the reference torque of the k-th phase, Te(k) is the instantaneous torque of
the k-th phase, and ∆T is the hysteresis of the controllers.

A diagram of the torque control structure in an SRM using CTMC is shown in Figure 3.
To protect the system and the power source from excessive current consumption, a source
current limiter, which activates in the case of a failure of any of the torque controllers,
is used.
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Figure 3. A block diagram of the torque control system.

3. Proposed Dependent Torque Control Method

By modifying the CTMC method in such a way that the operation of the torque
controllers of the individual phases in commutation periods was made dependent using
the method described by Formulas (2) and (3), new characteristics of drive operation were
obtained, which are studied and described in this paper.

The research compared three control cases:

− Classical Torque Motor Control (CTMC);
− Dependent Torque Motor Control (rising control) (DTMC(RC));
− Dependent Torque Motor Control (falling control) (DTMC(FC)).

In each of these control algorithms, a torque sharing function with cosine slopes was
used (Figure 2b). A separate controller was used to control the torque of each phase.

Paper [25] presents a method of dependent current control (DCC) in a switched
reluctance machine. That method consists of controlling the phase currents in such a way
that the windings are not powered simultaneously during the commutation period. This
paper proposes the DTMC(RC) and DTMC(FC) algorithms, which operate based on a similar
principle. The function of the DTMC(RC) controller is described by the relationship:

SDTMC(RC)

(k) =

 0 i f
((

SCTMC
(k) · SCTMC

(k−1) == 1
)
∧
(dTref(k)

dθ > 0
))

SCTMC
(k) other

, (2)

The operation of the torque controller is based on the principle that in the interval
in which the derivative dTref(k)/dθ > 0 (rising slope—Figure 2c), the output state of this
controller (k) depends on the state of the controller in the outgoing phase (k − 1). Outside
of the commutation range, the torque controller operates as in the CTMC method. The
controller operates similarly in the DTMC(FC) method, except that dependent control occurs
when the slope of the function Tref(k) is falling. The function implementing DTMC(FC)

control can be described by the following relationship:

SDTMC(FC)

(k) =

 0 i f
((

SCTMC
(k) · SCTMC

(k−1) == 1
)
∧
(dTref(k)

dθ < 0
))

SCTMC
(k) other

, (3)

Formulas (2) and (3) specify the proposed algorithms in the intervals of rising or
falling torque. It may be observed that, in the intervals where the reference torque is
constant, the controller function operates as in the CTMC algorithm.
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4. Simulation Studies
4.1. Steady State of Machine Operation

To perform simulation studies, an SRM model was built in Matlab/Simulink [25].
The flux–current–angle and torque–current–angle characteristics were determined when
designing the machine using the Ansys Maxwell package. These characteristics were then
entered in the Lookup Table blocks of the Matlab/Simulink suite. MOSFET transistors,
available in the Simscape library, were used to control the machine. Figures 4–6 show the
waveforms of phase currents (iph1-iph4) and torques (Tph1-Tph4), reference phase torques
(Tref1-Tref4), total electromagnetic torques (Te), and source currents (idc) for the CTMC
(Figure 4), DTMC(RC) (Figure 5), and DTMC(FC) (Figure 6) control methods. These wave-
forms were determined at 700 rpm with a reference torque of 8 Nm. The sampling time of
the controllers was 35 µs.
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Motor control according to the functions described by Formulas (1)–(3) caused a
slight change in the shape of the phase currents and torques. Figures 4–6, determined at
n = 700 rpm, show that in the case of the control using the CTMC and DTMC(FC) methods,
the rising slope of the reference torque (Tref(k)) is very well represented. The representation
of the rising slope of the reference torque in the DTMC(RC) control method slightly deviates
from the assumed shape, as the controller operates in dependent mode in the rising slope
interval.

Additionally, the BEMF voltage in the descending torque range is too high for the
accurate representation of the set torque profile (Figure 6). Based on the simulation results,
the question arises as to whether these ‘slight’ changes in the shape of the phase currents
and torques affect the performance characteristics of the drive. To check this, the latter part
of this paper presents a simulation (Figure 7, Table 2) and experimental tests.
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Table 2. Resonant frequencies of the SRM stator.

Mod Number Frequency (Hz)—Numerical

1 1265
2 3361
3 5503
4 6650
5 8293
6 8964

4.2. Determination of the Natural Frequency of the Stator

Due to the tendency of SRMs to generate vibrations, the natural frequencies of the
stator of the tested SRM were determined by simulation using the Ansys Maxwell suite.
Figure 7 shows examples of stator deformation images at the frequencies 1265 Hz and
3361 Hz. A summary of the resonant frequencies calculated on the basis of modal analysis
is shown in Table 2.

Determining these frequencies will make it possible to establish whether the imple-
mented control algorithms will significantly affect the noise generated during the operation
of the drive.

5. Results of Experimental Tests
5.1. Laboratory Test Stand

Laboratory experiments were carried out on a test stand that enabled testing in static
and dynamic states of machine operation. A block diagram of this test stand is shown in
Figure 8.
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Figure 8. The block diagram of the laboratory test stand.

A DC commutator machine was used to load the SRM. To match the speed of the tested
SRM with that of the DC machine, a planetary gear with a 1:3 ratio was used. A DS1103
card was used to control the SRM and manage the four-quadrant DC machine controller. A
DL850 oscilloscope recorder was used to record the waveforms, and a Yokogawa WT1800
power analyzer was used to measure the static characteristics. A view of the test stand is
shown in Figure 9. The drive was powered using the system shown in Figure 8, utilizing
a power supply and a battery pack. This solution makes it possible to protect the power
supply from reverse current. The reverse current in this circuit is taken up by the battery
pack. During the laboratory tests, the drive operated in a closed speed control system—see
the block diagram in Figure 10.
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Figure 10. The block diagram of the speed control SRM drive.

5.2. Oscillograms

Figure 11 shows the oscillograms of the phase currents and the source current for the
CTMC (Figure 11a), DTMC(RC) (Figure 11b), and DTMC(FC) (Figure 11c) control methods.

These oscillograms were recorded at n = 700 rpm with a dc-link voltage Udc = 53 V and
load torque TL = 7.5 Nm. The sampling time of the torque controllers was 35 µs. The SRM
operated under closed-loop speed control during the determination of these waveforms.
Figure 11 shows the differences in the shapes of the phase currents (particularly during
commutation periods) and the source current depending on the control method used.

5.3. Static Characteristics

The static characteristics of the tested drive were determined for the voltage
Udc = 53V and a load torque of 7.5 Nm for the CTMC, DTMC(RC), and DTMC(FC) al-
gorithms. The characteristics of the efficiency and the RMS current drawn by the drive
from the power source as a function of speed under the torque load TL = 7.5 Nm are shown
in Figure 12.
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Figure 12. (a) RMS of source current and (b) total efficiency drive for CTMC, DTMC(RC),
and DTMC(FC).

In the speed range between 400 rpm and 800 rpm, the lowest power source RMS
current and the highest efficiency occur for the DTMC(RC) and DTMC(FC) control methods.
In the case of DTMC(RC), above 800 rpm there is a significant increase in the source RMS
current value compared with the currents measured for the other control methods tested.
This is a result of the poorer reproduction of the set torque profile, which causes the speed
controller to force the set torque to increase, thus increasing the magnitude of the machine’s
phase current. This situation is confirmed by the oscillograms shown in Figure 13, recorded
at 1200 rpm with a load torque of 7.5 Nm.
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5.4. Natural Vibration of the Tested Machine

During SRM testing, it was observed, for the control algorithms considered in this
study, that the level of vibrations generated changes depending on the control method.
To determine the causes of these vibrations, in addition to the results of the simulations
(Section 4.2), experimental tests were carried out with the rotor stationary and during motor
operation. First, the natural vibrations of the machine were determined. To determine
the natural vibrations of the machine, a quasi-rectangular current wave generator of an
adjustable frequency machine was used. The test current was generated in one phase of
the machine, with the rotor being kept stationary. The reference current of the current
generator throughout the frequency variation range was 6.5 A. The generator was software-
controlled and implemented on a DS1103 card. Oscillograms of the test current and the
vibration acceleration signal for the excitation frequencies 1192 Hz and 1303 Hz are shown
in Figure 14. Comparing the two oscillograms, it is evident that there is more than a
twofold increase in the level of acceleration of the vibrations at 1303 Hz.

The results recorded on the oscillograms were confirmed by the vibration acceleration
values (arms) obtained as a function of the frequency of the excitation current (f i) (Figure 15)
(determined with the rotor stationary), the magnitude of which was 6.5 A. This graph
shows points at which there is a significant increase in the level of vibration acceleration.
The highest levels of vibration acceleration occur at 1301 Hz and 3251 Hz. This shows that
these are the resonant frequencies for the machine. When comparing the results for the
resonant frequencies of the tested machine obtained experimentally and from calculations
(Section 4.2), it is observed that the results are similar.
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5.5. Test of SRM Vibrations in Steady State

To obtain the characteristics of the drive, in terms of the level of vibrations generated
when controlled using the CTMC, DTMC(RC) and DTMC(FC) methods, the RMS vibra-
tion acceleration was determined as a function of the rotor speed (Figure 16). This was
performed at a constant load torque of 7.5 Nm with the rotor speed varying from 100 to
1250 rpm. The graph shows a noticeable increase in the RMS value of vibration acceleration
at certain rotational speeds. Figure 16 shows that the level of vibration generated depends
on the control method used. The highest level of vibration occurred for the DTMC(FC)

control method.
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Figure 16. Vibration acceleration as a function of rotor speed under the torque load TL = 7.5 Nm.

The main source of these vibrations is the frequencies of the harmonics contained in
the phase currents. This is evidenced by the harmonic distributions for the waveforms of
the individual phase currents and the vibration acceleration. These distributions are shown
in Figure 17 (at n = 170 rpm) and Figure 18 (n = 1150 rpm). Depending on the control
method used, the distribution of the current harmonics and the vibration acceleration
changes. The largest differences occur with the DTMC(FC) control method, where the RMS
value of acceleration is the highest.
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Figure 17. Distribution of the vibration acceleration harmonics (a) and phase currents (Iph1, Iph2, Iph3,
Iph4) recorded for control methods (a) CTMC, (b) DTMC(RC), and (c) DTMC(FC) at 170 rpm with a
load torque of 7.5 Nm.
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The graphs shown in Figures 15 and 16 and the FFT analysis of the vibration accel-
eration and phase currents (Figures 17 and 18) show that the SRM’s resonant frequencies
amplify the level of vibrations generated very strongly. In the tested machine, these are
mainly frequencies in the ranges of 1.2–1.4 kHz and 3.2–3.4 kHz. The resonant frequencies
of the stator determined by simulation (Table 2) fall within these two ranges. Small levels
of current harmonics at frequencies close to the resonant frequency of the SRM amplify
the generated level of vibration acceleration very strongly. The level of these harmonics
is tens of times lower than the fundamental harmonic dependent on the rotor speed. For
comparison, Table 3 gives the vibration acceleration and phase currents for harmonics at
20 Hz and 3.41 kHz (3.43 kHz for DTMC(FC)). The comparison shows that the value of the
harmonic at 20 Hz is more than 100 times higher than the harmonic at 3.41 kHz, yet it does
not significantly affect the level of vibrations generated. The waveforms of the vibration
acceleration and phase currents used for the FFT analysis were recorded at a rotor speed of
170 rpm and a load torque of 7.5 Nm. Table 4 shows the values of the vibration acceleration
and phase currents for harmonics at 120 Hz and 1.26 kHz. The waveforms of the vibration
acceleration and phase currents used for the FFT analysis were recorded at a rotor speed of
1150 rpm and a load torque of 7.5 Nm.

Table 3. Harmonics of the vibration acceleration and phase currents for n = 170 rpm.

n = 170 rpm CTMC DTMC(RC) DTMC(FC)

Parameter/f 20 Hz/3.41 kHz 20 Hz/3.41 kHz 20 Hz/3.43 kHz

a (m/s2) 0.046/24.44 0.057/22.2 0.052/37.4
Iph1 (A) 32.7/0.071 36.4/0.055 31.4/0.116
Iph2 (A) 36.3/0.227 36.7/0.221 35.9/0.235
Iph3 (A) 36.3/0.053 36.2/0.083 36.1/0.081
Iph4 (A) 27.4/0.243 22.6/0.136 29.0/0.289

Table 4. Harmonics of the vibration acceleration and phase currents for n = 1150 rpm.

n = 1150 rpm CTMC DTMC(RC) DTMC(FC)

Parameter/f 20 Hz/1.26 kHz 20 Hz/1.26 kHz 20 Hz/1.26 kHz

a (m/s2) 1.88/56.9 2.18/47.4 1.88/54.8
Iph1 (A) 37.4/0.032 38.0/0.475 37.0/0.664
Iph2 (A) 37.3/0.051 37.9/1.03 37.1/0.922
Iph3 (A) 39.0/0.033 39.2/0.512 38.4/0.307
Iph4 (A) 39.5/0.058 40.3/0.548 39.3/0.366

6. SRM Control Variants Using the CTMC and DTMC Methods

By analyzing the laboratory test results presented in Sections 5.3 and 5.5, it is possible
to identify the speed ranges in which the drive has the best properties depending on a
specified criterion. If the criterion is minimum losses in the power source—i.e., operation
at minimum current IsourceRMS—the control of the drive as a function of speed should use
the speed ranges listed in Table 5.

Table 5. Assignment of the control methods to speed ranges to achieve minimum losses in the
power source.

IsourceRMS Is Minimum

Speed Range Control Method

n < 300 rpm DTMC(RC)

300 ≤ n < 700 rpm DTMC(RC)

700 ≤ n < 950 rpm DTMC(FC)

n ≤ 950 rpm CTMC
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If the drive is to operate at maximum efficiency, it should be controlled as shown in
Table 6.

Table 6. Assignment of the control methods to speed ranges to achieve maximum drive efficiency.

Total Efficiency Is Minimum

Speed Range Control Method

n < 800 rpm DTMC(RC)

n ≥ 800 rpm DTMC(FC)

To ensure that the SRM drive generates as little noise as possible, it should be con-
trolled using the CTMC or DTMC(RC) method.

7. Conclusions

This paper has presented a description and the results of simulations and laboratory
tests of proposed methods for dependent torque control in a Switched Reluctance Motor,
denoted DTCM(RC) and DTMC(FC). The results of these tests were compared with those ob-
tained for the Classical Torque Motor Control (CTMC) method. The following conclusions
were drawn from the study:

− The advantage of the proposed control methods is that they do not require equipment
modifications of the power system to improve the performance of the drive.

− The use of DTMC(RC) and DTMC(FC) improves the drive efficiency compared with the
CTMC method, but the improvement is not greater than 1%.

− With DTMC(RC) control above 800 rpm, the drive efficiency decreases and the RMS of
the source current increases.

− Comparing the levels of vibration acceleration generated by the SRM for the consid-
ered control methods, the highest level of vibrations occurred with DTMC(FC). This
is due to the control algorithm, which causes an increase in the amplitudes of phase
current harmonics at the resonant frequencies of the machine.

These results were used to identify the speed ranges in which a particular type of
control ensures the minimum losses in the power source or the maximum efficiency of
the drive.
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