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Abstract: This paper discusses some design issues of a magnetic rotating to linear motion converter
(RLMC), suitable for the propulsion system of a short-distance low-capacity vehicle. It basically
operates like a magnetic rack, which executes the contactless conversion of the motor torque into
a propulsion thrust, deriving from the interaction of on-board permanent magnet (PM) modules
and stationary ferromagnetic steel pieces. A design procedure is set up that deals with both the PM
module arrangement and the geometric shape of the steel pieces to optimize different performance
aspects. A simplified modeling based on 2D transient finite element analyses is carried out to
determine the thrust profile and the RLMC losses, which are essential to assess its practical feasibility.
Finally, the characteristics as functions of the load angle and speed are determined to enable the
prediction of the dynamic power exchange and then of the net energy demand useful to size the
on-board source.

Keywords: magnetic gears; permanent magnet machines; linear motion; electromagnetic modeling;
finite element analysis; loss calculation

1. Introduction

Magnetic gear (MG) technology is particularly attractive as a replacement of the
conventional mechanical gears with the purpose to fulfill some binding application require-
ments. In particular, the elimination of contact transmission can represent a significant
improvement to increase reliability and efficiency, reduce noise, and simplify the driv-
etrain [1]. Several MG configurations are potentially able to fit different transmission
arrangements, often difficult to obtain by mechanical devices unless multiple conversion
stages are used. In addition to the more common radial flux coaxial MG (CMG) [2], axial
and transverse flux as well as linear type MGs are deeply investigated, assessing their
performances for different application ratings and sizes [3–8]. The more limited volumetric
torque density—generally claimed against the use of mechanical gears—is increasing,
reaching values above 200 kNm/m3 thanks to the combination of high-grade permanent
magnets (PMs), quasi-Halbach magnetization patterns, high permeable iron core materials,
and flux focusing configurations [3,9].

Recently, MGs have been investigated for various transport applications, requiring
limited gear ratios (about 10:1 or lower). Two possible design approaches can be recognized:

• The MG integration in the electrical drive to enhance the volumetric torque density in
low-speed high torque power conversion and to achieve a better exploitation of the
PM material and a simple construction [10,11];

• The replacement of the mechanical gear to improve the system efficiency, reliability,
and quietness, as well as the mass torque density [12,13].

Another potential MG application consists of the conversion of the rotating to linear
motion with the aim to couple a rotating high-speed drive to a low-speed translational
load. The basic idea is to eliminate the mechanical gear transmission and at the same time
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to provide a translational force (thrust) directly to the vehicle, avoiding the exertion of
high torque to the wheels. A possible arrangement that can be adapted to this purpose
consists of a magnetic lead screw design with both PM and reluctance translators [14,15].
The operating principle based on the cycloid MG enables high force density and low
frequency magnetic field, which significantly reduces the eddy current losses. The use of
ferromagnetic pieces to replace the PMs on the translators and a skewed assembly of the
active parts [16] can mitigate some manufacturing issues. However, its application to a
transportation system is not convenient because of the inherent tubular design and the
complicated assembly required to realize high stroke lengths.

The paper aims to investigate a novel arrangement reproducing a kind of contactless
rack-and-pinion device based only on PM magnetic field interaction. Differently from
the above configurations, the motion is planar and enables to efficiently convert the high
speed/low torque mechanical power of a conventional rotating motor to a low speed/high
thrust form, more profitable for the vehicle propulsion. It can be particularly suitable for
operation on widely differing route configuration with steep slopes in downtown or in
hilly areas, currently served by more invasive and costly maintenance ropeways, aerial
tramways, or cable cars [17,18]. The electromagnetic transmission can aid the development
of environmentally friendly transport infrastructures, at the same time enabling efficient
and safe operation.

2. Proposed Configuration

The proposed magnetic propulsion unit adopts a rotating to linear motion converter
(RLMC) with an inherent MG effect. The basic module installed on-board (Figure 1a)
consists of two PM arrays. A pair of PM cylinders (RPMCs) rotating synchronously at the
speed Ωc generate a translating pc-pole pairs magnetic field. A set of planar PMs (PPMs)
having pL-pole pairs interacts with the RPMCs because of the magnetic field modulation
produced by a stationary magnetic rack (MR). The latter consists of ns steel pieces (MRSPs)
per each PPM array length L [19].
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Figure 1. (a) RLMC basic module; θc, xs: RPMC angular position and MR linear position with respect to the fixed reference
frame Oxy; vs, Ωc: MR relative speed and RPMC angular speed; (b) small-scale prototype under development with moving
MR and stationary PPM and RPMCs (nm = 2 modules).

The device provides a contactless power transmission, converting the low torque/high
speed motion of the RPMCs driven by conventional rotating motors to the high force/low
speed vehicle motion. With respect to a total linear machine, the travelling magnetic field
generated by the PM cylinders is less affected from well-known worsening end effects
typical of short stator linear winding configuration [20]. Furthermore, the RLMC does not
require supply systems, easing the installation and lowering the PPM heating.
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The elimination of the rack-pinion devices leads to quieter, more efficient, and reliable
operation, with remarkably less stringent requirements for the transmission interface cou-
pling at the same time. The augmented adhesion allowed by contactless transmission, the
adaptability to different routes and payloads thanks to the inherent modular design. easy
and straightforward thrust control capability (propulsion and braking) by a conventional
high-speed drive are favorable features of this propulsion system for vehicle operation on
steep grade routes.

Figure 1b shows prototype under construction with nm = 2 modules, developed for
a small scale application with moving MRs and fixed RPMCs and PPM [21], currently
under test to validate the results obtained by the proposed model. The MRs joined by an
aluminum frame slide along a linear guide, dragged by the RPMCs rotation. The rotating
motor drives the RPMCs by a timing belt-pulley arrangement applied to the RPMC shafts.
Though some additional friction losses should be expected, cogged V- or synchronous belts
relies on a well assessed technology, presenting an efficiency higher than 95% [22]. A pair
of bearings integrated in the lateral holding plates support the RPMC shafts to ensure the
air-gap width tolerances sustaining the attractive forces between the PM arrays and the
MR. In the right-side Figure 1b picture, the idle pulleys, increasing the belt contact arc
around the driving pulleys, can be clearly identified.

In the paper, the RLMC is sized to cope with the requirements for a low-capacity
service on a short-distance sloped route. First, the feasibility of the propulsion system
using multiple basic modules is assessed. The study based on magnetostatic finite element
analyses (FEAs) aims to define the values of the main geometric parameters that fulfill
the requested thrust and limit the thrust and torque ripple. Then, an improved design
is carried out by examining different arrangements of reduced-size RPMCs, aiming at
the enhancement of the dynamic performances and at the reduction of the torque ripple.
For a more comprehensive performance evaluation, a procedure for the calculation of the
electromagnetic losses is developed, based on time effective transient FEAs of a reduced ge-
ometric model. Such analyses enable to optimize the shape of the MRSPs and to determine
the electromagnetic performances as functions of speed and load angle, used to estimate
the size of the on-board energy source.

3. Application and RLMC Data

The considered application for the RLMC concerns the propulsion of a low-speed
vehicle operating on a short length sloped route with a rail guideway. The assumptions for
the main vehicle and performance characteristics are reported in Table 1, which somewhat
recall a funicular service on mountain or in the urban environment.

Table 1. Main application characteristics.

Quantity Value

N. passengers, Np—slope gradient, s%—distance D 8—20%—1000 m
Total mass Mt 1800 kg
Acceleration a 0.25 m/s2

Cruise speed vs 3 m/s
Resistance to motion ρ f r 8 kg/ton

Inertia increase due to RPMC rotating mass εc ≤50%
Thrust F∗s (max.) 4.4 kN

The total mass Mt includes the cabin, the supply, and the propulsion systems, as well
as the payload. The maximum requested thrust F∗s must fulfill the resistance to motion
ρ f r (wheel-rail rolling, friction) as well as the inertial component requested to apply the
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maximum acceleration a. In addition to the vehicle mass, an additional inertial factor εc
must be considered to include the RPMC rotating mass:

εc = nmnc

(
Ωc

vs

)2 Jc

Mt
(1)

with nc RPMCs per module and Jc single RPMC inertia.
The preliminary design is based on the relations that provide the best transmission

capacity at synchronized operation derived from the conventional theory of the CMG [2]:

ns = pc + pL, GR = vs/vc = pc/ns, τc = πvsns/Ωc (2)

with GR gear ratio and τc RPMC pitch. Assuming the basic module configuration (pc = 1)
and given vs, Ωc and GR, ns and pL are determined by (2) and τc, τp = τc/pL and
τs = 2τc/ns are defined as well.

Table 2 shows the data assumed for the RLMC design. The RPMC speed Ωc is set
aiming at the use of standard commercial motors. The chosen GR value enables a simplified
manufacturing of the active parts and matches the condition for a favorable CMG design
as for the volumetric torque density [23]. The active length Lt and depth ld define the total
available area for the module arrangement.

Table 2. RLMC data.

Quantity Value

RPMC pole pairs, pc—PPM pole pairs, pL—MRSPs ns 1—5—6
Gear ratio GR 6:1

RPMC speed Ωc 3000 rpm
Total active length Lt—depth ld ≤2–≤0.25 m

PM retentivity Br—coercivity Hc 0.4 T—300 kA/m
Steel electrical resistivity ρFe 50 µΩ·m

Steel relative permeability µFe (max) 3000

As for the material properties, ferrite PMs are adopted for their low cost, negligible
electrical conductivity, and lower attractive force. The magnetization patterns are diametral
for the RPMCs and quasi-Halbach type for the PPM. The ferromagnetic parts have the
same material property (AISI 1008 Carbon Steel), considering a laminated stack for the
PPM yoke and solid bars for the MRSPs, the latter to ease the core manufacturing and
assembly. The BH characteristic is shown in Figure 2. The low frequency operation and
the simple MRSP shape do not justify the adoption of high performing materials like soft
magnetic composites [5,7] that, on the other hand, are much more expensive and can give
rise to mechanical strength issues.
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4. Preliminary Sizing of the RLMC

The RLMC sizing is based on a preliminary analysis which aimed to identify a con-
venient range for significant design ratios focusing on the thrust and the torque behavior
at synchronized operation [19]. Let Fs the mean total thrust, fs and torque tc the per unit
(pu) depth thrust and total torque, respectively, with mean values 〈 fs〉 and 〈tc〉 and stan-
dard deviations SD( fs) and SD(tc), a set of performance indices are defined to achieve a
profitable design:

rF =
SD( fs)

〈 fs〉
, rT =

SD(tc)

〈tc〉
, σm =

Fs

Vm
, σV =

Fs

VT
, l∗d =

F∗s
〈 fs〉

(3)

with Vm and VT total PM and device volumes and l*d the effective active depth to achieve
the rated value F∗s of Fs. The ripple indices rF and rT take into account the thrust/torque
unevenness and the thrust densities σm, σV are related the PM and volume utilization,
impacting on cost and system capacity.

The sizes of the basic module shown in Table 3 are obtained considering nm = 5 in
line modules to fulfill the maximum length constraints (nm·2τc < 2 m). Some parametric
analyses are carried out by 2D magnetostatic FE code (Ansys Maxwell®) to tune the PM
and MRSP sizes starting from some reference values obtained in [19].

Table 3. Sizes in mm of the basic module.

Quantity Value Quantity Value Quantity Value

τc 180 g1 1.5 g2 2.5
rc 70 wp 25 hp 12
hy 15 ws 24 hs 43

Suitable meshes are set up by the code built in procedure, aimed to achieve a suitable
refinement in the air-gap regions (about 40,000 triangles each in the MRSP and RPMC
regions). The following results are obtained:

• The ratio wp/τp ∼= 0.7 maximizes 〈 fs〉 with minimum rF (Figure 3a), substantially
confirming the convenience of choosing its value in the range [0.6:0.7].

• By decreasing rc/τc, rT remarkably decreases—however remaining too high for the
application—and σm becomes higher (Figure 3b); as a drawback, values lower than
0.36 yield higher thrust ripple l∗d values incompatible with the design constraint of
Table 3 (≤0.25 m).

• The variation of the MRSP parameters ls = ws/τs and ks = hs/ws in the ranges
[0.34:0.46] and [1.2:2.2], respectively, mainly affects the thrust profile; 〈 fs〉 increases
as both ls and ks decrease, on the contrary rF depends mainly on ls, decreasing as
ls decreases.

Established according to the above observations, the values in Table 3 ensure a fa-
vorable trade-off to fulfill the thrust performances in terms of usable active depth and
thrust ripple (l∗d = 0.19 m, rF = 2.7%). The torque ripple (rT = 620%) and the inertial factor
(εc ∼= 4.5) are, however, still too high. The former derives from the alternately magnetizing
and demagnetizing interaction between adjacent RPMCs which produces large magnetic
energy variations. This issue is checked considering the energy balance during a full RPMC
rotation, assuming no losses:

∆W =
∫ 2π

0
tcdθc −

∫ τs

0
fsdxs = Wc −Ws (4)

with ∆W total magnetic energy variation, Wc RPMC input energy and Ws MRSP converted
energy. Whether the energy terms related to the torque and force mean values cancel
each other, ∆W represents the torque oscillating contribution. Figure 4 reports the ∆W
evaluation for two RPMC radii, denoting the presence of a 2nd harmonic component strictly
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related to the magnetization interaction and the remarkable reduction of its amplitude
by decreasing the RPMC radius. The same figure shows the agreement between the ∆W
calculation by (4) and by direct FEAs.
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The relevant torque ripple could lead to unacceptable stresses on the mechanical drive
components. The high inertial factor, strictly depending on the exceeding RPMC diameter
to fulfil the thrust requirement, impairs on the other hand the acceleration capability. There-
fore, further design improvements are examined to mitigate such unfavorable occurrences.

5. Performance Improvement

A substantial revision of the magnetic configuration is necessary to reduce the RPMC
radius without impairing the thrust performance, as shown in Figure 3b. To such purpose,
a quasi-Halbach configuration of the RPMCs is devised, interposing additional RPMC
with 90◦ shifted magnetizations. Despite a slightly more complicated mechanical trans-
mission due a doubled RPMC number, such arrangement enables a more effective volume
exploitation with an overall PM material saving with respect to the basic module configu-
ration. Preliminary FEAs evidence that a halved RPMC radius (rc = 35 mm) ensures the
same thrust with 35% PM amount saving, dropping at the same time the inertial factor to
εc ∼= 0.5, within Table 3 constraint.

For a further mitigation of the torque ripple, achieved with the new arrangement,
the RPMC interaction must be even more weakened, and the oscillations of single RPMC
torque profiles should be better counterbalanced. The early RPMC pairs are therefore split
into multiple propulsion units, evenly displaced by the distance ∆Ls. At the same time, an
additional anticlockwise rotation ∆θs = 360

◦
∆Ls/τs must be jointly applied to the adjacent
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displaced RPMCs to keep the electromagnetic RPMC-PPM field interaction synchronized
(Figure 5). Three possible arrangements for the modules are considered consisting of nc = 4
(conf. A), nc = 2 (conf. B), and nc = 1 (conf. C) RPMCs.
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As an example, Figure 6 shows the thrust and torque indices as functions of ∆θs for
the conf. B. It can be noticed the significant ripple reduction with a limited rotation ∆θs
without an appreciable worsening of the pu length thrust and a consequent limited increase
of the active length Lt, satisfying the active length constraint.
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Figure 6. Thrust and torque performances as functions of the angular shift ∆θs (conf. B).

Analogous studies were carried out for the other configurations to find the most
profitable value for ∆θs. Table 4 summarizes the corresponding performance indices, also
including the calculations for the preliminary design and for the conf. A with null module
distancing (i.e., ∆θs = 0◦) for the sake of comparison. Mob is the RLMC on-board mass
obtained from the calculation of the depth l∗d by (3).
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Table 4. Comparison between different RPMC arrangements.

Conf. nc nm
∆θ*

s
(◦)

〈fs〉 (kN/m) rF(%) rT(%) σV(kN/m3) Lt(m) Mob(kg)

Prelim. 2 5 0 23.1 2.70 620.3 59.9 1.8 209.3

A
4 5 0 21.2 8.01 26.7 81.9 1.8 147.2
4 5 60 20.4 1.60 7.43 77.0 1.84 153.1

B 2 10 30 20.6 1.63 5.80 77.5 1.85 151.7

The conf. A with ∆θs = 0◦, although the most convenient as for the thrust density and
therefore with the lowest Mm, yields unacceptable ripple values; the optimal ∆θs choice
remarkably decreases them with a limited σV reduction (−6%). The ripple rT is even lower
for conf. B (−20%), the thrust density being almost unvaried. The single cylinder per
module conf. C is generally worse as for general performances and mass requirement,
due to the higher module distance necessary to limit the torque ripple, abating the mutual
field reinforcement between adjacent RPMCs and therefore lowering the mean thrust. The
comparison of the thrust and torque profiles (Figure 7) evidence the smoothing effects
obtained by shifting the propulsion units and the advantage of conf. B with respect to the
other configurations. It is worth mentioning that the module distancing contributes also to
the reduction of the single RPMC torque ripple, as its average value is more than halved
with respect to the preliminary device. The limited mass Mob of the conf. B is another
favorable feature for the examined application.
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To increase the stiffness of the module, the effect of using a unique PPM yoke is also
investigated. Though resulting in higher amount of ferromagnetic laminated material
(+2.5%), the FEAs carried out on conf. B denotes a slight increase for the thrust (+1%)
and a decrease for the ripple (−9%) as well as a notable decrease in torque ripple (−35%).
This outcome is likely related to the enhanced focusing of the RPMC flux lines inside the
module rather than leaking towards the adjacent ones.

6. Calculation Model
6.1. Electromagnetic Losses

A procedure for the evaluation of the electromagnetic losses is set up to assess the
suitability of the material properties and to optimize the RLMC efficiency by choosing
alternative MRSP shapes. The losses calculated at different speed values will also enable
the estimation of the system energy requirements and consequently the size of the on-board
source. The loss contributions per unit volume, computed with reference to synchronized
operation by 2D FEAs, are:
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• Eddy current losses in the solid MRSPs

p′ec = ρFe

(
dAz

dt

)2
(5)

with ρFe steel resistivity and Az magnetic vector potential.
• Eddy current losses in the PPM laminated yoke

p′′ec = kec

[(
dbx

dt

)2
+

(
dby

dt

)2
]

(6)

with kec eddy current loss coefficient and bx, by time variation of the x and y flux
density components.

• Hysteresis losses in the MRSPs and PPM yoke (averaged over a flux density cycle)

ph =
(

1 + kdc·B2
dc

)
·kh·max

T

(
(b(t)− Bdc)

2
)

/T (7)

with b(t) instantaneous flux density value, T period related to the flux density cycle,
kh hysteresis loss coefficient, kdc coefficient considering the DC-biased induction
component Bdc, corresponding to b(t) averaged over T, [24]; they are evaluated by an
internal procedure of the FE code.

The coefficients kh and kec related to the classical Steinmetz equation are determined
by processing the core loss curves at different frequencies by a FE built-in interpolation
routine. The values for the chosen steel material related to 0.5 mm lamination thickness
are presented in Table 5, also including the stacking factor. As a reference, the specific
core losses pFe at 50 Hz, 1.5 T is given. For this kind of material, the routine provides
negligible excess loss contribution, which is generally present in the modified Steinmetz
equation. Values are related to standard room temperature and dependence on temperature
is neglected. The resultant eddy current and hysteresis losses P′ec, P′h for the MRSPs and
P′′ec, P′′h for the PPM yoke, respectively, are obtained by volume integration of the loss
densities in the corresponding cross-section of the material.

Table 5. Coefficients for the calculation of core loss.

kec kh kdc pFe (W/kg)

1 400 0.65 3.26 (50 Hz, 1.5 T)

6.2. Reduced Geometric Model

With reference to the conf. B, a preliminary simplified approach relies on analytically
reproducing bx(t), by(t), and Az(t) by the elaboration of the results of automated mag-
netostatic FEA sequences. The large size of the geometric model caused by the absence
of magnetic periodicity and the need to consider several MRSPs positions xs could lead
to a remarkably lower calculation time in comparison with FEA transient simulations,
in principle essential to evaluate the MRSP eddy current losses P′ec. However, the above
approach cannot consider the relevant eddy current effect on air-gap field.

According to the transient FEA, the higher values of the current density are con-
centrated at the MRSP borders (Figure 8a), producing a shielding effect on the flux lines
(Figure 8b). The flux density map is therefore remarkably altered with respect to a mag-
netostatic solution as shown in Figure 8c,d. Moreover, the use of the magnetostatic FEAs
would not enable to determine the reduction share on the thrust due to the MRSP losses,
which contribution is as a matter of fact split into both thrust and torque reduction.
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Therefore, an alternative procedure is developed that consists of the execution of tran-
sient FEAs on a reduced geometric model, derived as a subset of the original configuration.
It relies on the fact that, under synchronized conditions, each single MRSP undergoes the
same thrust and electromagnetic losses, albeit time shifted. The same deduction applies
to each PPM yoke region. Then, the analysis can be restricted to a single MRSP and PPM
yoke section, provided that the electromagnetic effects on MRSPs during their motion in
the entry and exit regions as well as in the intermediate zone (transition) between RPMCs
and PPMs are reproduced with acceptable accuracy.

To this purpose, the reduced model in Figure 9 is considered, consisting of three
RPMC modules and an odd subset n′s of MRSPs, moving across the RPMC modules. Even
if the magnetic field distribution is evaluated on the whole model, only the results related
to the reference objects (identified by hatching) are post-processed. In particular, the
instantaneous thrust and losses are calculated only for the middle MRSP of the subset
(index (n′s + 1)/2, to include the adjacent MRSPs proximity influence) and for the central
PPM yoke, limited to the positions where the MRSPs subset completely face the yoke. The
solution domain downsizing significantly reduces the computational effort since only the
area restricted to the reference objects needs an extreme mesh refinement, a limited set of
the field data is elaborated, and the time sampling during the transient solution can be
adapted according to the reference MRSP position.

The reference MRSP position coordinates x′0÷ x′4 enable to define three position ranges
Ri (i = 1,2,3) for the elaboration of the instantaneous MRSP quantities. They are related
to the motion inside the inner modules (R2 =

{
x′1, x′3

}
) and in the entry and exit regions

(position ranges R1 =
{

x′0, x′1
}

and R3
{

x′2, x′3
}

, respectively), where the end effects affect
the electromagnetic quantities. To avoid discontinuities in passing from R2 to R3, the
exit region is wider than the entry one. The instantaneous profiles are obtained first by a
suitable joining process of the data sequences related to the different position ranges Ri
and then applying a spline interpolation. Figure 10a shows the pu length losses P′ec with
n′s = 7, highlighting the time intervals related to the regions Ri. The dissymmetry between
the entry and exit effects is evident, as the latter is affected by eddy current circulation for
longer time likely due to the greater number of RPMCs involved.
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Let ci(t) the instantaneous value of the generic MRSP quantity in the range Ri, the
resultant curve cMR(t) is obtained from the following elaborations:

1. The profile c2(t) of the transition zone is replicated n′m = (nm/2− 1) times to repro-
duce the actual length of the complete model; the resultant profile c∗MR,1(t) for the
reference MRSP is then given by:

c∗MR,1(t) = c1(t) + n′mc2(t) + c3(t) (8)

The number n′m derives from the adopted range subdivision x′1 ÷ x′3.
2. The curves c∗MR,j (j = 1 . . . , n′′s ) related to the n′′s MRSPs travelling in the x′0÷ x′4 range

during a τs stroke length, are superimposed to obtain the resultant instantaneous
value

cMR(t) =
n′′s

∑
j=1

c∗MR,j(t) , c∗MR,j(t) = c∗MR

(
t− (j− 1)τs

vs

)
(9)

Figure 10b shows the result of the elaboration procedure. The blue trace represents the
P′ec profile of a single MRSP obtained by (8); the orange trace represents the superposition
of P′ec profiles related to each MRSP, identical to the former one and shifted from each other
by τs/vs, according to (9). The total average value P′ec is evaluated with reference to the
steady-state interval with the contribution of all the MRSPs.
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Regarding the PPM losses, the central yoke section is subdivided into m regions
delimited by the coordinates x′′k (k = 0 . . . , m) related to the corresponding positions of
the MRSP subset. To correctly reproduce the evolution of the losses, each region must be
completely covered by the MRSPs. Therefore, the evaluation for the k-th region starts when
the first MRSP is at x′′k and ends when the n′s MRSP is at x′′k−1, obtaining k time shifted
curves. The total average values of the PPM core losses are then given by:

P′′ec =
nm

m

m

∑
k=1

∫ Tk
0 P′′ec.kdt

Tk
, P′′h =

nm

m

m

∑
k=1

P
′′
h,k (10)

with Tk calculation time for the k-th region, P′′ec,k instantaneous eddy current losses, and
P′′h,k cumulative value of the hysteresis losses.

The above procedure does not enable to evaluate the instantaneous torque since it
depends on the interaction among the RPMCs of the whole model. Let PL = Pec + Ph
the total losses with Pec = 〈P′ec〉 +

〈
P′′ec
〉
, Ph = P′h + P′′h , the mean torque Tc and the

electromagnetic efficiency ηem can be calculated from the power balance as:

Tc =
Fs vs + PL

Ωc
, ηem =

Fs vs

Tc·Ωc
(11)

6.3. Check of the Reduced Model Results

Table 6 shows the values of the main electromagnetic quantities calculated by the full
and the reduced models, considering for the latter m = 5, n′′s = 50 and different number
n′s. To evaluate the computational effort for the FEAs, the number of triangle elements ntri
of the mesh and the solution time tsim are also reported, the latter assessed adopting the
same hardware. Provided that n′s > 3, there is a general good agreement, as for accuracy of
loss and efficiency calculation. With n′s = 5, the deviations are very limited (−2.7% for 〈 fs〉,
−5.6% for Pec) with computation time reduced more than three times. The deviations with
n′s = 7 are practically negligible with respect to the full model, with a considerable time
saving anyway.

Table 6. Comparison between the results obtained by the reduced and the full models.

Quantity n
′
s=3 n

′
s=5 n

′
s=7 Full Model

〈 fs〉 (kN/m) 19.3 19.6 20.2 20.1
Pec (kW/m) 7.3 7.8 8.3 8.3

ηem (%) 88.05 87.44 87.16 87.11
tsim (min) 62 74 100 310

ntri 59,652 70,718 80,888 328,527

The accuracy is also confirmed by the comparison of the instantaneous thrust values
in Figure 11, so this procedure is also effective to evaluate the thrust ripple. According to
these results, the reduced model can be used for parametric/optimization analyses without
exceedingly time-consuming transient analyses.
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7. Optimization of the MRSP Cross-Section

The results in Table 6 evidence the need to improve the efficiency of the system
by decreasing RLMC losses. The largest share is due to the MRSP eddy current losses
(P′ec
∼= 93% PL) related to the solid material structure.
The MRSP cross-section shaping and its subdivision in insulated parts were investi-

gated to reduce P′ec, the PM array size and arrangements being unvaried. The examined
options are shown in Figure 12. The initial rectangular cross-section (type I) is divided
in two and three parts (types II and III) separated by 0.2 mm insulation thickness; an
additional segmentation can lead to higher costs of production as well as the magnetic
saturation of the tiny slabs. As an alternative, an IPE beam-like shape is also considered
(type IV and V), obtained by removing some material at the middle sides of the section
without detriment to the MRSP robustness and to the magnetic operating point. The
convenience of this shape for the torque transmission capability was already verified for
the CMGs [25].
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Figure 12. Map of the eddy current density for different MRSP cross-section shape (types I–V);
hts = 8.2 mm; wts = 9.4 mm (type IV); wts = 9.6 mm (type V).

The eddy current density Jz distributions in Figure 12 are obtained by the reduced
model with n′s = 7 at the same instant for all the MRSP types. The much more restricted
regions at higher Jz highlight the convenience of the MRSP segmentation. A more com-
prehensive analysis was carried out involving the comparison of some relevant RLMC
performances to select the most convenient configuration. To this purpose, the calculated
quantities were compared in the pu form X/X∗, with X∗ value of the corresponding
quantity for the type I.

Figure 13a evidences a remarkable decrease of the total losses mainly for the type III,
leading to a significant efficiency improvement (from 87.1% to 92.6%). In contrast, type IV
presents slightly higher losses despite the material reduction, likely related to higher flux
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density values. The thrust is almost unchanged for all types, denoting that eddy currents
have a limited braking action on the moving part.
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Conversely, the torque Tc evaluated by (11) is inherently affected by the losses, imply-
ing a slight deterioration for the type IV. The ripple rF increases for all the types, however,
within a satisfactory range (from 1.6% to a maximum 2.1% for the type II). Taking also into
account the material saving, the type V can be assumed as the best trade-off between the
evaluated performances. Table 7 proves the overall improvement achieved from such an
analysis. The input mechanical power Pin is reduced by ≈ 7% and the depth l*d by ≈ 5%,
with a consequent reduction the on-board mass.

Table 7. Data comparison between the MRSP types.

Type Tc (Nm) rF (%) Pec (kW) Pin (kW) ηem (%) l*
d (m)

I 48.24 1.6 1.82 15.2 87.1 0.220
V 45.70 2.0 1.03 14.4 92.0 0.210
V* 44.68 1.9 0.71 12.4 94.0 0.208

The suitability of such a configuration being confirmed, a parametric analysis in-
vestigated the influence of the sizes hts and wts, the total height hs and width ws being
unchanged. The purpose is to increase the resistance of the eddy current paths, without
negatively affecting the magnetic saturation and consequently thrust and hysteresis losses.
In total, 12 variable sets were examined starting from the values {hts, wts} = {4.7 mm,
9.6 mm} and gradually reducing both the quantities excluding too low values (<3 mm) for
manufacturing feasibility.

The values of the efficiency and the pu depth mean thrust are reported in Figure 13b,
indicating also the value related to the type V. There emerges a general improvement, mainly
for the further reduction of the eddy current losses. The type V* was selected as the optimal
one, since it provides the highest efficiency with increased thrust (+3.6%) with respect to the
type V. The data reported in Table 7 evidence the relevant Pec and Pin reduction (−30% and
−12%, respectively). Much thinner cross-sections could lead to an additional Pec decrease
at the expense of lower thrust and MRSP strength. The achieved efficiency ηem is highly
satisfactory, assessing the suitability of the proposed propulsion system.

8. Dynamic Performances

The performances of the optimized configuration as functions of the load angle γ and
speed can now be determined to predict the energy consumption and recovery for a given
the service speed trace v∗(t), with the purpose to size the on-board energy source, e.g.,
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a battery. The mean thrust and the total losses, directly involved in the system dynamic
equation, are shown in Figure 14: it is worth remarking that Fs, independent of speed,
can be adjusted by varying the load angle γ, i.e., the displacement between RPMC angle
θc axis and the electrical angle associated to the MRSP position xs. The highest losses
are associated to the maximum thrust absolute values, generally occurring during the
acceleration/braking phases.
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The required thrust profile is ruled by the dynamic equation on a sloping route,
expressed as

F∗s (t) = Fg + Ff r + Mi
dv∗

dt
(12)

with Fg gravity force due to the slope, Ff r friction component (assumed to be a constant,
speed dependence being negligible due to low-speed operation), and Mi inertial mass
that includes the rotating part contribution. Assuming the motor drive delay negligible
with respect to the motion dynamics, the γ∗(t) profile is defined by solving the equation
Fs(γ) = F∗s (t), with F∗s (t) given by (12); then, the instantaneous losses P∗L (t) = PL(γ

∗, v∗)
are determined. The motor drive input power is

P∗d (t) =
F∗s ·v∗ + P∗L

ηd
(13)

with ηd the drive average efficiency including mechanical losses. The net energy requested
to perform ntrip ascent and descent daily trips can be broadly estimated as:

W∗s = ntrip

(∫
P′ddt

ηdisch
+

∫
P′′d dt
ηch

)
+ Waux (14)

with Waux energy requested from auxiliary services, P′d, P′′d the drive power during the
traction and braking phases and ηdisch, ηch the source average efficiency during discharge
and recharge processes.

Using the data in Table 1 and the calculated RLMC characteristics, the energy W∗s and
the battery mass Mb were evaluated with reference to some typical technical data reported
in Table 8. The battery energy density refers to current Li-ion technology data [26]. The
results W∗s = 28 kWh and Mb =140 kg are consistent with autonomous vehicle operation,
though the demanding service related to the sloped route. It is worth noting that the cycle
energy efficiency (traction and braking phases) of the RLMC is about 93.6%, resulting in an
overall system efficiency of about 74%. A homogenous comparison with a conventional
ropeway transportation is rather difficult depending on the influence of several parameters
(plant size and capacity, technology, and operational strategies); however, some studies
estimate the average efficiency of such systems as much as 50%, where the main share of
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the power dissipation is related to rolling resistance of sheaves/rollers and bull-wheels
(≈ 40%) [27]. Then, the proposed transport system could benefit from a more efficient
operation even for routes with an appreciable slope.

Table 8. Data for the energy source sizing.

Quantity Value

N. ascent/descent daily trips ntrip 32
Drive average efficiency ηd 88%

Charge/discharge average efficiencies ηch, ηdis 90%
Energy demand for auxiliary services Waux 3.3 kWh

Battery energy density (Li-ion) 200 Wh/kg

9. Conclusions

The proposed magnetic device integrates the features of a conventional magnetic gear
with a contact-less rotating to linear motion enabling to drive efficiently and reliably linear
moving loads. The possibility of using conventional rotating equipment, inexpensive and
low environmental impact passive guideway and cost-effective magnetic materials gives
a significant advantage with respect to other proposed magnetic gear configurations and
suggest a profitable application for vehicle propulsion systems, especially if operating on
sloped routes. Furthermore, the motion transmission from the rotating motor drive to the
RPMCs can be conveniently implemented by well-assessed, reliable, and efficient timing
belt and pulley devices, sheltered in an accessible on-board volume, unlike rack-pinion
gear or funicular based transport systems, wear prone and requiring heavy maintenance.

The design procedure developed in the paper enabled a detailed evaluation of the
feasible performances (in particular, thrust, torque, and efficiency) for various configura-
tions thanks to the time effectiveness and accuracy of the simplified analysis on a reduced
model. As a result, an optimization process was successfully applied to define the RPMC
and MRSP arrangement, yielding the dynamic ratings of a practical application with low
torque and thrust ripple and very limited losses.

The same simplified analysis enabled the elaboration of RLMC characteristics as
functions of the load angle and speed to predict the system energy demand. Referring
to a realistic application scenario, the on-board source energy requirement is therefore
assessed. The obtained specifications are consistent with ordinary commercial applications.
At the same time, the overall estimated efficiency is appreciably higher in comparison to
conventional ropeway transportation.
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