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Abstract: Due to their transparent rear side, bifacial modules can take advantage of rear side
irradiance as opposed to monofacial modules. Glass or transparent backsheets are conventionally
used as rear side encapsulation material. To increase coupling gains achieved through internal
reflection at the module rear side, a white or reflecting mesh structure can be applied in the areas
between the cells on the rear side material. In this study, an existing optical model based on
a simplified ray tracing approach is extended to describe the effects achieved though this mesh
structure. The model is further integrated into a complete cell-to-module loss and gain analysis.
The performance of the mesh backsheet concept is assessed under varying parameters. The impact
of mesh reflectance, bifaciality of the cell and width of the mesh compared to the cell spacing are
investigated. Losses due to increased module temperature and gains due to internal reflection gains
are compared. We confirm that the optimal power gain can be achieved when the width of the mesh
is the same as the spacing between the cells. We find that the power gain due to the improved internal
reflection outweighs the power loss due to increased module temperature.

Keywords: solar cells; transparent mesh backsheet; reflectance; bifaciality factor; module tempera-
ture; white backsheet width; cell-to-module (CTM) ratio; power gain

1. Introduction

A bifacial photovoltsic (PV) module utilizes irradiance from both sides for the genera-
tion of electricity [1–3]. The performance of the rear side of the module, described by its
bifaciality, is influenced to a large degree by the cells’ bifaciality and by the transparency of
the module rear side. A white backsheet as a module rear side produces additional cell-to-
module (CTM) gains. Additional reflected light is coupled in the cell from inactive module
areas such as cell spacing and the module margins [4–6]. On the other hand, a transparent
backsheet or glass in a bifacial module enables the utilization of the additional irradiance
that can enter through the module rear side [4,5]. Previous studies have focused on the
analysis of differences due to the rear side material (glass or backsheet) or comparison of
backsheet types (transparent vs. white backsheet) [7,8].

To use the benefits of both concepts, some companies have created a mesh backsheet
or mesh glass concept, which is a selectively transparent module rear side, combining
reflective areas between cells with transparent areas underneath the cells (Figure 1). The
mesh is usually a coating applied to the inside or outside of the base material.

Previous studies have analyzed the performance of bifacial modules with internal
reflection, including one position of the internal reflector and tilt angles. These studies did
not consider rear side irradiance and the layout of the module rear side, such as the width,
thickness and position of the coated area [9–12].

Therefore, we extend a previously developed model based on simplified ray tracing [6]
to consider the impact of selectively coated backsides on internal light management in
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photovoltaic modules. We consider both reflection gains due to front and rear side irradiance
as well as potential shading losses on the module rear side (Figure 2). We investigate the
performance of the mesh backsheet or glass concept. We analyze the cell-to-module losses of
the mesh backsheet module depending on parameters such as reflectance of the coated area
on the backsheet, bifaciality of the solar cell and width of the coated areas in the cell spacing.
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Figure 2. Different exemplary contributions of meshed backsheet on optical gains and losses in
PV modules.

2. Simulation Methods
2.1. Cell-to-Module Analysis

Figure 3 shows a waterfall diagram depicting the typical sources of losses and gains
considered in cell-to-module analysis (CTM analysis) using the software SmartCalc.CTM.
As presented in the figure, the CTM ratio describes the ratio between the sum of the
initial solar cell power (or solar cell efficiency) and the power (or efficiency) of the final
module. Therefore, two definitions of the CTM ratio exist, one based on power and one
based on efficiency. In the present study, we use the power CTM ratio. The aspect of this
analysis investigated here is gains that can be achieved by optical coupling, for example, at
otherwise inactive module areas [13].

In a module configuration featuring a mesh backsheet or mesh glass rear side, the
so-called backsheet coupling gain (k11) is affected by the coated areas on the module rear
side. Compared to a simple homogeneous backsheet, some more aspects of the geometry
must be accounted for. In the following, we will describe how to consider the front side
gains and potential rear side losses associated with the use of a meshed module rear side.
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of the module.

2.2. Ray Group Model Definition

Figure 4 schematically shows the two contributions to module power that we investi-
gated. As shown in the following figure, the additional irradiances can be produced by
internal reflection and irradiance from the rear side. We define the ray groups based on
the thickness of each layer and the following contributions. Additionally, we consider the
illuminated area when analyzing with various incident angles.

1. Internal reflection gains.
2. Direct gains from the rear side.
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2.2.1. Reflection Gains from Front Side Illumination

The light incident on inactive module areas from the front side is reflected by the coated
area of the meshed backsheet. We define the excess width of the mesh bars underneath
the cell as xref. We denote the width of the solar cell as wcell and the height of each
layer of the module stack as hg, heA, hc, heB and hb (for front glass, front encapsulant,
solar cell, rear encapsulant and backsheet/glass, respectively). The backsheet is assumed
to diffusely reflect light, following the distribution of a perfect Lambertian reflection.
Each light ray hitting the coated area is thus reflected with its power reduced by the
given reflectance. We consider each point x along a line perpendicular to the cell edge
in the space between cells, where x = 0 is defined as the cell edge of the right cell (comp.
Figure 5). To accurately describe the light redistribution from this point, we define so-called
ray groups, which are fully defined by their reflected angles. Additionally, we consider the
azimuth angle of the incident light ϕ. As the reflection is assumed to be perfectly uniform,
the distribution of the reflected light is not affected by the incidence angle. However,
shading due to the solar cell edges is affected, as we will see below. Each ray group
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represents the light being redirected into a specific part of the module: the cell front side,
the cell back side (the cell edge, which is considered to belong to the front side), the coated
backsheet area, the transparent area or exiting the module via the front side. Each ray
group is denoted by letters that represent the path the light takes after being reflected (e.g.,
g.bs = glass.backsheet). This nomenclature is given along with their respective angular
ranges in Table 1. Figure 5 schematically depicts the threshold angles which define these
different ray groups. The threshold angles are defined by the module geometry and given
in Equations (1)–(6).

θg.t(ϕ, x) = tan−1

(
x + xre f

)
/ cos ϕ

2hg + 2heA + 2heB + hc
(1)

θg.cb(ϕ, x) = tan−1 x/ cos ϕ

2hg + 2heA + heB + 1
2 hc

(2)

θg.c f (ϕ, x) = tan−1 x/ cos ϕ

2hg + 2heA + heB
(3)

θc f (ϕ, x) = tan−1 x/ cos ϕ

heB + 1
2 hc

(4)

θcb(ϕ, x) = tan−1 x/ cos ϕ

heB
(5)

θbs(ϕ, x) = tan−1 (x + wcell)/ cos ϕ

heB
≈ π

2
(6)
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Table 1. Definition of ray groups by reflectance angle and surface that is hit by the rays in this group.

Index Angle Range Target Area

g.bs 0 ≤ θ ≤ θgt coated backsheet area via front glass reflection
g.t θgt ≤ θ ≤ θgcb transparent backsheet area via front glass reflection
g.cf θgcf ≤ θ ≤ θc cell front via front glass reflection
g.cs θgcb ≤ θ ≤ θgc f cell side via front glass reflection
cs θcf ≤ θ ≤ θcb cell side directly
cb θcb ≤ θ ≤ θbs cell back directly

To define the total irradiance hitting its target in each ray group, we first define
a loss matrix M for the respective light path. The loss matrix is calculated based on
previously calculated angle-dependent optical loss factors (see k3 to k6 in Figure 3) that
define transmission and reflection losses through the encapsulation materials and at the
glass/air interface. The bi-directional reflection distribution function of the backsheet
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(BRDF) is measured or modeled depending on the reflective properties of the coating and,
in the present study, a perfectly Lambertian reflection distribution is assumed. More details
on the impact of backsheet reflection on internal coupling gains can be found in Pfreundt
et al. [6].The total irradiance of each ray group is calculated by Equation (7) using the light
fraction defined in Equation (8).

Egroup(x) = Ebs(x)· fbs,group (7)

fbs,group =

∫ ϕ0(x)
−ϕ0(x) dϕ

∫ θ2(ϕ,x)
θ1(ϕ,x) dθ sin θMBRDF(θ, ϕ)Mgroup(θ, ϕ)∫ π

−π dϕ
∫ π

0 dθ sin θMBRDF(θ, ϕ)
(8)

The threshold angles θ1 and θ2 define the range of each ray group, as defined in Table 1.
At incidence angles other than normal incidence, shading from the solar cell changes

the position of the illuminated area on the module rear side. Especially in the case of the
inhomogeneous back side of the mesh backsheet, this shift in the illuminated area needs to
be considered.

While the depiction in Figure 6 shows a two-dimensional view of the module cross-
section by x, we consider the shading effects for all four sides of the cell respectively. This
considers the impact of the azimuth angle of the incident light. Equations (9)–(12) define
the shaded and illuminated areas on each side of the cell, where hc is the height of the
cell and heB is the height of the lower encapsulation materials above the mesh. Due to
symmetry, the width of the illuminated areas on opposite sides of the cell are identical. To
correctly account for the reflection gains with respect to a single cell, we need to consider
the light redistribution in opposite directions. On one side, we consider the left solar cell as
the target and, on the opposite side, the right solar cell. The calculated gains along a line are
then integrated around the cell circumference, accounting for the cell format by weighing
the respective contributions. Thus, we calculate the reflection gain per cell depending on
its surrounding inactive area.

xs1(θ, ϕ) = heB tan θ sin ϕ (9)

xs2(θ, ϕ) = (heB + hc) tan θ sin ϕ (10)

ys1(θ, ϕ) = heB tan θ cos ϕ (11)

ys2(θ, ϕ) = (heB + hc) tan θ cos ϕ (12)
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2.2.2. Reflection and Direct Gains from Rear Side Illumination

We divide the light into two main parts, one hitting the (projected) cell gap and one
part hitting the cell directly. A major part of the rear side irradiance illuminates the back
side of the solar cell directly. A small part is redirected to the front side or edge of the cell
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and another small part is absorbed or reflected by the coated area on the backsheet. These
parts are again determined by the angle of incidence of the rear illumination and resulting
shading distances. These are depicted in Figures 7 and 8 calculated using Equations (13)–
(16) and Equations (17)–(20), respectively. The light received by the cell back side is directly
calculated using the appropriate loss matrix (including reflection at the rear interface and
absorption in the encapsulation materials). For the part of the light hitting the module in
the cell gap area, we again distinguish different fractions of light, depending on the angle
of incidence. These contributions are small compared to those from the front side coupling
gain since light is initially reflected at the internal glass interface and at an angle smaller
than that required for total internal reflection.
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The illuminated area on the cell back side is determined by the following boundaries,
using the thickness of the rear glass or backsheet up to the coated area hb and the thickness
of the rear encapsulation layer heB to determine the shading lengths. It should be noted
that hb can be 0 in the case where the mesh is applied to the outside of the module rear
side. In this case, the internal material height is added to heB, neglecting refraction at the
internal interface.

xbs1 = (hb + heB) tan θ sin ϕ + xre f (13)

ybs1 = (hb + heB) tan θ cos ϕ + xre f (14)

xbs2 = xre f − heB tan θ sin ϕ (15)

ybs2 = xre f − heB tan θ cos ϕ (16)
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Just as for the front side illuminated area, the four sides of a cell are illuminated
differently. Each side is illuminated at a different angle of incidence. This is considered by
in integration boundaries xbs1 and xbs2 (ybs1 and ybs2, respectively).

xbs1(θ, ϕ) = xcb1 −
(
hb + 2 × heA + 2 × heB + 2 × hg + hx

)
tan θ sin ϕ (17)

xbs2(θ, ϕ) = xbs1 − xgbs (18)

ybs1(θ, ϕ) = ycb1 −
(
hb + 2 × heA + 2 × heB + 2 × hg + hx

)
tan θ cos ϕ (19)

ybs2(θ, ϕ) = ybs1 − ygbs (20)

2.2.3. Total Irradiance on Solar Cell

The total irradiation on each side of the cell is calculated by integrating all contribu-
tions in each ray group at each illuminated point x on the inner reflective boundary of
the backsheet and module rear side respectively. x1 and x2 denote the boundaries of the
respective illuminated areas as described above.

Pgroup = dA Egroup = dy
∫ x2

x1

dx Egroup(x) = dy Pgroup (21)

2.2.4. CTM Factor k11

The gains associated with the additional irradiance on the cell due to internal reflection
and losses associated with rear side shading are summarized as the (incident light) power
gain Pgain = Pg.c f + Pg.cs + Pcs + Pcb. The factor describing the resulting power change
of the PV module due to this gain is described by a CTM factor (k11), by which the short
circuit current of the cell is affected. The subsequent impact on module power includes
consideration of the IV curve of the solar cell and electrical losses. The details of this
calculation can be found elsewhere [14]. The reference power Pref value is the sum of the
direct irradiance on the cell front and cell back after all other optical losses and gains due
to the encapsulation of the cell have been accounted for.

Pgain = Pg.c f + Pg.cs + Pcs + Pcb (22)

k11 =

(
Pre f + Pg.c f + Pg.cs + Pcs + Pcb

)
Pre f

(23)

3. Results

We analyze the performance of PV modules with mesh backsheets by CTM ratio and
power gain. The CTM ratio is the ratio between the sum of initial cell powers and final
module power.

CTM ratio =
∑ Pcell,STC

Pmodule
× 100% (24)

The power gain is the ratio between additional gain (reflected gains, direct gains) and ini-
tial irradiance. Additionally, we consider the power loss depending on operating temperature.
The power gain is determined for a variation of the effective backsheet reflectance, the cell
bifaciality factor, the width of the mesh and the distance between cell and coated area (mesh)
on the module rear side xre f . This distance can be influenced by encapsulation thickness,
thickness of the rear cover and positioning of the mesh-coated side (inner or outer surface).
The power loss can be increased when the input irradiance is increased.

power gain =
Pgain

Pcell,STC
× 100% (25)
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power loss =
Ploss

Pcell,STC
× 100% (26)

In this study, we simulate the performance of a PV module with a mesh backsheet in five
scenarios. We analyze this depending on parameters such as reflectance, bifaciality factor and
width of backsheet. In addition, we define the power loss by the mesh backsheet. Through the
four scenarios, we define the optimal conditions of each variant. In scenario five, we compare
the power gain and CTM ratio depending on type of backsheet in optimal conditions.

S1. Power gain depending on the reflectance of mesh coating.
S2. Power gain depending on bifaciality factor of the solar cell.
S3. Power gain depending on the width of the mesh bars.
S4. Comparison of module temperature loss and CTM ratio.
S5. Comparison of the mesh concept with uniform backsheets (BS).
Table 2 shows the parameters of each scenario. We further investigate the angle

dependence of the two gain factors for different module setups. Incidence angles up to
60 degrees are used in the simulation.

Table 2. Variants of each simulation.

S1 S2 S3 S4 S5

Cell gap 5 mm
Reflectance 64%, 88%, 100% 64% 64% 64% 88%
Bifaciality 65% 65%, 85%, 100% 65% 65% 85%

Width of BS 5 mm 5 mm 3–7 mm
(1 mm interval)

3–7 mm
(1 mm interval) 5 mm

All simulated modules have an identical setup of 132 bifacial half cells (79.38 mm
× 158.75 mm) with a bifaciality factor of 65% if nothing else is stated. For encapsulation,
conventional ethyl vinyl acetate (EVA) with UV blocker and a 3.2 mm front glass with
anti-reflective coating is used. The cell and string distance are fixed at 5 mm, resulting in a
module size of 2.08 × 1.02 m2. The module rear side is composed of a transparent backsheet
or glass with a white coating in the area between cells. The width of these areas is varied
symmetrically, keeping the center of the coating in the center between cells. The reflectivity
of the coating is varied between 64% and 88% (values obtained from measurements of
industry materials) and an idealized, theoretical value of 100%.

3.1. S1: Power Gain Depending on the Reflectance the Mesh Coating

The total hemispheric reflectance of the backsheet is an important factor for internal
optical gains within the PV module [15–18]. Figure 9a shows the calculated power gain for a
mesh exactly as wide as the cell gap for different incidence angles. Three different reflectivities
of the coated backsheet area are shown, while all other parameters are kept constant.

1. reflectivity of coated backsheet: 100%;
2. reflectivity of coated backsheet: 88%;
3. reflectivity of coated backsheet: 64%.

In the ideal case 1, our calculations show a power gain of about 2.45% due to internal
reflective gains from front and rear side irradiance. At a reflectivity of 88%, this gain is
decreased by 12% to 2.2%. At a reflectivity of 64%, this gain is decreased by 36% to 1.6%.
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3.2. S2: Power Gain Depending on the Bifaciality Factor of the Solar Cell

The bifaciality factor is the ratio between the nominal efficiency of the solar cell back
side and the nominal efficiency at the solar cell front side [19,20]. We compare the power
gain for three different cases that correspond to bifaciality factors found for different solar
cell technologies. The reflectivity of the coated backsheet area is 64% in this comparison:

1. Bifaciality factor: 100%;
2. Bifaciality factor: 85%;
3. Bifaciality factor: 65%.

Figure 10 shows the power gain depending on the cell bifaciality factor. As presented
in Figure 10a, the power gain shows the highest values for case 1. When the incident angle
is 0◦, The power gain due to internal reflection of cases 2 and 3 is about 5.3% and 11.4%
lower than that of case 1, respectively. All cell surfaces (cell front, cell side, cell back) receive
irradiance from internal reflection. Therefore, the power gain is not linearly impacted by
the bifaciality factor. However, the result shows that a large fraction, approximately 28%,
of reflected light is redirected to the cell rear side and therefore affected by the bifaciality
factor. The redistribution depends significantly on the cell distance, as previous studies
have shown. For small cell distances, a larger portion of the reflected light is redirected
to the cell back side, while for the larger cell distances, redirection to the cell front side is
dominant [6–12].
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The power gain due to irradiance from the module rear side increases proportionally
when the bifaciality factor is increased, and the power gain due to rear irradiance of case 2
is 15% lower, and that of case 3 is 35% lower, than case 1.
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3.3. S3: Power Gain Depending on the Width of the Mesh Bars

The width of the coated area and the resulting overlap xref are further important
parameters of the mesh backsheet in bifacial PV modules. In the following section, we study
the dependence of module gains on the width of the white mesh area. The investigated
module setup has a mesh backsheet and an EVA thickness of 450 µm. The contribution of
light, especially on the rear side, is influenced by this width due to shading but the internal
reflection gains are also affected. We calculate the additionally illuminated area under the
cell depending on the incident angle, and the relevant width of this area for one side of the
cell is shown in Figure 11. The additional illuminated area increases from 0 mm to 0.5 mm
when the incident angle is changed from 0 to 60 degrees. So, the maximum coated area
width that will be illuminated up to its edge at the investigated maximum angle is 6 mm.
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Figure 12 shows the reflecting backsheet area depending on the incident angle and
width of the coated area of the backsheet. In Figure 12a, the width of the coated backsheet
is smaller than the illuminated backsheet area for both angles of incidence, so the reflecting
areas are identical. In Figure 12b, the increasing angle reduces the reflecting area due
to shading from the left cell. In the last presented case in Figure 12c, the reflecting area
remains nearly the same but is shifted due to shading towards the right cell.
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We vary the coated area from 3 mm to 7 mm in 1 mm steps at a fixed cell spacing of
5 mm; the coated area is centered. Figure 13 shows the power gain due to internal reflection.
It increases with increasing width until the full width is illuminated on one side. After this,
it does not increase any further, as the transparent part of the backsheet only adds a very
small contribution and most of the light is transmitted.

On the other hand, the power gain due to rear irradiance is negatively affected at
higher incident angles, as already for a width of 4 mm, cell shading shows an impact. The
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power gain is reduced when the coated area is wider than cell distance regardless of the
incident angle because of shading (see Figure 7).
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3.4. S4: Comparison of Module Temperature and Reflection Gains

So far, we have investigated module performance independent of operating tem-
perature. In the following, we are taking the temperature into account. We calculate
a steady-state operating temperature in each case, based on the model presented in
Mittag et al. [21]. The additional irradiance due to utilization of light incident on oth-
erwise inactive module areas produces an additional power gain. On the other hand,
the additionally trapped irradiance also produces more heat, causing a power loss due
to a loss in cell performance [22–25]. Figure 14 shows the performance of a bifacial PV
module with a mesh backsheet with consideration of the module operating temperature.
As presented in Figure 14a, the module temperature increases when increasing the width of
the mesh regardless of incident angle, as long as the width is smaller than the cell spacing.
Consequently, the power loss due to this change in operating temperature decreases when
the width of the mesh is increased, as shown in Figure 14b. Comparing the values at 3 mm
and 5 mm widths at 0◦, the module temperature decreases by 0.6 ◦C, corresponding to a
power loss of 1.3%. Considering the total CTM ratio including power loss depending on
operating temperature in Figure 15, we observe a net increase of 1.04% from a CTM ratio
of 101% at a 3 mm width to close to 102% at a 7 mm mesh width at normal incidence. The
higher module temperature due to internal reflection produces higher power loss. Despite
the additional power loss, the CTM ratio increases when the mesh width is increased.

Energies 2021, 14, x FOR PEER REVIEW 12 of 15 
 

 

at a 7 mm mesh width at normal incidence. The higher module temperature due to 
internal reflection produces higher power loss. Despite the additional power loss, the 
CTM ratio increases when the mesh width is increased. 

(a) (b) 

Figure 14. Performance of bifacial PV module with transparent mesh backsheet considering the 
module operating temperature for different angles of incidence: (a) operating temperature; (b) 
power loss due to operating temperature compared to standard test conditions (25 °C). 

 
Figure 15. CTM ratio depending on coated area. 

3.5. S5: Comparison of Mesh Backsheet with Uniform Backsheets 
We compare the performance of bifacial PV modules under front and rear 

illumination with different types of backsheet: 
1. transparent backsheet; 
2. white backsheet; 
3. mesh backsheet. 

In this section, we use a bifacial cell with a bifaciality factor of 85% and the global 
hemispheric reflectance of the white backsheet and the coated area on the mesh backsheet 
are equal at 88%. The width of the mesh equals a cell distance of 5 mm. We investigate the 
module power with a normally incident front irradiance of 1000 W/m2 and rear irradiance 
of 200 W/m2. 

Error! Reference source not found. shows the power gain and CTM ratio for the 
three types of backsheet. As presented in the figure, the power gain due to internal 
reflection is equal for the white and meshed backsheets. The power gain due to rear 
irradiance is equal for the transparent and the meshed backsheets. Therefore, we observe 
the highest CTM ratio for bifacial irradiance with the meshed backsheet as both effects 
can be utilized. 

Figure 14. Performance of bifacial PV module with transparent mesh backsheet considering the module operating tempera-
ture for different angles of incidence: (a) operating temperature; (b) power loss due to operating temperature compared to
standard test conditions (25 ◦C).



Energies 2021, 14, 1399 12 of 15

Energies 2021, 14, x FOR PEER REVIEW 12 of 15 
 

 

at a 7 mm mesh width at normal incidence. The higher module temperature due to 
internal reflection produces higher power loss. Despite the additional power loss, the 
CTM ratio increases when the mesh width is increased. 

(a) (b) 

Figure 14. Performance of bifacial PV module with transparent mesh backsheet considering the 
module operating temperature for different angles of incidence: (a) operating temperature; (b) 
power loss due to operating temperature compared to standard test conditions (25 °C). 

 
Figure 15. CTM ratio depending on coated area. 

3.5. S5: Comparison of Mesh Backsheet with Uniform Backsheets 
We compare the performance of bifacial PV modules under front and rear 

illumination with different types of backsheet: 
1. transparent backsheet; 
2. white backsheet; 
3. mesh backsheet. 

In this section, we use a bifacial cell with a bifaciality factor of 85% and the global 
hemispheric reflectance of the white backsheet and the coated area on the mesh backsheet 
are equal at 88%. The width of the mesh equals a cell distance of 5 mm. We investigate the 
module power with a normally incident front irradiance of 1000 W/m2 and rear irradiance 
of 200 W/m2. 

Error! Reference source not found. shows the power gain and CTM ratio for the 
three types of backsheet. As presented in the figure, the power gain due to internal 
reflection is equal for the white and meshed backsheets. The power gain due to rear 
irradiance is equal for the transparent and the meshed backsheets. Therefore, we observe 
the highest CTM ratio for bifacial irradiance with the meshed backsheet as both effects 
can be utilized. 

Figure 15. CTM ratio depending on coated area.

3.5. S5: Comparison of Mesh Backsheet with Uniform Backsheets

We compare the performance of bifacial PV modules under front and rear illumination
with different types of backsheet:

1. transparent backsheet;
2. white backsheet;
3. mesh backsheet.

In this section, we use a bifacial cell with a bifaciality factor of 85% and the global
hemispheric reflectance of the white backsheet and the coated area on the mesh backsheet
are equal at 88%. The width of the mesh equals a cell distance of 5 mm. We investigate the
module power with a normally incident front irradiance of 1000 W/m2 and rear irradiance
of 200 W/m2.

Figure 16 shows the power gain and CTM ratio for the three types of backsheet. As
presented in the figure, the power gain due to internal reflection is equal for the white and
meshed backsheets. The power gain due to rear irradiance is equal for the transparent and
the meshed backsheets. Therefore, we observe the highest CTM ratio for bifacial irradiance
with the meshed backsheet as both effects can be utilized.
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4. Conclusions

In this study, we present the models that allow for the power prediction of mod-
ules with selectively coated, “meshed” backsheets. We extended a previously developed
simplified ray tracing approach using ray groups and evaluated the impact of different
parameters of the design. We integrate this optical modeling into a complete cell-to-module
(CTM) analysis toolbox.
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We analyze the impact of the reflectance of the backsheet, the bifaciality of the solar
cell, the module temperature and varying widths of the coated area for a bifacial PV module
with a transparent mesh backsheet and compare the results with a homogeneous white
and transparent backsheet.

First, we find that the internal reflection gains increase linearly with the isotropic
reflectivity of the white backsheet area. For a cell distance of 5 mm, a power gain of
approximately 2.5% was determined as the theoretical maximum for a diffuse reflector.

Second, we find that the bifaciality factor of the solar cell impacts the internal reflection
gains, as a large part of the reflected light is redirected to the cell rear side. A decrease to
85% or 65% bifaciality yields a relative decrease in reflectance gains of −5.3% and −13.3%,
respectively. The power gain from the module rear side increases linearly with bifaciality.

Third, we analyze the power gain depending on coated area width. When the mesh
width increased from 3 mm to 7 mm, the power gain due to backsheet reflection is increased
by 2%. On the other hand, the power gain due to rear irradiance is decreased by −2.5%.

Next, we analyze the effect of power gain due to reflectance of the meshed backsheet
and power loss due to module temperature. We find that the additional internal reflection
increases the power gain and the module temperature. We find that the power gain due to the
improved internal reflection outweighs the power loss due to increased module temperature.

Finally, we compare the performance of bifacial PV modules with different types of
backsheet. For an additional rear irradiance of 200 W/m2, the CTM ratio of the module
with a transparent mesh backsheet is 4.4% higher than that of a module with a transparent
backsheet and 9.8% higher than that of a module with a white backsheet. We observe the
highest CTM ratio and module power for modules with the mesh backsheet.

In this study, we theoretically analyzed the performance of PV modules with mesh
backsheets. As a next step, measurements of modules with different mesh geometries under
different angles of incidence are planned to validate our theoretical finding experimentally.
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Abbreviations
BRDF Bi-directional reflection distribution function of the backsheet
BS Backsheet -
CTM ratio Cell-to-module ratio %
M Loss matrix
Egroup Total irradiance of each ray group W/m2

fbs,group Fraction of each ray group
hb Thickness of backsheet m
heA Thickness of top encapsulant m
heB Thickness of bottom encapsulant m
hg Thickness of glass m
Pcb Total power of ray group which hits cell back directly W
Pcell Total power of single cell W
Pcell, STC Total power of single cell without loss W
Pcs Total power of ray group which hits cell side directly W
Pg.cf Total power of ray group which hits cell front via front glass W
Pg.cs Total power of ray group which hits cell side via front glass W
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Pgain Power gain of single cell W
Pgroup Total power of each ray group W
Ploss Power loss of single cell by operating temperature W
Pmodule Total power of module W
xbs1 Illuminated width depending on rear irradiance and layout of modules by x m
xbs1 Shaded width depending on rear irradiance and layout of modules by x m
xgbs Length which hits the front glass depending on rear irradiance by x m
xref Excess width underneath the cell m
xs1 Illuminated width depending on front irradiance and layout of modules by x m
xs1 Shaded width depending on front irradiance and layout of modules by x m
ybs1 Illuminated width depending on rear irradiance and layout of modules by y m
ybs1 Shaded width depending on rear irradiance and layout of modules by y m
ygbs Length which hits the front glass depending on rear irradiance by y m
ys1 Illuminated width depending on front irradiance and layout of modules by y m
ys1 Shaded width depending on front irradiance and layout of modules by y m
wcell Width of solar cell m
θbs Threshold angle of reflected irradiance which hits backsheet directly ◦

θcb Threshold angle of reflected irradiance which hits cell back directly ◦

θcf Threshold angle of reflected irradiance which hits cell front directly ◦

θg,cb Threshold angle of reflected irradiance which hits cell back via front glass reflection ◦

θg,cf Threshold angle of reflected irradiance which hits cell front via front glass reflection ◦

θg,t Threshold angle of reflected irradiance which hits transparent backsheet via front glass reflection ◦
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