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Abstract: In this age of human civilization, there is a need for more efficient, cleaner, and renewable
energy as opposed to that provided by nonrenewable sources such as coal and oil. In this sense,
hydrogen energy has been proven to be a better choice. In this paper, a portable graphite crucible
metal smelting furnace was used to prepare ten multi-element aluminum alloy ingots with different
components. The microstructure and phase composition of the ingots and reaction products were
analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), and differential scanning
calorimetry (DSC). The reaction was carried out in a constant temperature water bath furnace at
60 ◦C, and the hydrogen production performance of the multi-element aluminum alloys in different
proportions was compared by the drainage gas collection method. The experimental results show
that the as-cast microstructure of Al–Ga–In–Sn aluminum alloy is composed of a solid solution of Al
and part of Ga, and a second phase of In3Sn. After the hydrolysis reaction, the products were dried at
150 ◦C and then analyzed by XRD. The products were mainly composed of AlOOH and In3Sn. Alloys
with different compositions react at the same hydrolysis temperature, and the hydrogen production
performance is related to the ratio of low-melting-point metal elements. By comparing two different
ratios of Ga–In–Sn (GIS), the hydrogen production capacity and production rate when the ratio is
6:3:1 are generally higher than those when the ratio is 7:2:1. The second phase content affects the
hydrogen production performance.

Keywords: low melting metal; Al-based alloy; metal smelting; hydrogen production

1. Introduction

With progress in science and technology, energy comes into focus for society in
terms of quality of life. As the carrier of carbon-free energy, hydrogen is not only the
lightest element but also the most abundant resource in nature. Hydrogen has a very
high calorific value of combustion and is a clean and efficient ideal energy source [1–9].
The hydrolysis of aluminum is an environmentally friendly reaction, and the products
are pollution-free. However, it is very easy to form a compact oxide film on the surface
of aluminum. Breaking the oxide film becomes a key breakthrough point for hydrogen
production [10–17]. Common methods include dissolving the oxide film in an acid alkaline
and neutral solution, and preparing an aluminum alloy by ball milling and by activating
it [18–22]. A common chemical hydrogen production method is to store the hydrogen in
a hydrogen storage tank and to then transport it. The quality of hydrogen accounts for
5–7% of the quality of the storage tank [23]. Hydrogen production from a metal ingot
reaction is not only more efficient but also more convenient for transportation and storage.
As one of the most common metal elements, aluminum has many advantages such as
low cost, abundant reserves, and good preservation. In particular, the alumina hydroxide
generated after an aluminum hydrolysis reaction not only is pollution-free but also can
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be reused [24]. Therefore, metal aluminum is the preferred raw material for hydrogen
production by hydrolysis.

A.V. Ilyukhina et al. [16] used a series of low-melting-point alloys based on the metal
gallium, such as Ga70-In30, Ga70-In25-Zn3, and Ga62-In25-Sn13, in an aluminum powder
alloying treatment. When the content of the liquid alloy in the alloy was 5–10 wt.%,
the hydrogen production performance of aluminum powder in 25 ◦C water had a small
relationship with the contents of the activator. However, the hydrogen production rate
decreased significantly when its content continued to decrease. The hydrolysis rate of
aluminum powder depends on the hydrolysis temperature. Fan et al. [18] prepared a type
of Al-Li powder alloy by mechanical ball milling. The maximum hydrogen production
rate of the alloy at room temperature was 233 mL/(min·g) and the maximum hydrogen
production was 743 mL/g. After that, the Al-5.3Ga-5.4Sn-2In-7.3Zn alloy was prepared by
ball milling. The hydrogen production of aluminum alloy powder reached 770 mL/(g·Al)
within 7 min, and the hydrogen production rate reached 77.3%. Gai et al. [22] studied the
reaction of pure aluminum with different particle sizes and water at different temperatures.
For a certain reaction temperature, the smaller the particle size, the greater the possibility of
reaction. M.C Roul [19] proposed an activation mechanism of Al-X alloy (X = Zn, Hg, or In)
that is the well-known aluminum alloy dissolution–redeposition mechanism, which became
the theoretical basis of aluminum alloy activation mechanisms.

This experiment mainly uses alloying to treat metal aluminum. This method is based
on adding low-melting-point metals, such as Ga, In, Sn, Ca, Mg, Zn, Bi, etc. The main
reason for choosing an alloying method is that this method can hydrolyze metal aluminum
in neutral solution or aqueous solution with a pH value close to neutral, which can
significantly improve the activity of aluminum. For alloying methods, common treatment
methods are ball milling and the smelting method; this experiment chooses the smelting
method because the smelting method has the following advantages over the ball mill
method: 1. The operational method is simple. 2. It has a small material loss during the
experiment. 3. The precision of alloy composition is easy to control. 4. It is easier to control
the hydrolysis speed during the hydrolysis process. 5. An alloy produced after ball milling
is not easy to preserve and even has safety risks [25–28]. The alloy block after smelting
and casting is easier to preserve. Only aluminum itself participates in the reaction, and the
low-melting-point metal can be collected and reused after the reaction. This method greatly
reduces the cost of preparing hydrogen, which is of great help to the development of
hydrogen production by aluminum hydrolysis and has more scientific and practical value.

This article is improved based on the above research. The experiment uses a portable
graphite crucible metal melting furnace, and continuously inert gas is introduced into
the melting furnace to prevent oxidation. In such experimental conditions, to achieve
a high rate of hydrogen production and to obtain ideal hydrogen production, a multi-
element aluminum alloy was formed by adding low-melting-point metals (Ga, In, and
Sn) in different proportions. Then, the content of aluminum in the alloy is changed
to compare the influence of alloy composition on hydrogen production. Then, X-ray
diffraction (XRD), differential scanning calorimetry (DSC), scanning electron microscopy
(SEM), and other characterization methods are used for correlation analysis and to further
study the phenomena involved.

2. Materials and Methods
2.1. Alloy Preparation

This study used a portable graphite crucible metal smelting furnace to prepare multi-
ple aluminum alloys. The raw materials were industrial pure Al plates (99.99%), Ga blocks
(99.99%), In particles (99.99%), and Sn particles (99.99%). The melting points of the metals
are shown in Table 1.
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Table 1. The melting points of the metals.

Materials Al Ga In Sn

melting point (◦C) 660.00 29.76 156.61 231.89

In the experiment, 10 types of Al-Ga-In-Sn aluminum alloy ingots with different
composition ratios were prepared using the metal smelting method (sample numbers 1–10).
We weighed a total of 20 g of different alloying elements and mixtures of different mass
ratios into a custom-sized cylindrical quartz crucible and then put the quartz crucible
into the melting furnace, continued to pass CO2 into the furnace, and set the melting
temperature of the melting furnace to 850 ◦C. The smelted alloy ingots were placed in
sealed sample bags, and these sample bags were placed in a large amount of discolored
silica gel particles to reduce oxidation. If necessary, we cut the ingot appropriately to obtain
the appropriate size for later experiments. The alloy chemical compositions for experiment
are shown in Table 2.

Table 2. Alloy compositions used for experiments.

Specimen No.
Element (wt.%)

Al Ga In Sn

1# 50 35 10 5
2# 60 28 8 4
3# 70 21 6 3
4# 80 14 4 2
5# 90 7 2 1
6# 50 30 15 5
7# 60 24 12 4
8# 70 18 9 3
9# 80 12 6 2

10# 90 6 3 1

2.2. Observation of Phase Structure and Microstructure

The Merlin Compact scanning electron microscope (SEM) and the OXFOFD energy
spectrometer (EDS) attached to a microscope were used to analyze the microstructure and
composition of the alloy ingot and the product after the hydrolysis reaction. In addition,
SmartLab (9 kW) X-ray diffraction for phase analysis was used, with Cu Kα as the radiation
source, while other details were as follows: the scanning speed was 10–80◦, the step
size was 0.2◦, and the acquisition and scanning speed was 10◦/min. The thermodynamic
monitoring and analysis of alloy ingots were analyzed by a Setaram Evolution 2400 thermal
analyzer (TG-DSC). The measurement temperature range was 23–615 ◦C, and the scanning
speed was 5 ◦C/min.

2.3. Test on Hydrolysis Performance of Aluminum Alloy

The test can be described as follows. We put 200 mL of tap water into a three-necked
flask with a volume of 500 mL, placed it in an electronic constant temperature water bath
furnace, and set the temperature of the water bath furnace to 60 ◦C. We cut out a 1 g sample
and put it in the flask, then used the drainage method to calculate the amount of hydrogen
generated, used an electronic weighing accuracy of 0.01 g to weigh the collected water,
and used Equation (1) to convert the volume of hydrogen. The proportion of the sample
was measured 3 times under certain conditions, and the final average value was taken. A
schematic diagram of the hydrogen production reaction device is shown in Figure 1.
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Figure 1. Schematic diagram of hydrogen production performance test device.

In reaction Equation (1), V is the volume of hydrogen generated, m is the mass of
discharged water, and ρ is the density of water. We used Equation (2) to calculate the
hydrogen production conversion rate of the alloy at different ratios. In the formula, R1 is
the hydrogen production conversion rate, V is the actual hydrogen production volume, and
VT is the theoretically calculated hydrogen production volume. The volume of 1 mol H2 in
standard state is 22.4 L, and the volume of H2 produced by 1 g of aluminum is 1245 mL.
The experiment was carried out at room temperature and atmospheric pressure (1 atm
and 25 ◦C), and the volume of 1 mol H2 under this condition was 24.45 L. The theoretical
volume was 1358.4 mL of H2 produced by 1 g of aluminum.

V = m/ρ, (1)

R1 = V/VT × 100%, (2)

The hydrogen production performance data were taken from the average of three
experimental data, and the changes in hydrogen production and hydrogen production
rate of multi-element aluminum alloys under different proportions were explored and
rationally analyzed. After the reaction, the reactant obtained was dried in a drying oven at
150 ◦C before proceeding to the next step of analysis.

3. Results and Discussion
3.1. SEM Observation and Analysis

In order to study the microstructure of the alloy ingots, scanning electron microscopy
and energy spectrum tests were carried out on the multi-element aluminum alloy ingots
with different proportions. The sample was highly active and easily oxidized, so it needed
to be quickly put into the sample table and vacuumed. It can be seen from Figure 2 that,
under the microscopic conditions, when the proportion of Ga-In-Sn (GIS) is 50 wt.%, the
surface structure appears granular. As the proportion of low-melting-point metals in the
alloy decreases, the alloy surface becomes less grainy and the surface becomes smoother
dense and slatted. As the alloy is solidified and formed after natural cooling in the molten
state, a large amount of internal stress in the alloy leads to a fracture of the alloy during the
nucleation process, resulting in a large number of voids and cracks in the alloy.
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Figure 2. Scanning electron microscopy (SEM) image at 5000× of the aluminum alloy when the ratio
of Ga-In-Sn is 7:2:1 and 6:3:1: (a) 50 wt.%Al-50 wt.%Ga-In-Sn (GIS) (7:2:1), (b) 50 wt.%Al-50 wt.%GIS
(6:3:1), (c) 80 wt.%Al-20 wt.%GIS (7:2:1), and (d) 80 wt.%Al-20 wt.%GIS (6:3:1)).

It can be seen from the EDS surface scan results in Figure 3 that a large amount of
off-white low-melting alloy phases are scattered on the grain boundary surface of the
alloy. Its main component is composed of low-melting-point metal Ga, followed by a small
amount of In, Sn, and Al. Combined with the EDS surface scan, it can be observed that
the distribution of elements in the alloy is relatively uniform, but there is still a certain
degree of segregation. One of the main reasons for this phenomenon is that the solubility
of the alloy decreases in the solid state. According to the alloy phase diagram, the degree
of intermetallic compound formation is limited. Therefore, segregation occurs in a local
area of the alloy. The second reason is that only a small amount of low-melting-point
metal forms a solid solution with Al when the temperature drops. Large amounts of Ga,
In, and Sn exist in the α-Al phase as segregation. According to Figure 2d, in addition to
the spherical low-melting-point alloy phase, there are other alloy phases with different
sizes. There are also a lot of low-melting metals in the gap. The main reason for the
above phenomenon is that the metal aluminum solidifies in the form of dendrite during
solidification. At the same time, the low-melting-point metal has limited solid solubility
in aluminum, which leads to the liquid low-melting-point metal being squeezed into the
cracks of aluminum grain. With the continuous decrease in temperature, the gap phases of
different sizes are solidified and precipitated out. The size and shape of the gap phase are
related to the proportion of low-melting-point metal in the alloy. The larger the proportion
is, the more brittle the alloy, the more easily it is broken, and the larger the size of the
gap phase.
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Figure 3. Scans of 80 wt.%Al-20 wt.%GIS (6:3:1) EDS surface of the alloy: (a) SEM diagram of the aluminum alloy at 10,000×,
(b) EDS hierarchical image, (c) Al layer, (d) Ga layer, (e) In layer, and (f) Sn layer.

The microstructure of the reaction product after the hydrolysis reaction is shown
in Figure 4. Observation at 1000× times shows that the morphology of the hydrolyzed
product is lamellar, agglomerating together in a massive form. Compared with the alloy
particles before the reaction, the degree of fragmentation is increased and a large amount of
the internal structure of the particles is dispersed due to progress in the hydrolysis reaction,
showing the shape of needles and phosphorus flakes. At a high magnification of 10,000×,
it can be observed that the hydrolyzed product has a large number of pores, which may be
due to the release of a large amount of hydrogen from the aluminum–water reaction.
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Figure 4. SEM images of the 50 wt.%Al-50 wt.%GIS (6:3:1) reaction product at (a) 1000× and (b)10,000×.

3.2. XRD Examination

Figure 5 is the XRD pattern of two groups of ingots with different GIS ratios. It can
be seen from the figure that there are three characteristic peaks, and the four sharper
characteristic peaks are characteristic peaks of Al, the strength of which is significantly
higher than that of other phases. There is no obvious characteristic peak of Ga because Ga
enters into the lattice of Al to form a solid solution. The characteristic peak is covered by
the characteristic peak of Al. With the increase in Ga content, the characteristic peak of
Al has an obvious phenomenon of left deviation. The peaks of In3Sn and In are relatively
weak. When the ratio degree of In-Sn is 3:1, it is concluded that there are more second
phases on the alloy surface according to SEM diagram observation and EDS component
analysis, and the second phase is In3Sn combined with the XRD results. When the ratio
of In-Sn is 2:1, the characteristic peak of In3Sn cannot be detected but the characteristic
peak of weak In can be detected. After hydrolysis reaction, some spherical droplets can be
observed after the hydrolysate is dried. Therefore, the hydrolysate was further analyzed by
X-ray diffraction, and the results are shown in Figure 6. The obvious characteristic peak of
In3Sn can be seen in the figure, which proves that the liquid alloy phase does exist in this
aluminum alloy. It is because of this liquid alloy phase that aluminum can be continuously
solvated in liquid phase. Finally, it can diffuse freely and be transported to the surface of
the alloy to make contact with water to produce hydrogen by hydrolysis reaction.

Figure 5. Alloy ingot X-ray diffraction (XRD) with different GIS contrasts.
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Figure 6. GIS XRD map of hydrolysate at 6:3:1.

Different drying products were generated from aluminum alloy hydrolyzed products
at different drying temperatures. Al(OH)3 was generated when the drying temperature
was lower than 72 ◦C. The drying product is AlOOH in the range of 72–172 ◦C. When
the drying temperature is greater than 172 ◦C, the hydrolysis product is Al2O3. In this
experiment, the drying temperature was 150 ◦C, so the characteristic peak detected by
X-ray diffraction was AlOOH.

3.3. DSC Analysis of Alloy Ingot

Figure 7 shows the DSC heating curve of Sn alloy samples with the ratio of 80 wt.%Al-
12 wt.% Ga-6 wt.%In-2 wt.%Sn alloy. The test temperature range was 23–615 ◦C, and the
heating rate was 20 ◦C/min. During the heating process, the alloy has an endothermic
peak due to melting at the melting point. In the figure, a small endothermic peak can
be observed around 30 ◦C. According to the Al-Ga binary phase diagram, the eutectic
temperature of the Al-Ga binary alloy is 26.6 ◦C. The temperature here is close to the
eutectic temperature of the Al-Ga binary alloy. The phase transition occurred in 46 ◦C
alloy, and it is speculated that the liquid phase is eutectic formed by gallium, indium,
and tin alloy with a low melting point. After that, there is a weak characteristic peak at
142 ◦C. According to a In-Sn binary phase diagram, the melting point range of In3Sn is
relatively large, which is about 120–143 ◦C. Combined with EDS component analysis and
XRD analysis, it is concluded that the characteristic peak should be caused by the formation
of intermetallic compound In3Sn. As the temperature rises, there is no obvious change
from 200 ◦C to 500 ◦C until an obvious endothermic peak appears at 605 ◦C. A more sharp
peak corresponds to the melting point value of the alloy, which should be the melting point
of the aluminum-based solid solution.

3.4. Analysis of Alloy Hydrogen Production Performance

Woodall et al. [29] first studied the optimization of the hydrogen production perfor-
mance of aluminum alloys using low-melting point metals and proposed the diffusion
activation mechanism of aluminum alloy ingot hydrolyzed to produce hydrogen. The
essence of the mechanism is the eutectic reaction between the low-melting-point metal,
with aluminum as the driving force. The aluminum atoms at the grain boundaries are
wrapped by the liquid metal, resulting in the rupture of the dense oxide film, which can
contact water and undergo a hydrolysis reaction. The low-melting-point metal does not
participate in this process. The hydrolysis reaction produces a concentration difference with
the continuous consumption of aluminum, and the unreacted aluminum atoms continue
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to diffuse from the aluminum lattice into the liquid alloy until the aluminum is basically
consumed by the hydrolysis reaction. The quantity and rate of hydrogen production are
two important indexes to measure the hydrogen production performance of alloys.

In order to test the effect of changing the ratio degree of low-melting alloy and
increasing the content of the second-phase In3Sn on the hydrogen production performance,
the hydrolytic hydrogen production test was carried out on the multi-component aluminum
alloy with different contents in a constant temperature water bath at 60 ◦C. Figure 8 is the
comparison diagram of the hydrogen production performance of aluminum alloy under
different metal ratios at low melting points.

Figure 7. Temperature rise curve of differential scanning calorimetry (DSC) of alloy samples.

Figure 8. Comparison of the hydrogen generation performance of Al-Ga-In-Sn alloys: (a) hydrogen
production comparison with GIS ratio 7:2:1, (b) hydrogen production comparison with GIS ratio
6:3:1, (c) hydrogen production rate comparison with GIS ratio 7:2:1, and (d) hydrogen production
rate comparison with GIS ratio 6:3:1.
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Figure 8a–d show the hydrogen yield and hydrogen production rate curves of different
Al contents hydrolyzed in water at 60 ◦C when the ratios of GIS (Ga-In-Sn) are 7:2:1 and 6:3:1.
As can be seen from Figure 8a,c, when GIS is 7:2:1, hydrogen production and hydrogen
production rate are the highest when Al content is 80%, and only when Al content is 80%
and 90%, the reaction is basically complete within 20 min while the reaction time of other
contents is relatively long. In Figure 8b,d, the GIS is 6:3:1. According to previous detection
and analysis, when In and Sn exist in the alloy at a ratio of 3:1, the possibility and content of
the second-phase In3Sn are improved. It can be clearly observed in the figure that, although
the change in Al content in the alloy affects the proportion of low-melting-point alloy in
the multi-alloy, the alloy basically reacts completely within about 20 min. Compared with
the influence of the proportions of two different low-melting metals on Al content of 90%,
the low-melting metals only accounted for 10% at this time. When the GIS was 7:2:1, the
hydrogen production was reduced and the hydrogen production rate was only 80.96% due
to the decrease in low-melting metal content. The maximum hydrogen production rate
was up to 157 mL/g min and the hydrogen production rate was up to 97.99% when GIS
was 6:3:1.

Figure 9a,b are the comparison diagrams of hydrogen production and hydrogen
production rate when the Al content is 50% and the Al content is 90% under different GIS
ratios. It can be seen from the figure that the hydrogen production, hydrogen production
rate, and maximum hydrogen production rate when the GIS ratio is 6:3:1 are significantly
higher than those when GIS ratio is 7:2:1, regardless of the proportion of low-melting
point metal in the alloy being the highest (50 wt.%) or the lowest (10 wt.%). Considering
the improvement in hydrogen production performance and the reduction in production
cost, In and Sn can be used to share the cost of expensive Ga when the GIS ratio is 6:3:1.
Under these conditions, aluminum can be hydrolyzed sufficiently even if the content of
low-melting-point metal is reduced, so that the whole reaction can reach a faster reaction
rate and can obtain the ideal hydrogen production rate.

Figure 9. Comparison of hydrogen production performance of Al50 and Al90 at different GIS ratios: (a) hydrogen production
comparison chart and (b) hydrogen production rate comparison chart.

4. Conclusions

It is a safer and more environmentally friendly hydrogen production technology to
hydrolyze aluminum after alloying. High purity hydrogen is not only a good alternative
to fossil fuels but also an ideal hydrogen source for fuel cells. It is an important research
direction to produce hydrogen immediately and to supply hydrogen on demand. In this
work, multi-element aluminum alloy was smelted in a portable metal smelting furnace
with CO2 continuously introduced, in which the ratios of low-melting-point metals Ga,
In, and Sn were 7:2:1 and 6:3:1. The alloy ingot was hydrolyzed in a constant temperature
water bath furnace at 60 ◦C within 24 h after melting and casting. The hydrogen production
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properties of the alloys with different proportions were compared. Combined with SEM,
EDS, XRD, and DSC for further analysis, the observation results are as follows:

(1) While using low-melting-point metals Ga, In, and Sn to improve the hydrogen pro-
duction performance of aluminum hydrolysis, changing the proportion degree of
low-melting-point metals can effectively improve the hydrogen production amount
and rate.

(2) Combining the results of scanning electron microscopy and X-ray diffraction, the
following conclusions can be drawn: when the ratio of In and Sn in the alloy is 3:1,
the occurrence probability and content of the alloy phase In3Sn can be effectively
improved.

(3) When GIS is 7:2:1, because of the decrease in metal content at low melting point, the
alloy phase that can promote hydrolysis reaction cannot be formed better, resulting
in a reduction in hydrogen production far below the theoretical value. However,
when GIS is 6:3:1, the maximum instantaneous hydrogen production rate is up to
157 mL/(g min) and the hydrogen production efficiency is very close to the theoreti-
cal value.
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6. Momirlan, M.; Veziroǧlu, T. Recent directions of world hydrogen production. Renew. Sust. Energ. Rev. 1999, 3, 219–231. [CrossRef]
7. Mayakrishnan Gopiraman, D.D.S.G. Sustainable and Versatile CuO/GNS Nanocatalyst for Highly Efficient Base Free Coupling

Reactions. ACS Sustain. Chem. Eng. 2015, 3, 150904102130008.
8. Sathiskumar, C.; Ramakrishnan, S.; Vinothkannan, M.; Kim, A.R.; Karthikeyan, S.; Yoo, D.J. Nitrogen-Doped Porous Carbon

Derived from Biomass Used as Trifunctional Electrocatalyst toward Oxygen Reduction, Oxygen Evolution and Hydrogen
Evolution Reactions. Nanomaterials 2019, 10, 76. [CrossRef] [PubMed]

9. Yaqiong, Z.; Jiawei, C.; Qiang, P.; Lingzhi, S.; Zhigang, W.; Zhongkai, W. Hydrogen bonding assisted toughness enhancement of
poly(lactide blended with a bio-based polyamide elastomer of extremely low amounts. Appl. Surf. Sci. 2020, 506, 144684.

10. Zhiznin, S.Z.; Vassilev, S.; Gusev, A.L. Economics of secondary renewable energy sources with hydrogen generation. Int. J.
Hydrogen Energy 2019, 44, 11385–11393. [CrossRef]

11. Irankhah, A.; Fattahi, S.M.S.; Salem, M. Hydrogen generation using activated aluminum/water reaction. Int. J. Hydrogen Energy
2018, 43, 15739–15748. [CrossRef]

12. Dupiano, P.; Stamatis, D.; Dreizin, E.L. Hydrogen production by reacting water with mechanically milled composite aluminum-
metal oxide powders. Int. J. Hydrogen Energy 2011, 36, 4781–4791. [CrossRef]

13. Czech, E.; Troczynski, T. Hydrogen generation through massive corrosion of deformed aluminum in water. Int. J. Hydrogen
Energy 2010, 35, 1029–1037. [CrossRef]

14. Choi, G.; Ziebarth, J.T.; Woodall, J.M.; Kramer, R.; Allen, C.R. Mechanism of Hydrogen Generation via Water Reaction with
Aluminum Alloys. In Proceedings of the 2010 18th Biennial University/Government/Industry Micro/Nano Symposium, West
Lafayette, IN, USA, 28 June–1 July 2010; pp. 1–4.

http://doi.org/10.1016/j.ijhydene.2020.08.212
http://doi.org/10.1109/JPROC.2017.2699558
http://doi.org/10.1016/j.ijhydene.2019.12.059
http://doi.org/10.1016/j.ijhydene.2017.04.107
http://doi.org/10.1016/S1364-0321(98)00017-3
http://doi.org/10.3390/nano10010076
http://www.ncbi.nlm.nih.gov/pubmed/31906170
http://doi.org/10.1016/j.ijhydene.2019.03.072
http://doi.org/10.1016/j.ijhydene.2018.07.014
http://doi.org/10.1016/j.ijhydene.2011.01.062
http://doi.org/10.1016/j.ijhydene.2009.11.085


Energies 2021, 14, 1433 12 of 12

15. Saluena Berna, X.; Martinez Maezlu, R.; Borge Bravo, G.; Daga Monmany, J.M.; Martinez Lopez, J. Generating Hydrogen by
Means of Reaction with Aluminium. U.S. Patent Application 14/765,062, 17 December 2015.

16. Ilyukhina, A.V.; Ilyukhin, A.S.; Shkolnikov, E.I. Hydrogen generation from water by means of activated aluminum. Int. J.
Hydrogen Energy 2012, 37, 16382–16387. [CrossRef]

17. Parmuzina, A.V.; Kravchenko, O.V. Activation of aluminium metal to evolve hydrogen from water. Int. J. Hydrogen Energy 2008,
33, 3073–3076. [CrossRef]

18. Fan, M.Q.; Sun, R.X.; Xu, R. Study of the controllable reactivity of aluminum alloys and their promising application for hydrogen
generation. Energy Convers. Manag. 2010, 51, 594–599. [CrossRef]

19. Reboul, M.C.; Gimenez, P.; Rameau, J.J. A Proposed Activation Mechanism for Al Anodes. Corrosion 2012, 40, 366–371. [CrossRef]
20. Huang, X.N.; Wu, Z.H.; Cao, K.; Zeng, W.; Lv, C.J.; Huang, Y.X. Hydrogen Generation by Hydrolysis of the Ball Milled Al-C-KCl

Composite Powder in Distilled Water. Key Eng. Mater. 2012, 519, 87–91. [CrossRef]
21. Razali, H.; Sopian, K.; Mat, S. The Application of Aluminum and Hydrochloric Acid to Produce Hydrogen for Internal Combustion

Engine Via Hydrogen Mixture with Gasoline based on Specific Fuel Consumption. In Advanced Materials Research; Trans Tech
Publications Ltd.: Bäch, Switzerland, 2012; Volume 875, pp. 1804–1811.

22. Gai, W.Z.; Fang, C.S.; Deng, Z.Y. Hydrogen generation by the reaction of Al with water using oxides as catalysts. Int. J. Energy
Res. 2014, 38, 918–925. [CrossRef]

23. Kunowsky, M.; Suárez García, F.; Linares Solano, Á. High pressure hydrogen storage. Investigació 2013. [CrossRef]
24. Qiao, D.; Lu, Y.; Tang, Z.; Fan, X.; Wang, T.; Li, T.; Liaw, P.K. The superior hydrogen-generation performance of multi-component

Al alloys by the hydrolysis reaction. Int. J. Hydrogen Energy 2019, 44, 3527–3537. [CrossRef]
25. Wang, C.; Yang, T.; Liu, Y.; Ruan, J.; Yang, S.; Liu, X. Hydrogen generation by the hydrolysis of magnesium-aluminum-iron

material in aqueous solutions. Int. J. Hydrogen Energy 2014, 39, 10843–10852. [CrossRef]
26. Wang, D. Analyzing the Feasibility of Generating Hydrogen Al-Ga Alloy using Fly Ash as Raw Materials. Shenhua Sci. Technol.

2016, 14, 7–10.
27. Yoo, H.; Ryu, H.; Cho, S.; Han, M.; Bae, K.; Lee, J. Effect of Si content on H 2 production using Al–Si alloy powders. Int. J.

Hydrogen Energy 2011, 36, 15111–15118. [CrossRef]
28. Evans, D.S.; Prince, A. Thermal analysis of Ga-In-Sn system. Met. Sci. 2013, 12, 411–414. [CrossRef]
29. Woodall, J.M.; Ziebarth, J.; Allen, C.R. The Science and Technology of Al-Ga Alloys as a Material for Energy Storage, Transport

and Splitting Water. In Proceedings of the Asme Energy Nanotechnology International Conference, Santa Clara, CA, USA, 5–7
September 2007.

http://doi.org/10.1016/j.ijhydene.2012.02.175
http://doi.org/10.1016/j.ijhydene.2008.02.025
http://doi.org/10.1016/j.enconman.2009.11.005
http://doi.org/10.5006/1.3593939
http://doi.org/10.4028/www.scientific.net/KEM.519.87
http://doi.org/10.1002/er.3093
http://doi.org/10.1016/j.micromeso.2013.02.010
http://doi.org/10.1016/j.ijhydene.2018.12.124
http://doi.org/10.1016/j.ijhydene.2014.05.047
http://doi.org/10.1016/j.ijhydene.2011.08.061
http://doi.org/10.1179/030634578790434025

	Introduction 
	Materials and Methods 
	Alloy Preparation 
	Observation of Phase Structure and Microstructure 
	Test on Hydrolysis Performance of Aluminum Alloy 

	Results and Discussion 
	SEM Observation and Analysis 
	XRD Examination 
	DSC Analysis of Alloy Ingot 
	Analysis of Alloy Hydrogen Production Performance 

	Conclusions 
	References

