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Abstract: Data-driven diagnosis methods for faults of proton exchange membrane fuel cell (PEMFC)
systems can diagnose faults through the state variable data collected during the operation of the
PEMFC system. However, the state variable data collected from the PEMFC system during the stack
switching between different operating points can easily cause false alarms, such that the practical
value of the diagnosis system is reduced. To overcome this problem, a fault diagnosis method for
PEMFC systems based on steady-state identification is proposed in this paper. The support vector
data description (SVDD) and relevance vector machine (RVM) optimized by the artificial bee colony
(ABC) are used for the steady-state identification and fault diagnosis. The density-based spatial
clustering of applications with noise (DBSCAN) and linear least squares fitting (LLSF) are used
to identify the abnormal data in datasets and estimate change rates of the system state variables
respectively. The proposed method can automatically identify the state variable data collected
from the PEMFC system during the stack switching between different operating points, so that the
diagnosis accuracy can be improved and false alarms can be reduced. The proposed method has a
certain practical value and can provide a reference for further study.

Keywords: PEMFC system; fault diagnosis; steady-state identification; relevance vector machine

1. Introduction

A fuel cell is a special device which uses hydrogen and oxygen as fuels to generate elec-
tricity through an electrochemical reaction. Proton exchange membrane fuel cell (PEMFC)
vehicles using hydrogen as fuel are widely regarded as an important development in
the field of new energy vehicles [1,2]. However, the structure of PEMFC is complex and
requires many auxiliary components (valves, compressor, sensors, regulators, etc.), so that
PEMFC systems are vulnerable to various faults [3]. A severe PEMFC system fault may
cause system shutdown or permanent damage. Therefore, related fault diagnosis methods
are urgently needed. Through accurate fault diagnosis, relevant personnel can take corre-
sponding measures to prevent more serious faults. At present, many scholars have done a
lot of research on fault diagnosis methods of the PEMFC system [1,3–14]. The proposed
methods can be mainly categorized into two types [4]—model-based methods [3,5–10] and
data-driven methods [1,4,11–14].

The model-based method compares outputs of the system model with those of the
actual system, and then the system faults can be diagnosed by analyzing the residuals
between the two outputs [15]. Escobet et al., 2009 [3] calculated the relative fault sensitivities
with the residuals between model outputs under the normal operating conditions and
fault conditions. The fault diagnosis and isolation of the PEMFC system were realized
by calculating Euclidean distances between the observed and the theoretical relative fault
sensitivities. Lira et al., 2010 [5] established a linear parameter variable dynamic model
of the fuel cell system. The faults of the fuel cell system were diagnosed by the residuals
between outputs of the model and the actual system. Rosich et al., 2014 [6] proposed
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a diagnosis method for faults of the PEMFC system. The residuals of results, which
calculated by calculation formulas and redundant formulas of different variables, were
used to diagnose related faults. Lee et al., 2020 [7] determined the faulty PEMFC subsystem
and the faulty components in the subsystem through the residuals between the predicted
values and the measured values of the system state so that fault diagnosis and isolation for
the PEMFC system could be realized. Polverino et al., 2017 [8] designed a set of residual
generators based on causal analysis, and investigated the maximum fault isolability when
the minimum number of sensors were used. In addition, aiming at the faults of the solid
oxide fuel cell (SOFC) system, Polverino et al., 2017 [9] realized the fault diagnosis using the
complete model and the isolated sub-models. Vijay et al., 2019 [10] designed two nonlinear
adaptive observers for an SOFC system; the faults can be diagnosed by monitoring the
residuals between the measurement and the observer outputs.

Besides model-based methods, data-driven fault diagnosis methods have also at-
tracted increasing attention. The data-driven methods can realize the PEMFC system fault
diagnosis through extracting fault features from the state variable data of system which
were collected under the normal operating conditions and fault conditions [15]. Although
the data-driven method is simple, it has proved to be effective in diagnosis [16]. For the
flooding of the PEMFC stack, Zhou et al., 2020 [1] used the orthogonal linear discriminant
analysis and relevance vector machine (RVM) to reduce dimension and pattern recognition.
Finally, Zhou et al., 2020 [1] proposed an online adaptive diagnosis strategy, so that the
accuracy of diagnosis can be further improved. Mao et al., 2020 [4] proposed a data-driven
diagnosis method based on sensor selection technology. It can identify the state variables
of the system, which is sensitive to the performance change of the PEMFC system caused
by the faults, so that faults can be diagnosed accurately. Lin et al., 2020 [11] compared
the performances of different dimensionality reduction algorithms and different pattern
recognition algorithms for the diagnosis of PEMFC system faults. For PEMFC stack faults,
Li et al., 2019 [12] used Fisher discriminant analysis and incremental spherical shaped
multi-class support vector machine (SVM) for the data dimension reduction and pattern
recognition, and designed a specific integrated circuit for online fault diagnosis. Zhang
et al.,2020 [13] proposed a fault diagnosis method of the PEMFC system for a hybrid tram.
The simulated annealing genetic algorithm fuzzy C-means (FCM) clustering, synthetic
minority over-sampling technique and a deep belief network are used for removing the
invalid data in samples, processing the unbalanced data, and pattern recognition respec-
tively. Han et al., 2020 [14] proposed a method for the diagnosis of the automotive PEMFC
system faults. The possibilistic fuzzy C-means algorithm was used for removing invalid
data in data samples, and the SVM optimized by artificial bee colony (ABC) was used to
diagnose faults.

It can be seen from [1,3–14] that the model-based fault diagnosis method can be used
to diagnose and isolate the different faults for fuel cell systems. However, because of the
complex structure of PEMFC systems, it is difficult to obtain the parameters of some key
components or materials. Therefore, accurately establishing a physical model of PEMFC
systems is difficult [16–18]. The data-driven fault diagnosis methods do not need the
system model in the diagnosis process, and can realize the fault diagnosis for PEMFC
systems only through the system state variable data. However, the accuracy of the data-
driven fault diagnosis method largely depends on the training data used for algorithm
training. Although most of the automotive PEMFC stacks only switch between different
operating points during operation, the driving state of the vehicle changes frequently when
the vehicle is driving (especially on urban roads), and the PEMFC stack switches between
different operating points according to different driving states of the vehicle. Therefore, the
actual operating conditions of the PEMFC stack are diverse, and it is difficult to include the
system state variable data under all operating conditions in the training data set. If there is
a big difference between the actual system state variable data and the data in the training
data set, false alarms can easily occur.
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To solve the above problems, a data-driven fault diagnosis method based on the
steady-state identification is proposed for PEMFC systems in this paper. The system state
variable data collected when the stack operates stably at a certain operating point is used for
the algorithms training and fault diagnosis in the proposed method. Because the operating
points of the PEMFC stack are usually determined, when the stack operates stably at a
certain operating point, the data of system state variables (it refers to the variables that can
reflect the operation state of the PEMFC system in this study, such as stack output voltage,
stack output current, gas pressure in the supply manifold, etc.) are stable within a certain
range. Therefore, it can improve the diagnosis accuracy and reduce false fault alarms if the
system state variable data collected when the stack operates stably at a certain operating
point is used for the diagnosis of PEMFC system faults.

In the proposed method, the support vector data description (SVDD) is used to identify
the steady state of the system. The SVDD is a one-class classification algorithm, it can
be trained simply by the change rates of the system state variables in unit time when the
stack operates stably at a certain operating point, avoiding the problem that the training
data set cannot contain the change rates of system state variables in unit time under the
condition of various system operation state changes, so that the accuracy of the steady-state
identification can be improved. In the process of steady-state identification, it is difficult
to quantify the change rates of each system state variable in unit time because the sensor
output signal contains measurement noise. Therefore, linear least squares fitting (LLSF)
is used to fit the data of each system state variable in unit time, the change rates of each
system state variable are estimated by the slopes of the fitting lines. In order to remove
the invalid data in the data samples, the density-based spatial clustering of applications
with noise (DBSCAN) is used to identify and remove the invalid data by identifying the
outliers in the data samples. Because the calculation capability of the vehicle embedded
system is worse than that of an ordinary computer, the time taken to diagnose a fault
will be too long if the pattern recognition algorithm with a large amount of calculation
is adopted. Therefore, the RVM which has less calculation is used to diagnose the faults
in the proposed method. In the RVM training process, the ABC is used to optimize the
parameters of the RVM, which further improves the diagnosis accuracy and reduces the
occurrence of false fault alarms.

2. The Algorithms for the Steady-State Identification and Fault Diagnosis
2.1. Relevance Vector Machine

The feasibility of the online fault diagnosis for the fuel cell stack by the SVM in
embedded system was showed in [19]. The RVM proposed by Tipping et al., 2001 [20] is an
improved algorithm of the SVM. It is a supervised learning pattern recognition algorithm
based on Bayesian principles. The RVM can be used to find a decision boundary that
separates the training data with different labels, so that the fault diagnosis can be realized
by identifying which side of the decision boundary the test data are on. Compared with the
SVM, the RVM has lower computational complexity and superior diagnostic capability [1].
In this paper, RVM is briefly described. The interested reader is referred to [20,21] for the
complete description of the RVM.

Given an input training data samples {xi}N
i=1 and target values {ti}N

i=1, the output
y(xn; w) of RVM model can be expressed as [1,20]:

y(x; w) = ∑N
i=1 wiK(x, xi) + w0 (1)

where w is the weight vector, w = [w0, w1, w2, . . . , wN]T, x is the input vector, K(x,xi) is the
kernel function.

By considering the classification performance of the RVM and its computational
complexity, the radial basis function (RBF) is chosen as the kernel function of RVM because
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it has low calculation complexity and only one parameter (kernel width r). The formula of
kernel function is:

K(x, xi) = exp

(
−‖x− xi‖2

r2

)
(2)

For binary classification, the linear model is generalized by applying the logistic
sigmoid function σ(y) = 1/(1 + e−y) to y(x; w), and adopting the Bernoulli distribution
for p(t |x ), the likelihood function p(t |w ) is:

p(t |w ) =
N

∏
i=1
{σ[y(xi; w)]}ti{1− σ[y(xi; w)]}1−ti (3)

where t = [t1, . . . , tN ]
T , ti ∈ {0, 1}. However, w cannot be obtained analytically. Therefore,

an approximation procedure based on Laplace’s method [22] is used. Since p(w|t,α ) ∝
P(t |w )p(w |α )(‘∝’ denote direct proportion), for a constant α, the most possible maximum
posterior weights wMP can be obtained by finding the maximum P(t |w )p(w |α ).

log[P(t |w )p(w |α )] =
N

∑
i=1

[ti log yi + (1− ti) log(1− yi)]−
1
2

wTAw (4)

where α is a vector of N + 1 hyperparameters, yi = σ{y(xi; w)}, A = diag(α0, α1, . . . , αN).
Equation (4) is differentiated twice to give:

∇w∇w log p(w |t ,α)|wMP = −
(

ΦTBΦ + A
)

(5)

where B = diag(β1, β2, . . . , βN) is a diagonal matrix, βi = σ{y(xi)}[1− σ{y(xi)}]. Φ is the
design matrix, Φ = [ϕ(x1), ϕ(x2), . . . , ϕ(xN)]

T, wherein ϕ(xn) = [1, K(xn, x1), K(xn, x1),
. . . , K(xn, xN)]

T. The hyperparameters in matrix A are updated using:

αnew
i =

1− αiΣii

w2
MP

(6)

where Σii the ith diagonal element of the posterior covariance matrix Σ. Σ =
(
ΦTBΦ + A

)−1,
wMP = ΣΦTBt.

2.2. Support Vector Data Description

SVDD is developed based on SVM theory for the one-class classification. Its goal
is to find a smallest hypersphere or domain which can contain all or almost all target
samples [23–25]. In this paper, the SVDD is briefly described. A complete description of
the SVDD can be found in [26,27]. Given the training sample set D = {x1, x2, . . . , xm}, let
a denote the center of the sphere and R denote the radius of the sphere. The equation of
minimum hypersphere is:

min
R,a,ξi

F(R, a, ξi) = R2 + C∑
i

ξi

s.t.
{
‖xi − a‖2 ≤ R2 + ξi, i = 1, · · · , m
ξi ≥ 0, i = 1, · · · , m

(7)

where C and ξ are the penalty factor and slack variable, respectively. In [26,27], Lagrange
multiplier method was used to solve the constrained optimization problem described in
Equation (7), so that the dual problem of Equation (7) can be expressed as:

maxL(R, a, αi, γi, ξi) = ∑
i

αi(xi, xi)−∑
i,j

αiαj
(
xi, xj

)
(8)
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where αi, γi are Lagrange multipliers, L(R,a,αi,γi,ξi) is a Lagrangian function with R, a, αi,
γi, and ξi as independent variables. It is obtained by Lagrange multiplier method. Similar
to RVM, the radial basis kernel function is introduced into SVDD.

maxL(R, a, αi, γi, ξi) = ∑
i

αiK(xi, xi)−∑
i,j

αiαjK
(
xi, xj

)
(9)

where K(xi, xj) is the kernel function. By solving Equation (9), formulas of the sphere center
and sphere radius can be obtained. The solution process can be found in [25].

For the test data sample z, when the distance from z to the center a of the sphere is
less than the radius R of the sphere (Satisfying Equation (10)), it can be determined that the
sample z is in the sphere.

‖z− a‖2 = κ(z, z)− 2∑
i

αiK(z·xi) + ∑
i,j

αiαjK
(
xi·xj

)
≤ R2 (10)

2.3. Artificial Bee Colony Algorithm

Differences in the penalty factor and kernel width of SVDD and the kernel width of
RVM have great influence on the accuracy and generalization ability of the SVDD and
RVM respectively. Therefore, the reasonable selection of parameters can improve the
performance of the SVDD and RVM. The ABC proposed by Karaboga et al., 2008 [28] is
a new swarm intelligence algorithm, which has the advantages of the simplicity, strong
robustness and easy implementation. In the ABC, all bees adopt the greedy selection
mechanism, which makes it faster than the competitive algorithms [29]. Therefore, the
penalty factor of SVDD and kernel widths of SVDD and RVM are optimized by the ABC in
this study. Calculation procedures of ABC can be described briefly below.

(1) Setting the population size N, the dimension of search space D, the maximum number
of no updates is limit and search range [xmin, xmax].

(2) According to Equation (11), the initial solutions are generated by the random search
in the search range.

xid = xmin
d + r

(
xmax

d − xmin
d

)
(11)

where d = 1, 2, 3, . . . , D, i = 1, 2, 3, . . . , N; r is a random number in [0,1]; xid represents the
dth dimension of ith food source. xd

min is the lower bound of the dth dimension in the food
source; xd

max is the upper bound of the dth dimension in the food source.

(3) The capture bees update food sources by the neighborhood search, the formula of the
neighborhood search is as follows:

x′id = xid + ϕid(xid − xkd) (12)

where k, i = 1, 2, 3, . . . , N, k 6= i; φ is a random number in [−1,1]; x’
id represents the dth

dimension of the ith new food source.

(4) The new food source, which is generated by the neighborhood search, will replace
the previous optimal food source and become a new optimal food source if its fitness
is better than that of previous the optimal food source.

(5) According to the probability p, the onlooker bee selects the food source to search in its
neighborhood. The calculation formula of the probability p is [30]:

pi =

(
0.9× f iti

max( f it)

)
+ 0.1 (13)

where fit is the fitness value of the food source.

(6) If a food source cannot be updated after limit iterations, the scout bee will randomly
selects a new food source and then continue the neighborhood search.
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2.4. Density Based Spatial Clustering with Noise

DBSCAN is an unsupervised clustering algorithm based on the data density. It can
recognize clusters of arbitrary shape and is insensitive to the input order of data. In
addition, it can avoid the problems that the data labels are unknown and it is difficult to
determine the number of clusters in the process of using the FCM to remove invalid data.
The specific calculation steps of the DBSCAN are as follows [31,32]:

(1) Selecting any data p from the data set. If p does not belong to any cluster and is not
marked as an outlier, the number of data points in the neighborhood with a radius of
Eps is checked. If the number is equal to minPts or more than minPts, a new cluster D
will be established, and all points in the neighborhood will be added to the candidate
set M. Otherwise, p is marked as an outlier.

(2) Selecting the data q which has not been processed (does not belong to any cluster and
is not an outlier) in the candidate set M, adding q to the cluster D, and checking the
number of data in the neighborhood with the radius of Eps. If the number is equal to
minPts or more than minPts, the data in the neighborhood of q with the radius of Eps
are added to M.

(3) Repeating (2), continue to check the unprocessed data in candidate set M until there
is no unprocessed data in candidate set M;

(4) Repeating (1) to (3) until all the data in the data set belong to clusters or are marked
as outliers.

In the DBSCAN, the calculation formula of the distances between the different data is
written as follows:

d(i, j) =

√(
xi1 − xj1

)2
+
(
xi2 − xj2

)2
+ · · ·+

(
xil − xjl

)2
(14)

where d is the distance between the different data, x is the data, i, j = 1, 2, 3, . . . , i 6= j.

3. Fault Diagnosis for PEMFC Systems Based on Steady-State Identification

The fault diagnosis process of the PEMFC system based on the steady-state identifica-
tion can be divided into two stages: the off-line training and online diagnosis. The detailed
processes of off-line training and online diagnosis are shown in Figure 1. As shown in
Figure 1, the process of the off-line training is as follows: (1) the state variable data, which
are collected during the steady-state operation of the PEMFC system, are extracted from all
the data; (2) the DBSCAN is used to remove the invalid data (outliers) in the data samples,
aiming to avoid the invalid data affecting the subsequent results of the data processing;
(3) the average value of each state variable in unit time is calculated, and the LLSF is used
to fit the system state variable data in unit time so that the change rate of each state variable
in unit time can be estimated by the slope of the fitting line; (4) the change rates and
average values of each state variable per unit time are normalized so as to avoid the larger
values dominating the smaller ones in the training sample set and decrease calculation
load [18]. The normalization formula can be found in [13]; (5) the SVDD and RVM are
trained by the change rates and average values of each state variable per unit time after
normalization, and the parameters of SVDD and RVM are optimized by the ABC. In the
optimization process, the accuracy of fault diagnosis method is taken as the fitness function
of optimization, so that the accuracy of the steady-state identification and fault diagnosis
can be improved.
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Figure 1. Flowchart of the diagnosis method based on the steady-state identification.

In the process of the online diagnosis, firstly, sensors are used to collect the state
variable data of the PEMFC system in unit time, and the DBSCAN is used to remove the
invalid data. Then, the LLSF is used to fit the data of system state variables in unit time.
After the fitting results are normalized, the trained SVDD is used to judge whether the
system is in the steady state. If the system is in the steady state, the average value of
each state variable in the unit time will be calculated and normalized, and then the fault
diagnosis will be performed by the trained RVM. If the system is in the unsteady state, the
fault diagnosis will not be performed, and sensors will be used to collect the data of system
state variables in unit time again.

The data-driven fault diagnosis method needs the data of the system state variables to
train the pattern recognition algorithm. These data include the state variable data of the
system under normal operation and various faults. However, simulating various faults
on the actual PEMFC system test bench may lead to permanent damage [33]. A more
dangerous scenario is that safety accidents like explosion or combustion may arise once
the air mixes with the hydrogen in the stack when the proton exchange membrane in the
stack perforates or ruptures during the fault simulation.

Therefore, the PEMFC system model proposed by Pukrushpan et al., 2004 [34] is
used to verify the diagnosis effect of the proposed method in this paper. This model was
developed based on the PEMFC system of the Ford P2000 vehicle and is widely used
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in the verification of diagnosis methods for faults of PEMFC systems [3,5,6,14,35]. The
detailed principles and relevant formulas of the PEMFC system model are shown in [34].
By changing the model parameters, simulation of the air compressor fault and air supply
manifold fault of the PEMFC system can be realized. In this paper, F0, F1, and F2 are
used to describe three different modes of PEMFC system. F0 represents that the PEMFC
system is in normal. F1 represents the state of PEMFC system when the system has a
fault of increasing friction in the compressor motor. F1 can be simulated by changing
compressor constant (kv) in the PEMFC system model, and the changing magnitudes are
set as +6%, +8%, +10%, +12%, +14%, respectively, in this paper. F2 represents the state of
PEMFC system when the system has a fault of air leak in the air supply manifold. F2 can
be simulated by changing supply manifold outlet orifice constant (ksm,out) in the PEMFC
system model, and the changing magnitudes are set as −6%, −8%, −10%, −12%, −14%,
respectively, in this paper [3,6,14,35].

For verifying the diagnosis effect of the method proposed in this paper, under the
dynamic condition (Conditions_1 [34], see Figure 2 and Table 1 for details), F0–F2 were
simulated respectively, and the system state variable data obtained under different modes
were collected. However, the output signal of each sensor contains the measurement
noise in the actual PEMFC system. Therefore, in order to simulate the output signals of
actual sensors, according to different sensor types, Gaussian noises with different variances
were added to the data of different system state variables. In this paper, the standard
deviations of the Gaussian noises, which were used to simulate the measurement noises of
different sensors, are 4.5·10−4 kg/s for the flow sensor [6], 10 rad/s for the angular velocity
sensor [6], 300 Pa for pressure sensors [6], 0.07 K for the temperature sensor [6] and 0.001 V
for the voltage sensor [8], respectively.

Figure 2. The stack output current under Conditions_1.

Table 1. Output current values of the stack at different times under Conditions_1.

Time (s) 0–4 4–8 8–12 12–16 16–22 22–26 26–50

Output current (A) 100 180 220 200 260 280 300

Based on the sensor configuration of the actual automotive PEMFC system, eight
state variables were selected from the PEMFC system model as the input of the proposed
fault diagnosis method. They include the stack output current, gas temperature at the air
compressor outlet, air output flow rate of air compressor, compressor speed, stack output
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voltage, gas pressure at the air compressor outlet, gas pressure in the hydrogen supply
manifold and air pressure at the inlet of the stack. These state variables can be measured
by different types of sensors (The errors is generally less than ± 1% of the full scale). For
verifying the diagnostic accuracy of the proposed method under different fault severities,
the change magnitudes of parameters affected by faults were set to 6%, 8%, 10%, 12% and
14% respectively during the acquisition of state variable data.

In the F0, F1 and F2, when the change magnitude of parameters affected by faults is
10%, results, which were obtained by the PEMFC system model simulation under steady-
state conditions, are taken as the training sample sets. The details of the training sample
sets are shown in Table 2. In F0, F1 and F2, when the change magnitudes of parameters
affected by faults are 6%, 8%, 10%, 12% and 14%, the simulation results of the PEMFC
system model under Conditions_1 are taken as the testing sample sets in order to test the
diagnostic performance of the proposed method under different fault severities. Since eight
state variables were selected for the fault diagnosis, the dimension of each data sample in
the training and test sample sets is eight-dimensional. In the process of data collection and
processing, the setting of a long unit time or a high sensor sampling frequency can increase
the number of data in unit time used for LLSF, so that the influence of sensor output signal
noise on the estimation of change rates of system state variable can be reduced. But at
the same time, the setting of a long unit time or a high sensor sampling frequency can
lead to the degradation of the real-time of fault diagnosis or increase the amount of data
processing of embedded system. Therefore, it is necessary to set the unit time and the
sampling period of the sensor reasonably in the process of data collection and processing.
In this study, the unit time is set to 0.5 s (namely, the length of the data acquisition time
window for the single diagnosis is 0.5 s) in the process of data processing, and the data
sampling period is 0.01 s. Therefore, the number of data per unit time used for LLSF is 50
in the process of data processing.

Table 2. The details of the training sample sets for the relevance vector machine (RVM) and the support vector data
description (SVDD).

Total Number of Samples Sample Dimensions Number of Samples for
Algorithms Training

Number of Samples for the
Verification of Algorithms in
the Parameter Optimization

RVM 1260 8 840 420
SVDD 100 7 1 65 35

1 Because the output current of the stack is the input of the model, it is not identified whether it is in steady state or not.

In terms of the diagnosis accuracy, the fault simulation method and the setting of
the change magnitudes of parameters affected by faults in this paper refer to the rele-
vant contents in [14], and the diagnosis method for PEMFC system faults based on the
possibilistic fuzzy C-means clustering artificial bee colony support vector machine (PFCM-
ABC-SVM) proposed in [14] is an improvement of the classical method which uses the
SVM for fault diagnosis. Therefore, the diagnosis method for PEMFC system faults based
on the PFCM-ABC-SVM was chosen for comparison with the diagnosis method proposed
in this paper. For demonstrating the steady-state identification process of the proposed
method, the data of the air pressure at the inlet of the stack was randomly selected as an
example from seven diagnostic variables except the stack output current (the stack output
current is the model input). In Figure 3, the original data of air pressure at the inlet of the
stack obtained by simulation, the data of the pressure change rates per unit time estimated
by the LLSF, the identification results of invalid data and the steady-state identification
results are shown respectively.
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Figure 3. The steady-state identification of the PEMFC system (taking the data of the air pressure at the inlet of the stack
as an example): (a) The original simulation data of air pressure at the inlet of the stack under the steady-state operation
conditions and the change rates data (estimated by the linear least squares fitting (LLSF)) of air pressure at the inlet of the
stack per unit time under the steady-state operation conditions; (b) the results of the invalid data identification using the
fuzzy C-means (FCM) clustering; (c) the results of the invalid data identification using the density-based spatial clustering
of applications with noise (DBSCAN); (d) the steady-state identification results.

Under the steady-state operation conditions, both the original simulation data of air
pressure at the inlet of the stack and the data of change rates of the air pressure at the
inlet of the stack per unit time, which is estimated by the LLSF, are shown in Figure 3a.
Because of adding Gaussian noise to the output signal of the pressure sensor, it is difficult
to directly calculate the change rate of air pressure in unit time (0.5 s). Therefore, the LLSF
is used to fit the gas pressure data in unit time, and the change rate of gas pressure in
unit time is estimated by the slope of the fitting line. The estimated results show that the
change rate of gas pressure within 0.5 s of the start of simulation is significantly higher
than that of gas pressure in unit time during the steady-state operation of the system. This
is because the air pressure at the inlet of the stack converges rapidly from the initial value
to the steady value in a period of time after the start of simulation. In this period, the
system is in an unstable state. Since the SVDD needs to be trained by the change rate
data of the state variables collected during the steady-state operation of the system, the
pressure change rate data within 0.5 s of the start of simulation need to be recognized and
removed. Figure 3b,c show the recognition results of invalid data in the sample set using
the FCM and DBSCAN, respectively. As can be seen from Figure 3b, the FCM not only
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identifies the pressure change rate data within 0.5 s of the start of simulation as invalid data
but also mistakenly identifies many steady-state operation data in the sample as invalid
data, which leads to the loss of the valid data. As shown in Figure 3c, compared with the
FCM, the DBSCAN can accurately identify the invalid data in the sample through the data
density, which ensures the reliability of data for SVDD training. As shown in Figure 3d, the
steady-state identification method of the PEMFC system based on the SVDD can accurately
identify the data collected during the steady-state operation of the system, which provides
a guarantee for the accurate diagnosis of PEMFC system faults.

4. Diagnosis Results and Discussion
4.1. Diagnostic Accuracy under Different the Change Magnitudes of Parameters Affected by Faults

When the change magnitude of parameters affected by faults is 10% (equal to the
change magnitude of parameters affected by faults set in the training data sets), the
diagnostic accuracy (the percentage of samples which are correctly diagnosed in the test
samples) of different fault diagnosis methods under the different modes (F0, F1 and F2) is
as shown in Figure 4. The proposed method can automatically identify the state variable
data of the system collected during the stack switching between different operating points.
These data are liable to cause diagnostic errors. Therefore, when the change magnitude of
parameters affected by faults is 10%, the proposed method has a higher diagnostic accuracy
than the PFCM-ABC-SVM, the diagnostic accuracy can reach 100%.

Figure 4. The diagnostic accuracy of the proposed method and the possibilistic fuzzy C-means
clustering artificial bee colony support vector machine (PFCM-ABC-SVM) under different modes
(Modes: F0, F1 and F2; operating conditions: Conditions_1; the change magnitude of parameters
affected by faults: 10%).

For testing the diagnostic accuracy of the proposed method under different fault
severities, the proposed method was tested with the model simulation results under
different change magnitudes of parameters affected by faults (6%, 8%, 10%, 12% and 14%).
The diagnostic accuracy is shown in Figure 5. Under different change magnitudes of
parameters affected by faults, the proposed method has a higher diagnostic accuracy than
the PFCM-ABC-SVM. When the change magnitudes of parameters affected by faults are
8%, 10%, 12% and 14%, the diagnostic accuracy of the method proposed in this paper is
100%. When the change magnitude of parameters affected by faults is 6%, the diagnostic
accuracy of the method proposed in this paper decreases slightly, the accuracy is only
98.1%. The reason is that the changes of system state variables caused by faults are small
when the change magnitude of parameters affected by faults is small, the system state
variables under the conditions of faults are closer to those under the normal condition.
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Therefore, the diagnostic accuracy decreases. For the PFCM-ABC-SVM, the diagnostic
accuracy is the highest when the change magnitude of parameters affected by faults set in
the test set is equal to that in the training set. However, when the change magnitudes of
parameters affected by faults set in the test set are not equal to those in training set, the
diagnostic accuracy of the PFCM-ABC-SVM decreases.

Figure 5. The average diagnostic accuracy of the proposed method and the PFCM-ABC-SVM under
different change magnitudes of parameters affected by faults (Operation condition: Conditions_1;
the change magnitudes of parameters affected by faults: 6%, 8%, 10%, 12% and 14%).

4.2. The Diagnostic Accuracy under Different Operating Conditions

For verifying the diagnosis effect of the proposed method under other conditions
(different from the conditions set in the training data set), the proposed method was tested
by using Conditions_2 which is symmetrical to Conditions_1. The reasons for this are as
follows: (1) the difference between Conditions_2 and Conditions_1 is large. Conditions_1
is a process in which the stack output current increases gradually, which simulates the
vehicle acceleration process to a certain extent. Conditions_2 is a process in which the stack
output current decreases gradually, which simulates the vehicle deceleration process to a
certain extent. (2) Because the operating points of the stack in Conditions_2 are the same as
those of Conditions_1, the PEMFC model proposed by Pukrushpan et al., 2004 [34] can be
run correctly and stably. The values of stack output current under Conditions_2 are shown
in Figure 6 and Table 3. When the change magnitude of parameters affected by faults is
10%, the diagnostic accuracy of different fault diagnosis methods under Conditions_2 is as
shown in Figure 7.
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Figure 6. The stack output current under Conditions_2.

Table 3. Output current values of the stack at different time under Conditions_2.

Time (s) 0–4 4–8 8–14 14–18 18–22 22–26 26–50

Output current (A) 300 280 260 200 220 180 300

Figure 7. The diagnostic accuracy of the proposed method and the PFCM-ABC-SVM under differ-
ent modes (Modes: F0, F1 and F2; operating conditions: Conditions_2; the change magnitude of
parameters affected by faults: 10%).

As shown in Figure 7, when the operating conditions are different from those set in
the training data set, the diagnostic accuracy of the PFCM-ABC-SVM decreases slightly. In
order to analyze the reasons for the decline of diagnostic accuracy of the PFCM-ABC-SVM,
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a diagnostic variable was randomly selected from seven diagnostic variables except the
stack output current for the visualization of diagnostic results (the air pressure at the inlet
of the stack was still taken as an example). In the F0, the distribution of data samples,
which are diagnosed correctly and incorrectly, is shown in Figure 8.

Figure 8. The distribution of data samples which are diagnosed correctly and wrongly by the
PFCM-ABC-SVM.

The data shown in Figure 8 are the data of the air pressure at the inlet of the stack
collected during the operation of Conditions_2 under no system fault. The data of error
diagnosis shown in the Figure 8 refers to the data that causes the PFCM-ABC-SVM false
alarms. As shown in Figure 8, the data samples that are diagnosed incorrectly by the
PFCM-ABC-SVM are mainly the system state variable data collected during the stack
switching between different operating points. In Conditions_2, the system state variables
data collected during the stack switching between different operating points are very
different from the data in the training data set. Therefore, the diagnostic accuracy of the
PFCM-ABC-SVM is low. The method proposed in this paper can automatically identify
and remove the system state variables data collected during the stack switching between
different operating points. Therefore, when the actual operation condition of the PEMFC
system is different from that set in the training data set, the method proposed in this paper
can still maintain a high diagnostic accuracy and reduce the occurrence of false fault alarms.
However because the proposed method cannot diagnose the fault in time if the system
fault occurs during the stack switching between different working points, it is only suitable
for the diagnosis of some component faults which cannot cause significant harm to the
vehicle or PEMFC system in a short time.

5. Conclusions

In this study, a fault diagnosis method based on the steady-state identification is
proposed for the PEMFC system, and the diagnosis effect was verified by the faults of
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increased friction in the compressor motor and the air leak in the air supply manifold which
were simulated by the PEMFC system model. The proposed method can automatically
identify the system state variables data collected during the stack switching between
different operating points, which is easy to cause diagnostic errors. Therefore, the accuracy
of diagnosis can be improved and the occurrence of false fault alarms of the diagnosis
system can be reduced. In the proposed method, the SVDD and RVM are used for the
steady-state identification and fault diagnosis respectively, avoiding the problem of the
training data set not containing the change rates of system state variables in unit time under
the conditions of various system operation state changes, and the diagnostic program can
be run in the vehicle embedded system. Therefore, the proposed method has a certain
practical application value. In the training process of the SVDD and RVM, the ABC is used
to optimize their parameters, so that the accuracy of the steady-state identification and
fault diagnosis can be further improved. In order to avoid the problems of the unknown
label and uncertain clustering numbers of system state variable data, the DBSCAN was
introduced to remove the invalid data in the data. In the process of simulation, in order
to more closely resemble the real situation, Gaussian noises with different variances were
added to the output signals of different types of sensors to simulate the measurement
noises of sensor output signals. Because the sensor output signals contain noises, it is
difficult to quantify the change rates of system state variable data in unit time. Therefore,
the LLSF was introduced to estimate the change rates of system state variable data.

Under the premise that the test conditions are the same as those set in the data
acquisition process of the training sample set, simulation results show that the diagnostic
accuracy of the proposed method is 100% in different modes when the change magnitudes
of parameters affected by faults set in the data acquisition process of the test sample set
are either equal to or higher than those set in the data acquisition process of the training
sample set. Furthermore, the proposed method also has high diagnostic accuracy when
the change magnitudes of parameters affected by faults set in the data acquisition process
of the test sample set are slightly lower than those set in the data acquisition process of
the training sample set or the operating conditions are different from those set in the data
acquisition process of training sample set. It can be seen that the fault diagnosis method
proposed in this paper can effectively diagnose the faults of the PEMFC system and reduce
false alarms of the diagnosis system.

However, it is worth noting that PEMFC system faults cannot be diagnosed by the
proposed method during the stack switching between different working points. Therefore,
it is not suitable for the diagnosis of PEMFC system faults which may cause significant
harm to the vehicle or PEMFC system in a short time (such as hydrogen leakage). In
the near future, we will study the fault diagnosis method for the PEMFC system under
unsteady operation, and improve the proposed method with posterior probability of
diagnosis results and the pattern recognition algorithm based on incremental learning, so
that its practical application value can be further improved.
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Nomenclature

ABC artificial bee colony
DBSCAN density based spatial clustering of applications with noise
FCM fuzzy c-means clustering
LLSF linear least squares fitting
PEMFC proton exchange membrane fuel cell
SOFC solid oxide fuel cell
PFCM-ABC-SVM possibilistic fuzzy C-means clustering artificial bee colony support vector machine
RBF radial basis function
RVM relevance vector machine
SVDD support vector data description
SVM support vector machine
s.t. subject to
a the center of the sphere
C penalty factor
D dimension; cluster
d distance between the different data
Eps radius of neighborhood
fit fitness value
minPts min number of data points
M candidate set
N population size
p probability; data
q data
R the radius of the sphere
r kernel width; random number
t target values
w weight
x training data samples
x food source
z data sample
α, γ Lagrange multiplier
ξ slack variable
Σ posterior covariance matrix
φ random number
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