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Abstract: Since the introduction of Perovskite Solar Cells, their photovoltaic efficiencies have grown
impressively, reaching over 25%. Besides the exceptional efficiencies, those solar cells need to be
improved to overcome some concerns, such as their intrinsic instability when exposed to humidity.
In this respect, the development of new and stable Hole Transporting Materials (HTMs) rose as
a new hot topic. Since the doping agents for common HTM are hygroscopic, they bring water in
contact with the perovskite layer, thus deteriorating it. In the last years, the research focused on
“dopant-free” HTMs, which are inherently conductive without any addition of dopants. Dopant-free
HTMs, being small molecules or polymers, have still been a relatively small set of compounds
until now. This review collects almost all the relevant organic dopant-free small-molecule HTMs
known so far. A general classification of HTMs is proposed, and structure analysis is used to identify
structure—property relationships, to help researchers to build better-performing materials.

Keywords: Perovskite Solar Cells; Hole Transporting Materials; organic compounds; small molecules;
photovoltaic devices; dopant-free

1. Introduction

The discovery that organic molecules, normally considered as insulating, were able
to conduct electricity was a real breakthrough in the field of organic chemistry [1-3], and
organic molecules’ conductivity became a hot topic [2-5]. The application of conductive
polymers grew rapidly, along with the comprehension of the conductivity phenomenon
and charge recombination [2,6]. Another breakthrough was obtained by recognizing
that electrical conductivity was not a property merely related to polymers but also to
small organic molecules, which found great application in organic electronics [7]. While
some concepts were recognized, several aspects have to be still studied and determined,
since the conductive behavior of small organic molecules is related to both their chemical
structure and their molecular arrangement in the solid-state film, when they are packing in
amorphous or crystalline state [8]. One of the most interesting and intriguing application
fields of small organic molecules involves the Perovskite Solar Cells (PSCs) [9], which
recently reached the efficiency record of 25.2% [10,11].

PSCs always require the presence of both an Electron Transporting Layer (ETL) to
drain efficiently electrons and a Hole Transporting Layer (HTL) able to lose electrons
efficiently, thus accepting holes. In this manner, both electrons and holes are drained from
the photoactive layer (i.e., the perovskite film) to the respective electrode, limiting the
recombination phenomena.
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While inorganic Hole Transporting Materials (HTMs) are used in the PSCs with
important performances, here they are only briefly mentioned, and some relevant references
are given [12-14].

The organic HTMs are divided in two main classes: small-molecules [15,16] and
polymeric HTMs [16,17]. In particular, small-molecules HTMs are interesting since they
can be produced and easily purified by assembling different moieties, containing Donor
and/or Acceptor functional groups tailoring and adapting their properties to the specific
perovskite needs, based on the molecular structure and on the solid-state packing state.

Normally, the hole mobility of pristine organic HTM, no matter if small molecules
or polymers, is low, in the range 1074-10"% cm? V-1 571, In order to work and perform
well in a PSC, a HTM should have a hole mobility of at least 10~% ecm? V1 571 [18]; so, the
required hole mobility can be usually obtained by doping [2,19,20]. So, spiro-OMeTAD
(Figure 1) the standard reference small molecule for PSCs, reached a maximum of 21.6%
Power Conversion Efficiency (PCE) in 2017 [21] from doping with t-butylpyridine (tBP)
and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) [2,16,17]. These dopants, in
particular the LiTFSI, are hygroscopic and help water to fill in the pores of the HTM
layer. As a consequence, the perovskite layer becomes strongly sensitive to moisture and
rapidly deteriorates [18].

H3CO' OCH,
Spiro-OMeTAD

Figure 1. Structure of spiro-OMeTAD. The two moieties connected with the spiro atom are orthogo-
nal to each other.

Alternatively, novel small organic molecules as HTMs being conductive by themselves
have been proposed. The present review is focused on this last class of organic HTMs,
known also as inherently conductive or dopant-free HTMs [15,16,22-24] The dopant-free
HTMs show higher conductivity with respect to most classic HTMs, also in the undoped
state. Sometimes the conductivity of dopant-free HTMs is higher in the undoped than if the
doped state, and this makes them very attractive for both the fundamental and the applied
point of view [7,16]. They are among the best candidates for upscaling the Perovskite Solar
Cell technology, because of their facile synthesis for industrial production with high yield
and purity as they have a distinct molecular weight and structure [15,24].

The literature search was performed mainly on the SciFinder database, by using the
combination of the following keywords: (1) dopant-free, Hole Transporting Material *
and perovskite; (2) dopant-free, HTM, perovskite and solar cells; or the more general (3)
dopant-free, perovskite and solar cells. We included papers from the earliest in 2014, up
to April 2020, focusing mainly on HTMs reaching at least 15% of photovoltaic efficiency
to limit the discussion to a reasonable number of papers, while taking into account all
relevant papers to find structure-property relationships. We cannot exclude that we missed
some articles, since the rate of publication in this hot-topic field is huge, but we made all
efforts to cover all the available literature, and we apologize for any undesired omission.

The dopant-free HTMs are analyzed, keeping in mind their structure, to evidence
structure-activity relationships that can guide the chemist to better comprehend the fasci-
nating world of conductive organic materials and help towards the development of the
novel generations of HTMs for Perovskite Solar Cells (PSCs). In particular, the HTMs are
divided into classes based on their topology, e.g., 1D linear, 2D star-shaped, 3D spiro-like
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structures, which confers to them some specific characteristics, such as stacking, face-on
orientation, etc. Careful analysis is also devoted to the main Donor and Acceptor cores and
to the different coupling of those building blocks. When possible, similar molecules based
on the same core are analyzed for the differences resulting from the subtle modifications
due to the coupling with different substituents or inserted moieties, to evidence how they
influence not only the final PCE but also the HTM whole properties and its structure in the
solid-state film.

2. Perovskite Solar Cells

Starting from 2012, PSC has gained growing attention, becoming the most inves-
tigated emerging photovoltaic technology, approaching the efficiency of silicon-based
devices [10,11,25]. As a matter of fact, PSCs will be the most exploited technology in
the forthcoming years, both in single and in tandem configuration [26]. However, some
criticisms are still present [27].

In PSCs, the photovoltaic activity is assured by the Pb-based perovskite films that allow
us to effectively exploit the whole solar radiation in the range 350-800 nm [28]. In a working
device, the perovskite (PSK) layer is sandwiched between a Hole Transporting Layer (HTL)
and an Electron Transporting Layer (ETL), allowing an efficient charge extraction. The
whole device is generally assembled by successive layer growths onto a Transparent
Conductive Oxide (TCO) glass (usually indium tin oxide (ITO), playing the double role
of support and front electrode) and closed (both physically and electronically) by a back
electrode [9]. More recently, flexible devices (f-PSCs [29] have gained a growing attention
especially for indoor and niche application; in this context, the glass is replaced by plastic
substrates (e.g., polyethylene terephthalate (PET), polyethylene naphthalate (PEN), etc.).

Indeed, once the device is irradiated, one electron is promoted from the valence band
(VB) to the conduction band (CB) of the perovskite. The electron is extracted by the ETL,
whereas the neutrality of the active layer is re-established by the electron transfer of an
electron from the HTL to the VB of the perovskite (Figure 2) [17,30]. Efficient HTL and ETL
are mandatory to obtain high-performing devices. In fact, if the holes and the electrons
are not properly and (sufficiently) fast extracted, they tend to recombine with each other,
limiting the current powered by the device [30]. To minimize the recombination reactions
and speed up charge transport processes, the charge extracting layer should possess some
mandatory features: (i) From an energetic point of view, the frontier orbitals of the ETL
and HTL should match the VB and CB of the photoactive layer, respectively; (ii) they
should be enough conductive and preferentially transparent in order to not cause any
parasitic light absorption; (iii) they should be homogeneously deposited and allow an
effective covering of the PSK layer; and (iv) they should be thermally stable and not suffer
prolonged light and air exposures [31]. Complying with the requirement (ii) for HTM is
particularly meaningful when inverted architecture (vide infra) is designed being the Hole
Transporting Layer the first the radiation passes through; therefore, any (even the lowest)
absorption will dramatically reduce the portion of light could be absorbed and converted
by the PSK layer. When dealing with PSCs one should always consider that the suitability
of different materials to be employed as ETL or HTM strongly depends on the nature of the
perovskite layer and to its energy level straightforwardly. On the other hand, the design
of a proper HTM (the same is valid for Electron Transporting Material (ETM)) should
also consider that, when the charge extractor material is deposited onto (or beneath) the
perovskite layer, it could slightly modify the energetic level of its frontier molecular orbital
via the band-bending effect. This will allow the most effective energetic coupling between
the different layers, thus minimizing the losses and leading to an optimized efficiency.

From a structural point of view, PSCs could be divided into two classes: normal
and inverted geometry (Figure 2) [32]. In the former, taking advantage of conventional
Dye-Sensitized Solar Cells (DSSCs), the PSK layer is grown on the ETL, whereas in the
latter, the substrate for the growth of the active layer is the HTL. Following on from the
different structural role, some HTMs employed in inverted devices (e.g., NiO) could not be
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applied in conventional PSCs. Very interestingly, organic HTMs are suitable for both the
architectures. Going deeper in the PSCs structure description, the “normal” geometry can
be divided into two subclasses, the “mesoporous” (Figure 2d,e) and “planar” (Figure 2f,g)
Perovskite Solar Cells. The former is a direct derivation of the typical DSSC structure, in
which a mesoporous oxide (often TiO,) is deposited onto the ETL (a compact layer, mostly
TiO, but also SnOy, ZnO, etc.) and the perovskite is deposited onto the mesoporous layer,
just covering the nanoparticles surface (Figure 2d) or infiltrating it and ensuring a large
contact surface for the electron transfer (Figure 2e) [28].

The latter is a simpler structure, in which the perovskite is directly deposited/grown
on the compact ETL layer (Figure 2f) or the HTL layer (Figure 2g). All structures are
completed by the conventional deposition of the HTM (Figure 2d—f) or ETM (Figure 2g)
layer and the metal electrode (mainly Au or Ag for normal cells and Al for inverted cells).
The choice of a mesoporous or a planar structure leads to different advantages: The former
allows for an easier perovskite growth and a better charge collection, as the active layer is
physically mixed with the ETL; on the other hand, the production of planar PSCs drastically
reduces the number of deposition steps and allows for the exploitation of low temperature
throughout the fabrication process opening the way to flexible substrates. For further
details on the different architectures, the reader is kindly directed to Reference [33].

All of those different approaches to the Perovskite Solar Cells showed excellent effi-
ciencies (higher than 19%, for mesoporous; 21% for planar and inverted PSCs) [8,34,35].
Attempts to simplify the PSCs structure were done, and both ETL and/or HTL-free PSCs
were conceived [36]. While several concerns have to be overcome, due to the elimination of
ETL and/or HTL, which normally help to tune the cell characteristics, the results are very
encouraging, and high efficiencies were obtained (as high as 20%) [36]. More work has still
to be done to produce devices that are not only simpler and cost-effective, but also very
stable. A further possible architecture is the triple-mesoscopic carbon PSC. This architecture
is based on a TCO (Transparent Conductive Oxide) covered by a mesoscopic TiO; layer,
a second mesoscopic insulating layer, normally made of ZrO,, and a final conductive
mesoscopic carbon layer. The perovskite infiltrates all the layers, instead to be packed
between thin layers as in the more common architectures. This can exploit the ability of
perovskite to transport charges, giving to the devices a chance to emerge as a possible
alternative solution, obtaining so far a 17% PCE and giving in general good stabilities [37].

Thoughtful choice of materials allows to tune the features of the resulting devices.
For example, the perovskite structure could be modified, by changing both the cation
and the anion, in order to tune the absorption of the layer, the energy level of its frontier
molecular orbitals, as well as the charge transport properties of the photoactive layer
itself. Similarly, the engineering of the extracting layer or the introduction of innovative
materials could allow the tuning of the holes and the electrons transport kinetic, reducing
the recombination reaction and the hysteresis experimented by the device and leading
to mire performing and stable devices. Similarly, the back electrode could be selected to
optimize the energy matching with the HTL or ETL in conventional or inverted geometry.

Up to date, PSCs are far to be proved stable for relatively long period, even properly
encapsulated, suffering for both intrinsic and extrinsic instability [38—-42]. Intrinsic instabil-
ity is mainly due photo and thermal degradation reaction the active layer occurs in when
exposed to sunlight [39]; on the other hand, extrinsic instability is due to external factors,
such as moisture and /or oxygen, that tend to react with PSK layer leading to the formation
of both Pbl; and hydrated perovskite phases that heavily jeopardize the photoactive fea-
tures of the perovskite [31,43,44]. Instability due to external factors could be minimized
by proper encapsulation of the device [45]. Indeed, barriers showing the Water Vapour
Transmission Rate (WVTR) and Oxygen Transmission Rate (OTR) up to 107> g m 2 day !
and 10~* cm® m~2 day ! atm ™!, respectively, have been proved to be able to effectively
protect the device [45,46]. Intrinsic instability is more difficult to univocally avoid being
dependent on the nature of the perovskite film, its interfaces with both the extracting layer
and the eventual presence of doping molecules in the HTL [44,47].
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Figure 2. Schematically illustrated device structures depending on electrode polarity and light-
absorption direction: (a) normal structure with n-type Electron Transporting Material (ETM) facing
incoming light and (b) inverted structure with p-type Hole Transporting Material (HTM) facing
incoming light. (c) Energy level diagram showing carrier transport and injection. Different Perovskite
Solar Cell structures: (d) mesoscopic structure with just a thin layer of perovskite over the nanoparti-
cles, (e) mesoscopic structure with an overlayer of perovskite over the totally infiltrated mesoporous
oxide, (f) planar conventional architecture and (g) inverted architecture. Reproduced with permission
from Reference [6]. Copyright 2018, John Wiley and Sons. Reproduced from Reference [33], with

permission from The Royal Society of Chemistry.
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3. Figures of Merit of Dopant-Free HTMs

The Power Conversion Efficiency (PCE) of a Perovskite Solar Cell depends on a few
parameters: the open circuit voltage (Voc), the short-circuit current density (Jsc) and the
fill factor (FF). The V. is the maximum potential could be established between the anode
and the cathode when no current passes throughout the device; Js., on the other hand,
is the maximum current powered by the cell in short circuit condition; finally, FF is an
adimensional factor (between 0 and 1) accounting for the ideality of the device behavior.

Two main relationships are here reported to describe the mutual relation between
these parameters:

FF = Vmp Imp /Voc ]sc (1)

PCE =n = Vo Jsc FF/Pin @)

where Vi, and Inp are the potential (V) and current (I) at the point of maximum power;
and Py, is the incident power expressed as constant flux of photons. The PCE is directly
depending on V., Jsc and FF; moreover, in this case for every parameter increase, the
PCE increases.

Limiting the analyses to the role of HTM in maximizing PCE, the latter should have
energy levels of both HOMO and LUMO correctly aligned with the ones of the other device
components, namely the perovskite and the back electrode. Taking the vacuum condition
as reference, the HTM should have the HOMO higher in energy than the perovskite VB,
to be able to inject electrons into the perovskite or, in other words, accept holes from the
perovskite. This quantitatively occurs when the HOMO of the HTM is about 0.2 eV higher
(i.e., less negative) than the perovskite CB. Secondly, the LUMO of the HTM should be as
high as possible with respect to the perovskite CB, since this energy misalignment would
avoid electrons to come from the perovskite to the HTM, thus reducing the recombination
exerting an electron-blocking effect. Moreover, the HOMO level of the HTM should lie just
below the Fermi level of the back electrode in order to assure a fast charge collection. Indeed,
all factors that reduce charge recombination contribute to increase the current density and
straightforwardly the PCE. The photoactive element of the cell is the perovskite layer,
which absorbs the radiation, causing an internal charge separation. Since the perovskite
is essential an ambipolar semiconductor, it shows high values for both electron and hole
mobility (for MAPbI3, ranging from 2 to 600 cm? V~! s~!, depending on the perovskite
state and of the measurements technique) [48] and electron and hole diffusion lengths
(around 100 nm for MAPbI3 and exceeding 1 um for MAPbI;_Cly), which means that the
charges can travel fast into the perovskite layer and should be removed efficiently by the
ETL and HTL, to minimize charge recombination. As an ideal goal, one should find an
HTM with a hole mobility of the same order of magnitude. Far from this, the practical
cases can afford good efficiencies even with lower hole mobilities but, as shown above,
HTM doping is usually performed to improve the hole mobility. The hole transporting
ability of small organic molecules is strongly related to the arrangement of the molecules
in the solid-state film. This is depending on the HTM structure, on the minimum contact
distances among molecules in the solid state, on the HTM wetting ability towards the
perovskite surface (better contact between the HTM molecules and the perovskite), but
also on the solvent used for the HTM deposition on the perovskite. An ideally performing
HTM should met all of those conditions, and it is clear that one has to rely on the best
compromise. Notwithstanding, a careful search for structure—activity relationships is
opportune to make a rational discussion on how and why the HIM structure can affect the
final photovoltaic performances.

4. Organic Small-Molecule Dopant-Free HTMs: Structure-Activity Relationships

As a premise to the following discussions, the HTMs whose structure is reported in the
schemes and whose data are reported in the tables are marked in bold. Sometimes parent
structures are cited (not shown in bold), since they were reported in the same relevant
papers, even though they may be not relevant (e.g., their PCE is lower than the cutoff limit
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taken as a reference in this review). Those specific molecules are not shown in bold, but
their data are reported in the text as useful remark for the discussion.

Han et al. introduced in 2014 the first dopant-free small-molecule HTM named
TTF-1 and based on tetrathiafulvalene scaffold (Figure 3) [49]. The PSCs based on TTF-1
showed an efficiency of 11.03%, close to the efficiency of PSCs based on the reference
doped spiro-OMeTAD (11.4%). Remarkably, the TTF-1 achieved a cell stability for over
500 h, under 40% relative humidity at room temperature, while the doped spiro-OMeTAD
survived only for 120 h. This immediately demonstrated that the elimination of dopants
and/or additives from the HTM layer improved the cell stability.

S S<
CigHar™ I% — (sI C1gHa7
CigHar~g” ™S 87 Ng-CigHar
Figure 3. Structure of dopant-free small-molecule HTM named TTF-1.

After the pioneering work of Han et al., the huge work made about this topic caused
the literature to “explode”, with more than 500 papers published per year in the timeframe
2018-2020. More than 70 articles are here commented concerning only the more performing
HTM, showing PCE exceeded 15.0%, classified into families, to have some rough way to
deduce structure—-activity relationships.

From the chemical-structure point of view, the general structures one can identify
are (i) the triarylamino-based structures and (ii) the D-n—A (Donor-m-conjugated bridge-
Acceptor) structures. The first ones are based on the triarylamino building block, which
shows high Donor characteristics. While not being planar, this moiety gives normally high
HOMO to the molecules in which contain it. It can be easily oxidized and so it is naturally
prone to be a main constituent of a p-type organic material. Normally, triarylamino
based molecules are not showing long conjugation pathway, because the nitrogen of the
triarylamino group breaks the conjugation. They can be composed by Donor and Acceptor
groups whose interaction is, however, not supported by conjugation.

The D-mt-A structures are well-known as a structural motif of dyes. When a conjugated
chain is connected with a Donor group on one edge and an Acceptor group on the opposite
edge, this causes an effective transfer of the charge along the chain and reduces consistently
the HOMO-LUMO band gap. This results into a “polarization” of the molecule. The
presence of unequally distributed charge in the molecule makes it able to accept and release
electrons and this can be exploited to favor the charge flow into the material, while still
having an organic nature.

From the “morphological /shape” point of view, the general structures one can identify
are (i) the 1D linear structures, (ii) the 2D star-shaped structures (discotic) and (iii) 3D
spiro—orthogonal structures.

4.1. Linear 1D Structures

One-dimensional linear structures are almost linear molecules and are nearly the
most abundant in the field of HTMs (see Scheme 1 for the structures reported in this
review and Table 1 for the relative performances in photovoltaic devices). They normally
possess long and strong 7t conjugation, giving important intermolecular interactions. TTF-1
(Figure 3) is an example of this kind of structures known as the first organic dopant-free
HTM. TTF-1 is a simple dimeric molecule having a rigid central core which shows a strong
m—7 stacking and S-S interactions. The octadecylthio chains enhance the solubility and
create a fastener-effect in the film, which maintains the molecules in a stacked arrangement,
giving an excellent hole mobility (0.1 cm? V~1 s71), while its high HOMO reduced a bit the
photovoltage and the whole photovoltaic performances, which were however, higher than
pristine and just below the doped spiro-OMeTAD [49].
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Scheme 1. Structures of organic dopant-free 1D linear HTMs.

The DOR3T-TBDT HTM [50] contains a benzodithiophene (BDT) central core and
terthiophene and rodanine residues at both sides. This linear A-D-A HTM showed a 14.9%
efficiency, due to a relatively high conductivity (4 x 107* S cm~!) and exceptional hole
mobility (0.26 cm? V-1 s7! vs. 107* cm? V~! 57! for spiro-OMeTAD for comparison).
This was the first HTM approaching an efficiency of 15.0%, thus overcoming the DSSC
limit (14.3%) [51] and confirming that PSCs would be an excellent opportunity in the
photovoltaic field. These excellent results were obtained 6 years after the first use of a
perovskite as a light harvester in DSSCs and in 3 years after the Perovskite Solar Cells
revolution began.

Three similar structures, M6, M7-Br and M7-TFSI, were prepared, by changing the
capping moiety and introducing a charge in the molecule, which performs an internal
doping [52]. The general structure was originated from the BDT-C1 [53] HTM, which
contains a central BDT (substituted with 2-ethylhexyloxy chains) which bears two ben-
zothiadiazole (BTZ) moieties respectively surrounded by two 3-hexylthiophenes and at
the edge of each arm the molecule is capped by 2-hexylthiophene. This molecule reached
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a top PCE of 13.9%. In the M6 a 4-pyridine was used as a capping moiety, instead of the
2-hexylthiophene of BDT-C1. In the M7-Br and M7-TFS]I, the pyridine ring was quater-
nized with a 2-ethylhexyl chain and they simply differ each other for the counterion (Br
or bis(trifluoromethane)sulfonamide (TFSI) anions). In all of these structures, based on
BDT, the BTZ is used as an electron trap, helping the charge carrier transfer. When the
pyridine is quaternized (M7-Br and M7-TFSI), its higher electron withdrawing effect helps
to tune the HOMO at a lower energy level and its positive charge is compensated by the
presence of the counterions, such as Br and TFSI. This helps to obtain higher conductivity
for M7-Br and M7-TFSI with respect to M6. The introduction of a charged moiety into the
HTM increased the efficiency (13.0% for M6, 15.1% for M7-Br and 17.4% for M7-TFSI) [52].

A further BDT containing structure, DERDTS-TBDT, showed a 16.2% PCE [54].
The energy levels were correctly aligned and then hole mobility reasonably high
(1.0 x 107* cm? V=1 s71). The structure was built onto a central bis(alkylthienyl)BDT
core with two dialkyldithienosilole (DTS) groups and capped with a rhodanine. A similar
molecule having the same structure but where the BDT core was substituted by a difluo-
rinated BTZ core, DORDTS-DFBT, showed a lower PCE (6.2%) as a result of incorrectly
aligned energy levels (the HOMO is deeper that the perovskite valence band) and very low
hole mobility (2.4 x 1076 cm? V=1 s71).

Two linear D-n—D HTMs, BDT-PTZ and BDT-POZ were prepared by connect-
ing a central bis(hexylthio)-decorated BDT core to N-(6-bromohexyl)phenothiazine or
N-(6-bromohexyl)phenoxazine side arms [55]. These two materials showed quite low
HOMO energy levels (—5.42 and —5.35 eV for BDT-PTZ and BDT-POZ, respectively),
and when used in inverted p-i-n MAPbI; (—5.46 eV) based PSCs (ITO/HTM/MAPbI3/
[6,6]-phenyl-C(61)-butyric acid methyl ester/bathocuproine/Ag), they showed remark-
able efficiencies (18.26% for BDT-PTZ and 19.16% for BDT-POZ). Their performances
were mainly connected with a very high fill factor. The efficiency order follows the hole-
mobility order and charge-extraction ability, as measured by fluorescence quenching of
perovskite by HTMs. The single-crystal XRD measurements gave important information
about the molecular packing. While the dislocation of BDT-PTZ molecules in the crystal
is not high, this is more pronounced in the case of BDT-POZ. As a result, the minimum
distance between the nitrogen atoms of two adjacent molecules appeared to be shorter for
BDT-POZ vs. BDT-PTZ (3.850 vs. 8.138 A), thus showing that the two electroactive centers
of BDT-POZ are closer and can induce hole hopping among nearby molecules. It is worth
mentioning that the same molecules bearing simple hexyl chains instead of 6-bromohexyl
did not gave single crystals, and this was attributed to the more polar C-Br bond that seems
to induce further interactions that promote an easier crystallization.

The phenothiazine-based HTMs, AZO-I and AZO-II were synthesized easily by
bonding N-(4-methoxyphenyl)phenothiazine with TPA through the formation of an imine
bond [56]. They showed thermal stability up to about 400 °C, and a Glass Transition
Temperature (Tg) that, for AZO-II, was found at 120 °C. Their hole mobility was lower
than that of spiro-OMeTAD, with AZO-II performing better than AZO-I. The PSCs were
assembled with a triple cation perovskite (Csp.0sMA1_yFAyPbl;_Cly), whose valence band
is located approximately at —5.9 eV. From this point of view, the high HOMO of the two
HTMs (—4.97 eV for AZO-1 and —4.94 eV AZO-II respectively) reduces considerably the
Voc and the final performances. However, AZO-II gave a PCE of 15.6%. The stability was
checked for non-encapsulated devices at 25 °C, in ambient air, and AZO-II retained up to
91% of its pristine PCE after 2 months.

Another series of compounds belonging to the triarylamine class was prepared.
The compounds TPACOM, TPAC2M and TPAC3M were prepared by assembling a
N-phenylcarbazole and a bis(4-methoxyphenyl)phenylamine [57]. They were employed
in p-i-n inverse PSC cells. Their HOMO energy levels are quite shallow with respect to
the perovskite, and TPAC3M gave the higher V. (about 1 V). Those molecules showed
a similar, not so great hole mobility. The higher number of alkoxy groups, 0, 2 and 3
in TPACOM, TPAC2M and TPAC3M, respectively, is expected to passivate defects in
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perovskite due to the Pb-O interactions, improving the efficiency. This was exactly what
was found, with a PCE of 13.92%, 15.77% and 17.54% (PCE average: 12.92%, 15.20%
and 16.58%) for TPACOM, TPAC2M and TPAC3M, respectively, always higher than the
PEDOT:PSS used as a reference (12.60%, average: 11.44%) [57]. The same order was found
for the smoothness of the HTM film deposited onto the perovskite.

Most of the previous and following HTMs belonging to the 1D linear HTMs are sym-
metric. Some linear HTMs, however, were built on a D-n-A scheme, in an asymmetric way.
CF-BTz-ThR is based on BTZ moiety and surrounded by a 3,5-bis(trifluoromethylbenzene)
and an alkyl dithiophene substituents and was used in PSC cells where aligned TiO; nano-
bundles were used as an Electron Transporting Layer. The nano-bundles seemed to reduce
the number grain boundaries and thus the resistance of the film. CF-BTz-ThR showed
good energy level alignment with perovskite and gave a PCE of 15.4% with nano-bundle
TiO, and 13.6% with mesoscopic TiO, [58]. However, the CF-BTz-ThR outperformed the
spiro-OMeTAD used on titania nanoparticles (10.4%), showing the importance of this
HTM. Another asymmetric HTM is the TPA-PB-OXD [59] that was studied for inverted
PSCs in both rigid and flexible configurations. Among its properties, its HOMO lies at
—5.10 eV, the thermal stability is very good (411 °C) while the hole mobility is good.
The two configurations and architectures, rigid (ITO/HTM/perovskite/PC61BM /ZnO-
NP/Ag) and flexible (PET/ITO/HTM/ perovskite/PC61BM/ZnO NP/ Ag), were prepared.
Using the MAPbI3 perovskite, the TPA-PB-OXD obtained a 15.46% in the rigid and 10.35%
in the flexible configuration. The stability was determined on non-encapsulated devices
at 25 °C, 35% relative humidity and 720 h, retaining the 80% of the PCE for the rigid PSC,
while for the flexible one the PCE reached 0% after 22 days.

The small-molecule DFBT(DTS-FBTThy);, is conceptually a D-A HTM, containing
fluorinated benzothiadiazoles (FBT) and the 4,4-bis(2-ethylhexyl)-4H-silolo[3,2-b:4,5-b']
dithiophene (DTS) moieties. A high molecular density was obtained in the HTM layers
since the presence of those moieties with a high conjugation and proneness to —m stacking.
In particular, the coupling of these moieties showed to stabilize the quinoidal 7t-character
of the HTM. The hole mobility was 1.78 x 10~% cm? V~! s, comparable with doped
spiro-OMeTAD and, since the HOMO is deeper than spiro-OMeTAD, the better alignment
with perovskite is warranted. In a planar architecture, the pristine DFBT(DTS-FBTTh,);
showed a very good PCE (17.3%), the same as the doped spiro-OMeTAD [60]. From
the stability point of view, the DFBT(DTS-FBTTh;), showed a more hydrophobic be-
havior which ensured better protection of the perovskite. The use of a long, alternated,
D’-A-D-A-D-A-D' structure of DFBT(DTS-FBTTh,),, demonstrates that an extension of
the molecular skeleton alternating Donors and Acceptors, like that obtained into a polymer,
can be fruitful for the Perovskite Solar Cells application.

The p-DTS(FBTThy), HTM is a simpler analog of the just above cited DFBT(DTS-
FBTThy),. This HTM showed just a 14.7% PCE as a dopant-free HTM. It was used in blend
with the polymer PCDTBT (PCE 16.5%) [61] and 1,8-diiodooctane (DIO) as the processing
additive, without any doping [62]. The blend was optimized to have 93% of the HTM, 6%
of the polymer and 1% of the additive, to obtain a five-fold increase of the hole mobility.
The hole mobility increase caused by DIO was ascribed to an enhancement in crystallinity,
while when also the polymer is present, it seems that DIO causes a better compatibility of
the materials and a better networking among molecules, thus improving the contact and
the hole transport. Into planar-MAPbI3-based PSCs (FTO/TiO,/MAPbI; /HTM/ Au), it
showed up to 15.90% average efficiency and 18.0% for the champion device, thus improving
the results for the small molecule alone. The stability was evaluated at 85 °C, 85% relative
humidity for non-encapsulated devices. The blend maintained 78% of PCE after 100 min.
This opened the way to a further method for improving the PCE of PSCs.

A triarylamine material named CMO, was used as an HIM in planar PSCs. Its structure
is based on a 2-ethylhexyl-9H-carbazole core, flanked by two bis(4-methoxyphenyl)amine
substituents. The CMO has the HOMO lying at —4.78 eV, showed thermal stability until
325 °C, a lower hole mobility than spiro-OMeTAD and a PCE of 13.63% for the best device
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(average PCE: >11%), which, after optimization reached 15.92% [63]. The state of the HTM
film was affected by the concentration of the HTM in the solvent chlorobenzene, used for
the deposition. The CMO film showed to be more hydrophobic than spiro-OMeTAD, and
thus can be predicted to better protect the perovskite.

The carbazole core was used to prepare further HTMs, both connected with TPA moi-
eties or thiophene-based arms. The first examples are the PhCz—4MeOTPA and the BDT-
4MeOTPA HTMs. They were prepared through a straightforward procedure [64]. These
materials are based on an N-phenylcarbazole and a BDT core, respectively. An interest-
ing procedure was drawn to prepare the N'-(4-(bis(4-methoxyphenyl)amino)phenyl)-N*,
N4—bis(4—methoxyphenyl)benzene—1,4—diamine. The HTM properties were studied, finding
an optimal thermal stability (over 400 °C), a Tg at about 140 °C for both materials and
the HOMO level at -5.06 and -5.13 eV for PhCz-4MeOTPA and BDT-4MeOTPA respec-
tively. DFT calculations suggested that the PhCz-4MeOTPA appeared to be less planar
than BDT-4MeOTPA. This characteristic inhibited the molecular stacking and accounted
for the formation of better films. The hole mobilities were found to be 1.13 x 10~ and
7.37 x 107> ecm? V-1 s71, and this was in agreement with the more homogeneous film
formed by PhCz-4MeOTPA. The efficiency in triple-cation perovskite PSCSs was deter-
mined and appeared to be 16.09% for PhCz-4MeOTPA and only 8.78% for BDT-4MeOTPA,
thus demonstrating the importance of the tridimensional structure, which was affected in
this case by the difference in the scaffold. A more planar scaffold induced the molecular
stacking, and this was detrimental for the final efficiency. While in most cases, such as
for star-shaped HTMs, the stacking promoted the efficiency through a face-on columnar
aggregation; this is not always opportune for other kind of molecules having different
shape and structure. This suggested that the optimum state to promote efficiency is regu-
lated by a delicate equilibrium among different conditions. The stability was measured
on non-encapsulated devices at 80 °C, in the dark in ambient air for 1200 h, showing, in
general, an excellent stability (92% for PhCz-4-MeOTPA).

Some other HTMs were built onto cores which contains the carbazole or carbazole-
like moieties in the central core and are here reported. As reported above for the crucial
aspect of the architecture and kind of materials employed into a PSC, the use of NiO4
as a layer over PEDOT:PSS on inverted planar cells considerably increased the efficiency
of four new HTMs, Cz-SY1, Cz-SY2, Cz-SY3 and Cz-SY4 (original names in the paper
SY1 to SY4, that was here modified because of identical names for HTMs found in other
papers) [65]. Cz-SY1 and Cz-SY3 are terminated with ester groups while Cz-SY2 and
Cz-SY4 with amide groups, that are considered more prone to help in the passivation of
uncoordinated Pb?* surface traps. These materials showed a very good thermal stability
and a Tg over 150 °C. Their HOMOs were in between —5.21 and —5.29 eV, correctly
aligned with the perovskite (—5.4 eV) and the FTO/NiOx energy level (—4.8/—5.2). This
was good enough to promote hole extraction. The large bad-gap of the Cz-SY1, Cz-SY2,
Cz-SY3 and Cz-SY4 HTMs prevented recombination at the HMT-perovskite interface.
When the Cz-SY1, Cz-Sy2, Cz-Sy3 and Cz-SY4 where used into an inverted configuration
PSC (ITO/HTM/ perovskite/PCg; BM/BCP/ Ag) their PCE was low (less than 12%), while
the modified ITO/NiOx/HTM/perovskite/PCq BM/BCP/Ag configuration raised the
averaged efficiencies up to 14.39-17.67% (the best devices were in the range 15.86-18.96%,
with three HTMs showing a PCE over 18%). The neat NiO4 layer without HTM produced a
PCE of 16.92%. The stability of NiOx based cells was evaluated in the dark at 25 °C under
Ar for 1000 h, all the HTM retained more than 90% of the pristine PCE. Working at 25 °C
and 40% relative humidity, the retained efficiencies were in the range of 84-88%.

The HTM C202 was prepared as a first example of an indolo[3,2-b]carbazole (tech-
nically, a 5,11-dihydroindolo[3,2-b]carbazole) based HTM showing an interesting 17.7%
PCE when used as a dopant-free HTM in mesoporous devices [66]. The partner compound
C201, which was lacking of the bis(4-methoxytriphenyl)amine extensions on the central
benzene ring, showed only 8.7%. The larger C202 can give more homogenous films with
absence of pinholes and this would better protect the perovskite layer from humidity.
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Interestingly, the HOMOs were evaluated by cyclic voltammetry to be —5.27 and —5.23 eV
for C201 and C202 respectively, while in the deposited film the Ultraviolet Photoelectron
Spectroscopy gave —5.38 and —5.12 eV. This diverging behavior in the film state indicates
that one have to take care of the proper final conditions in which the HTM is used and that
a careful analysis of the material behavior should be performed to fully comprehend the
reasons for the obtained performances. In this case, the low valence band of the mixed-ion
(FAPDbI3)0.85(MAPDbBr3) 15 perovskite ensure that the energy levels are properly aligned.
The hole mobility of C202 was 1.5 x 107* cm? V~! 571, well higher than spiro-OMeTAD
(6.7 x 107> ecm? V~! s71). Finally, C202 also showed a remarkable stability under 40%
humidity, retaining 72% of the initial PCE over 288 h, while spiro-OMeTAD retained only
23%. This was confirmed by the higher contact angle with water of C202 with respect
to spiro-OMeTAD.

The second example comes from a very similar and structurally related scaffold,
the benzo[1,2-b:4,5-b’]dipyrrole core (BDP). This is the nucleus on which the dibenzo
derivative 5,11-dihydroindolo[3,2-b]carbazole (used for the C202 HTM) was built. It
can be also considered the nitrogen analog of the sulfur-based heterocycle BDT. The
2,3,6,7-tetraphenylbenzodipyrrole core (BDP) was alkylated with different sultones, giving
several compounds related to the BDPSO family (2,3,6,7-tetraarylbenzo[1,2b:4,5-b’]dipyrrol-
1,5-yl alkanediylsulfonate). The position of fluorine atoms on the aryls was changed, and
thus several compounds were obtained (3C, 4C, br-4C, 2F-br-4C, 3F-br-4C, 4F-br-4C) [67].
These compounds were interesting for several reasons. They can give substantially trans-
parent films, their HOMO are well aligned with the perovskite (—5.21/—5-37 eV), the hole
mobility is reasonable close to, or slightly higher than spiro-OMeTAD. All of them are
able to work as HTMs. The PCE was very good, ranging from 12.1 to 16.9%. The best
compound, 3F-br-4C, showed a PCE of 16.9%, with a best cell showing a 17.2% efficiency.
The stability test (not encapsulated devices, 40-50% humidity, room temperature, 40d) on a
3F-br-4C based PSC, showed a retention >80% of the initial PCE while, if stored in a glove
box under nitrogen, the retention was >90%.

The third example is related to the DBC-1, DBC-2 and DBC-3 HTMs, which were pro-
posed by Liu et al [68]. The core is the new more complex heterocycle dibenzola,c]carbazole.
Technically speaking, DBC-1 is a 1D linear molecule, while DBC-2 and DBC-3 can be con-
sidered as 2D star-shaped molecules (see section below) but are here reported to describe
how the transition from 1D to 2D star-shaped molecules can influence the final photovoltaic
behavior. All of them gave very good efficiencies which, however, were modulated on
the base of the number of the N-fluorenyl-N-4-methoxyphenylamine substituents. Their
HOMO:s are lying at —5.26, —5.22 and —5.14 eV, respectively. It is worth to note that the
substitution on C;; in DBC-3 increases the HOMO energy considerably. All the materials
gave quite good films. However, DBC-1 and particularly DBC-2, gave smoother films than
DBC-3. This is in agreement with a better packing for DBC-2. Grazing-Incidence Wide-
Angle X-Ray Scattering (GIWAXS) measurements showed for all the DBC HTMs a face-on
arrangement on the surface which was more pronounced for DBC-2. The hole mobility was
higher than spiro-OMeTAD for DBC-1 and DBC-2, while it was lower for DBC-3. How-
ever, in the planar architecture (FTO/c-TiO, / perovskite (CH;NH3PbI;_Cly)/HTM/Ag),
the PSCs made with these HTMs were 18.81%, 20.02% and 16.77%, respectively, with
spiro-OMeTAD (18.18%) underperforming with respect to DBC-1 and DBC-2.

A series of triarylamines based on the DBTP (di(1-benzothieno)[3,2-b:2/,3’-d]pyrrole)
central nucleus were prepared: mDPA-DBTP, pDPA-DBTP and pTPA-DBTP [69]. The
differences among them consist on the presence/absence of a phenyl ring extending
the conjugation on both sides of the linker and on a different substitution pathway of
the terminal phenyl groups (m- or p-methoxy substitution on the di- or triphenylamino
moieties). The UV-Vis absorption onsets for the three compounds (in the 423-454 nm range)
showed that these materials are nearly transparent in the visible region. The HOMOs were
—5.31, —=5.05 and —5.20 eV for mDPA-DBTP, pDPA-DBTP and pTPA-DBTP, respectively,
showing that they are aligned with the perovskite energy level. Notably, grazing incidence
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in-plane X-ray diffraction (GIXD) measurements showed a 010 peak which means that
all those materials adopt a - stacking arrangement, with face-on orientation on the
perovskite surface which generally generates a positive effect on the charge transport.
All of these “convergent” positive effects gave an excellent PCE trend: 18.09%, 14.10%
and 15.63% for the mDPA-DBTP, pDPA-DBTP and pTPA-DBTP respectively [69]. The
best HTM, mDPA-DBTP, which outperformed spiro-OMeTAD, not only showed the best
PCE but also negligible hysteresis, an indication that its arrangement and behavior in the
device is optimal to help to remove the charges properly, avoiding the charge accumulation
that normally increases the recombination probability. This was further demonstrated by
fluorescence quenching measurements, which showed that this HTM was the best efficient
one, in collecting holes from the perovskite. The devices prepared with these interesting
HTMs were tested for stability (not encapsulated devices, ambient air atmosphere, room
temperature, 33 days). The spiro-OMeTAD retained about 1% of its original PCE, while
mDPA-DBTP devices retained 81%.

Analogously to the DBTP (di(1-benzothieno)[3,2-b:2/,3’-d]pyrrole), the DTP core
(dithieno[3,2-b:2’,3'-d]pyrrole) was used to build a D-n—A HTM by linking it to a thienyl
(ICTH1) or thiazolyl (ICTH2) moiety and finally to the strong dicyanovinyl Acceptor
group [70]. These relatively simple structures showed deep HOMOs (—5.3 eV for ICTH1
and —5.41eV for ICTH2), still aligned with the perovskite (—5.43 eV) and a sufficiently high
LUMO (—3.93 eV) to help those HTMs to work as an electron blocking layer, thus reducing
the recombination probability. The ICTH1 and ICTH2 were thermally stable, enough to
be easily processed, and their hole mobility was about ten times than the spiro-OMeTAD.
The PSCs (FTO/MesoTiO, /MAPbI; /HTM/ Ag) based on them produced very good PCE
(17.91%for ICTH1 and 18.75% for ICTH2) which were still retained reasonably high (13.32%
and 16.09%) after 40 days (devices maintained in the dark, ambient air and at room temper-
ature), always outperforming the spiro-OMeTAD.

The simple DTP core, dithieno[3,2-b:2’,3’-d]pyrrole, gave further impulse to the HTM
research. Its application in the preparation of small molecules and polymers was important
to achieve results of the outmost interest.

Two HTMs based on the scaffold dithieno[3,2-b:2’,3'-d]pyrrole were prepared by
Zhou et al [71]. In this case the dithieno[3,2-b:2’,3’-d]pyrrole was flanked by two thiophenes
to which the TPA substituents were attached. The DTPC8-ThTPA and DTPC13-ThTPA
differ only for the chain length, a modification that in the last times is becoming more and
more crucial, suggesting that every aspect of the HTMs should be tuned and optimized. In
this case, the HOMOs were both at —4.82 eV, but in the solid-state films, the IP (Ionization
Potential) was —5.04 eV for DTPC13-ThTPA and —4.94 eV for DTPC8-ThTPA, showing
that, in the solid state, DTPC13-ThTPA had a better alignment with perovskite, giving it,
in perspective, a higher V.. A high thermal stability of the HTM was found for both HTMs.
The inverted devices were prepared by using a MA 7FA( 3Pbl, g5Br 15 perovskites with
a FTO/SnO, /C60-SAM/ MA7FA(3Pbl; g5Brg 15/ PMMA /HTM/ Au architecture. Both
HTMSs performed in an excellent way. DTPC8-ThTPA reached an efficiency of 17.74% (best
device: 18.37%) and DTPC13-ThTPA of 19.30% (best device: 20.38%). This was mainly
due to the higher V. and FF for the last HTM. Unfortunately, the long-term stability was
not assessed for those HTMs.

A finer tuning on the same scaffold (DTP) was performed by the same authors, who
prepared a molecule having the same conjugated skeleton of DTPC13-ThTPA, DTP-C6Th,
by using a 5-hexylthiophene substituent on the pyrrole nitrogen, instead of alkyl chains [34].
The structure, due to the two thiophenes surrounding the central core, was quite planar and
this was able to promote stacking and a high hole mobility, which was found to be one order
of magnitude larger than for spiro-OMeTAD. The HOMO was at —4.87 eV and the band
gap was 2.22 eV. In the normal planar PSC architecture, a 18.56% PCE was obtained for
DTP-C6Th, but the V. and fill factor was lower than expected from the characterization
parameters. To address this problem, an ultrathin layer of PMMA was spin-coated onto the
perovskite to efficiently passivate the traps, obtaining a PCE of 20.42%, while to improve
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further the efficiency a small excess of bromine was added in the perovskite. This operation
is known to be beneficial to increase the V. but it depresses the current. Through a
judicious optimization of this step, the final perovskite MA 7FA( 3Pb(1g.925Brp 975)3 was
obtained and DTP-C6Th gave a PSC cell efficiency of 21.04%, reaching one of the best
results ever obtained up to 2019. Besides, an excellent stability was found. In 60 days, the
PSC kept at 25 °C in 35% relative humidity conditions showed a retention of PCE of 85%.
The same core bearing four TPA substituents, was classified as a star-shaped molecule, and
gave a very high PCE (see below in the 2D star-shaped section). The DTP core can thus be
considered one of the best performing scaffolds for HTMs.

A paper from Wang et al. about the MPA-BTI and MPA-BTTI compounds gave a further
increase to the PCE up to 21% [35]. BT, (4H-dithieno[3,2-c:2’,3'-e]azepine-4,6(5H)-dione), and
BBTI, (4H-thieno[2’,3':4,5]thieno[3,2-c]thieno[2’,3":4,5]thieno|2,3-e]azepine-4,6(5H)-dione)
were used as strictly related scaffolds. Due to the central imide structure, the core is
behaving as an Acceptor. The structure of the core is highly planar for both molecules, but
due to the presence of the BTI core, the MPA-BTI is V-shaped, while MPA-BTTI, which
contains BTTI, is more or less linear. It was found that, in solid-state films, MPA-BTI
forms J-aggregates while MPA-BTTI forms H-aggregates. All the properties of this last
molecule cooperated to obtain an excellent efficiency (Figure 4). In the conditions used in
this case, in planar PSC with CsSFAMA perovskite the MPA-BTTI based devices showed
an excellent and unprecedented efficiency of 20.7% (21.17% for the best device), while
MPA-BTI gave however an important 17.20% for its best device (average data not reported).
Interestingly, the devices obtained from the best performing HTM, MPA-BTT]I, did not
show any hysteresis. The stability was assessed only for MPA-BTTI, for non-encapsulated
devices at 25 °C, 30-40% of relative humidity and under constant illumination, for 500 h.
In those conditions, the MPA-BTTI retained 90% of its pristine PCE (Figure 5). Another
important point can be derived for the exam of these last two papers.

The same authors wrote a further paper about the selection of the proper chain
length onto a triarylamine series of compounds in which the central scaffold was the BTTI
(4H-thieno[2’,3":4,5]thieno[3,2-c]thieno[2’,3':4,5]thieno[2,3-e]azepine-4,6(5H)-dione) [72].
The authors centered the study on the role of the chain length by preparing three compound
having hexyl, octyl and dodecyl chains (BTTI-C6, BTTI-C8 and BTTI-C12). It should be
remarked that BTTI-C12 is just the same compound that the same authors published under
the name MPA-BTTI (see just above) and that achieved over 21% efficiency. While not
being an “active” element of the structure from the point of view of hole extraction, the
chain gives the solubility needed for the preparation of the film and can hinder or not
the molecular packing which is relevant in the solid-state film. As a confirmation, the
hole mobility and conductivity of the films increased slightly when the chain length was
reduced. This is probably due to a better molecular packing, where the molecular distances
are reduced. An excellent thermal stability was detected and the Ty was around 224 °C
for all the compounds. Those HTMs formed very good pinhole-free films. Following
those data, the PSCs gave an efficiency of 19.05% (19.69% for the best device) for BTTI-C6,
18.04% (18.89% for the best device) for BTTI-C8 and 16.83% (17.49% for the best device) for
BBTI-C12. Those results brought to the attention this new scaffold, in which both sulfur
and oxygen atoms are working to passivate the surface traps. The long-term stability was
encouraging. When the non-encapsulated devices were kept at 25 °C and 24% relative
humidity, the BTTI-C6 maintained 85% of the starting PCE after 100 days. This is extremely
encouraging in view of potential application. As a further, more general comment, the
same molecule (reported with different names in two separated papers: BTTI-C12 or
MPA-BTTI) gave two different behaviors, depending on the configuration of the cell and
on its preparation.
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Figure 4. Device structure, cross-section SEM, and device performance. (a) Schematic diagram of the device structure
with p—i-n (inverted) configuration. (b) Cross-section SEM images of the MPA-BTTI-based PVSCs. (c) The ]-V curves of
the best performing MPA-BTI- and MPA-BTTI-based solar cells. (d) Stabilized PCE measurement of the best device for
MPA-BTI and MPA-BTTI. (e) External quantum efficiency (EQE, solid circles) with the integrated short-circuit current
density (dashed lines) for the MPA-BTI- and MPA-BTTI-based cells. (f) PCE histograms of 60 devices from different
batches utilizing MPA-BTTI as the HTM. Reprinted with permission from Reference [35]. Copyright 2019 John Wiley

and Sons.
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Figure 5. Device stability. (a) The evolution of normalized power conversion efficiency obtained from MPA-BTTI-based

device with encapsulation at ambient environment (/25 °C, 34% humidity) under maximum power point (MPP) tracking
and continuous light irradiation (AM 1.5G, 100 mW cm ™2, white LED). (b) Long-term thermal stability of MPA-BTTI-based
device stressed at 80 °C in inert environment in the dark. Reprinted with permission from Reference [35]. Copyright 2019,

John Wiley and Sons.

It is obvious that every component of the cell contributes significantly to the final
efficiency, but here we can appreciate how, by changing from a planar to an inverted planar
architecture, one can bring an HTM from a very good to an excellent PCE. In fact, BTTI-C12
was used in a PSC having a ITO/SnO, /CsFAMA /HTMs/ Au architecture while MPA-BTTI
was applied in a more complex, architecture, ITO/HTM/ perovskite /C60/bathocuproine
(BCP)/Ag. This was enough, for an already excellent HTM, to obtain a “leader” PCE.

The HTM PCA-1 and PCA-2 were built by assembling naphthalene building block
fused with thiophene (PCA-1) and naphthalene (PCA-2) [73]. These are a particular
case of fully conjugated and fully planar HTM, since all the rings are fused together,
giving the diacenaphtho[1,2-b:1’,2’-d]thiophene system. To ensure solubility, four t-butyl
groups are attached to each HTM. Both PCA-1 and PCA-2 show higher hole mobility
than spiro-OMeTAD, but after annealing, the hole mobility reaches very high values
(8.3 x 1072 cm2 V1571 for PCA-1,and 3.2 x 10~ ecm? V1 571 for PCA-2). Their HOMO
lye at —5.34 eV and —5.51 eV, respectively. The too low HOMO level for PCA-2 showed that
the hole injection from perovskite is not favored. In a n-i-p planar PSC cells, this yielded a
4.25% PCE, while PCA-1 worked better, with a PCE of 15.59% [73]. In mesoscopic PSC cells
PCA-1 gave further improvements, up to 17.23% (best cell: 18.17%). In every case, they
showed a somewhat lower performance than doped spiro-OMeTAD, but the relatively
easy synthesis and excellent performances as dopant-free HTM are very promising.

The anthanthrone core was assembled with acenaphthene (ACE-ANT-ACE) and TPA
(TPA-ANT-TPA) [74]. TPA-ANT-TPA showed a proneness to charge transfer from the
anthanthrone nucleus to the terminal TPA groups during the HOMO-LUMO transition.
The HOMO levels for ACE-ANT-ACE and TPA-ANT-TPA were at —5.32 and —5.41 eV
respectively. The hole mobility of TPA-ANT-TPA was higher than spiro-OMeTAD while
for ACE-ANT-ACE was well lower. The TPA-ANT-TPA HTM gave homogeneous films
on perovskite, while ACE-ANT-ACE provided films with pinholes. The better film
forming ability of TPA-ANT-TPA explains in part its higher photovoltaic performances. In
glass/FTO/compact-TiO, /mesoporous-TiO, /CH3NH;3Pbl; /HTL/ Ag devices, the ACE-
ANT-ACE and TPA-ANT-TPA showed a PCE of 11.4% (best cell: 13.1%) and 16.0%
(best cell: 17.5%) respectively, while spiro-OMeTAD reached 16.8%. The stability (under
continuous illumination, 58% humidity, room temperature, 200h) of spiro-OMeTAD PSCs
was shown to be worse, going down to 2% after 10 h, while the TPA—~ANT-TPA PCE was
very encouraging, being reduced to 80% after 200 h.



Energies 2021, 14, 2279

19 of 49

The fluoranthene core was used to prepare four HTMs, BTF1, BTF2, BTF3 and
BTF4 [75]. The packing of those molecules was studied, and BTF4 showed a dense packing,
with short contact distances. Interestingly, their packing shows four different aggregation
modes, based on both H-aggregate and J-aggregate forms, occurring by dipoles or m—n
interaction. The presence of two cyano groups in BTF3 and BTF4 caused a red shift of
the UV spectrum with respect to BTF1 and BTF2. The HOMOs were found at —4.90,
—4.80, —5.19, —5.02 eV for BTF1, BTF2, BTF3 and BTF4. respectively and thus they can
work as HTMs in the PSCs. The best hole mobilities were found for BTF3 and BTF4
(6.35 x 107° and 1.17 x 10~* cm? V~! s7! respectively) and were well higher than that
of spiro-OMeTAD. Using a mixed perovskite ((FAPbI3)o g5(MAPbBr3)g 15) in a standard
n-i-p cell, BTF1 and BTF2 reached a reasonable PCE: 9.97% and 10.45% respectively, nearly
similar to the undoped spiro-OMeTAD. The better-aligned HOMO and high hole mobility
made BTF3 and BTF4 to show increased performances: BTF3 gave a PCE of 16.34% and
BTF4 of 18.03% [75]. Those HTMs were used also in inverted, p-i-n, giving slightly lower
results for BTF3 and BTF4 (BTF4 had a PCE of 17.01%) and slightly higher for BTF1 and
BTEF2 (BTF2 had a PCE of 11.96%). It is worth noting that rarely an HTM works reasonably
well in both n-i-p and p-i-n cells. BTF4 retained >50% of the original PCE when stored in
air, at 50% humidity and at room temperature, for 30 days.

A further study on fluoranthene core was done, searching for structure-activity rela-
tionships [76]. Like the BTF series shown just above [75], the core bears TPA substituents,
two for the FBA series (FBA1, FBA2 and FBA3) and three for FTA series (FTA1 and FTA2).
Through every series, further modifications were made by insertion of a double bond spacer
(FBA2, FBA3 and FTA2) and the shift of methoxy group from the p- to the m- position
on the TPA (FBA3). Some of the new compounds were made through an easier multistep
synthesis that simplify the reaction requirements and cut down the costs. The introduction
of TPA instead of DPA as in the BTF series, helped to lower the HOMO, thus helping in
establishing 7— interactions and increasing the hole mobility. Besides, the introduction of
an ethylene as the spacer between the core and the TPA, made the molecule more coplanar,
but in the whole series the HOMO is around —5.00 eV, 0.20 eV lower than the BTF series.
The thermal stability was as high as 371 °C or above. The introduction of TPA and of the
ethylene spacer increased the hole mobility from 2.89 x 107> cm? V! s~ for BTF up to
2.12 x 107* em? V-1 s7! for FBA3. Notably remarkable results were obtained, since in
the planar PSC, with a MAPbIClj., perovskite, all compounds overcame at least 15% of
PCE. The best performing results were obtained by the FBA2 (18.70%) and FBA3 (19.27%)
and FTA2 (17.73%), with spiro-OMeTAD reaching 17.57%. The stability was evaluated
on non-encapsulated devices, at 25 °C and 30% relative humidity for 180 h, in which the
HTMs retained at least 80% of their pristine PCE.

Another scaffold was brought to the HTM attention, the cyclopenta[hi]aceantrylene.
This was similar to the fluoranthene core, used into the BTF, FBA and FTA series. It was
used by et al. to build the YN3 triarylamino-based HTM [77]. The HOMO was at —5.31 eV.
From DFT calculations, it appeared that the HOMO is well delocalized over the whole
molecule, while the LUMO is delocalized on the central core. This overlap of the two
frontier orbitals suggests that a good hole mobility could be obtained. Besides, the new
scaffold enhanced the coplanarity thus increasing the stacking and the hole mobility. As
matter of fact, the hole mobility was higher than spiro-OMeTAD. The PCE in mesoporous
cells (FTO/c-TiOp /m-TiO, / (FAPbI3)0 85(MAPbBr3) 15/ HTM/ Au) as 18.84% and in fully
inorganic CsPbl,Br attained 12.05%. The long-term stability at 25 °C and 40-45% relative
humidity was very good: After 300 h, 92% of the PCE was retained with the organo-
inorganic perovskite and 97% with the fully inorganic one.

The pyrene core was another large core with several fused rings. The PYR16 and
PYR 27 were built on the pyrene scaffold and studied for the use in PSC [78].

Thermal stability was excellent, i.e., over 450 °C. From DFT calculations, it was
seen that PYR16 is less planar than PYR27, losing the stacking ability but giving more
chances for the formations of a good amorphous and smoother film. The more symmetric
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structure gave higher dipole moment for PYR16 which can transfer charges more efficiently
than PYR27. Those materials were tested in PSC based on the triple cation perovskite
([CSO'05(FAO‘S?,MAOJ7)0.95]Pb(10,83BI'0'17)3). As a final result PYR16 achieved an efﬁciency
of 17.00% while PYR27 reached 14.67%. On a large area (1 cm?) the PYR16 gave a PCE
of 12.45%. After light soaking at 45-50 °C for 672 h, PYR16 and PYR 27 retained 85%
and 79% of their pristine PCE, respectively. By maintaining those HTMs based cell for
1080 h, at 80 °C, under dark, the PYR16 and PYR27 saved 98% and 91% of their initial
PCE, respectively.

Finally the quinacridone scaffold was used to prepare some D-A-D structure were
prepared, ACE-QA-ACE, TPA-QA-TPA and DPA-QA-DPA [79]. The HOMO levels, ob-
tained in films by Photoelectron Spectroscopy in Air (PESA) measurements, are spread on
a quite large range (—5.28 to —5.59 eV), due to substituents effects. The TPA and DPTA
show different contribution in raising the HOMO, with DPA being larger. The thermal
stability is excellent, and the TPA and DPA derivatives showed a Tg (105 and 74 °C, respec-
tively). Mesoporous PSCs made with MAPbI; and those HTMs gave interesting efficiencies:
18.2% for ACE-QA-ACE, 16.6% for TPA-QA-TPA and 15.5% for DPA-QA-DPA. While the
HOMO of ACE-QA-ACE was estimated to be well lower than MAPbI; perovskite, the
higher hole mobility of this HTM can explain the better PSC performance. The stability of
those cells was established to be around 78-80% of retained PCE for 30 days, at 25 °C and
75% relative humidity, for non-encapsulated devices.

Finally, a specific class of compounds which relay on a complex 3D structure, the he-
licenes, brought attention for its application in PSCs. Three azahelicene-based HTMs were
prepared by attaching bis(4-methoxyphenyl)-amino or bis(p-alkoxyphenyl)aminophenyl
groups to a helicene (2,12-dibromo-9-methyl-9Hnaphtho[2,1-c]carbazole) core [80]. Their
HOMOs were at —4.82, —4.95 and —4.94 eV for SY1, SY2 and SY3, respectively, while the
high LUMO levels should efficiently prevent the charge recombination. The rigid confor-
mation can enable different packing ability than that driven by m—m stacking interactions.
The morphology of the films formed by all of those HTMs is very homogeneous and good.

In particular, SY1 showed a long-range structure order in the film since by XRD
it appeared as largely crystalline. The SY1 and SY2 showed good hole mobilities than
spiro-OMeTAD, also related the mentioned high crystallinity of the film, while SY3 was
well lower. The presence of long alkyl chains in SY3 seemed to block a fast hole trans-
fer among HTM molecules. The helical structure introduces rigidity in the system, in-
creases the Tg and thus, the thermal stability. In the mesoporous PSCs (FTO/c-TiO,/mp-
TiO, /CH3NH;Pbl; /HTM/Ag), SY1 gave a PCE of 17.34% for the best cell (average 16.20%),
not far from spiro-OMeTAD (18.14%). For SY2 and SY3, the PCE was 16.10% (average
14.46%) and 3.03% (average 2.50%), the last one in agreement with its lower hole mobility.
The stability of cell built with SY1 was tested (not encapsulated devices, 80% humidity,
35 °C, 72h), showing a retention of 80% of the initial PCE, while spiro-OMeTAD retained
only 42%.

4.2. Two-Dimensional Star-Shaped Structures

Two-dimensional star-shaped structures (Table 2 and Scheme 2) can rely on some
central scaffold which has three or more “arms” attached to it and, in principle resembling
a dendrimer. This particular shape along with the high number of aromatic rings involved
in the structure, helps these kinds of molecules to show stacking of the aromatic rings. This
helps to obtain ordered structure also in the solid state. When a film is deposited onto a
surface, and in particular onto the perovskite surface, it can easily stack and obtain two
main possible arrangements: (1) edge-on, in which the molecular plane has a perpendicular
arrangement to the surface; and (2) face-on, in which the molecular plane is lying flat onto
the surface. This last arrangement is particularly effective in helping the hole extraction
and mobility into the PSC device, since the holes move easily and fast through the stacked
molecular planes, in the vertical direction to the perovskite surface, which is also the
preferred direction to obtain an efficient device.
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Table 1. Selected 1D linear structure dopant-free HTMs, based on performances exceeding 15% (see legend for details).

Cell Standard PCE V. A FF HOMO B fem?  Conductivit .
HIM PSK - PCE(W) s o e e e vaem Cleemd)Y Swbilityf () Reference
TTF-1 MAPbI, M 11.03 6.180/11.4 860 199 644 -505 3.7 0.1 - 550h (40% RH) [49]
DTCI;Iée’TT' MAPbI, Cl-, M 14.9 3.5/14.0 0.97 207 74 55 177 0.26 40 x 104 - [50]
M7-Br (FAPbI3)0.55(MABrs)o15 M 155 17.9b 1045 2194 676 —528 17 304x10% 158 x 104 76 /Oi%) %3’0 o [52]
M7-TFSI (FAPbI3)0.85(MABrs)o15 M 17.7 17.9b 1093 2284 706 —528 17 324x104 201x10+ % /Oiziﬁ) %30 & [52]
D?;g;s- MAPbI,Cl-1, P 16.2 5.4b 1050 212 728 —509 183 1.0 x 10~ - - [54]
18.26 (best) 16.91 17.85 (best) ~ s ) 80%, 400 h, NE
BDT-PTZ MAPbI, I P 1682 vy 102 243 78 52 262 98x10 (60°% R 1) [55]
) 19.16 (best) 18.10 17.85 ¢ (best) B » ) 80%, 400 h, NE
BDT-POZ MAPbI, I R 1683 vy 104 256 BL6 53 257 21x10 (607 R 1) [55]
) 15.6 (best) 14.0 . - . ) 91%, 60 d, NE
AZO-II Cso0sMA;_yFAyPbI;_,Cly p A 19.3 095 216 71 494 22 2.0x10 it ain [56]
C
TPAC2M MAPbI; p-in p 1577 (best) 15.20 12.60% (best) g9 58 71 498 325 1.0 x10° - ; [57]
(average) 11.44 (average)
TPAC3M MAPbI; p-in p 17’5&2‘*:&2:)6'58 12,60 1000 2279 78  —496 325 11x 107 - - [57]
Cl;':;z' MAPbI, M 154 10.4° 1020 242 67 —542 203 ; 84 x 104 ; 58]
TPA-PB- 15.46 (rig) 15.29 14.04 < (rig) ~ s ) 80%, 720 h, NE
o MAPBI, I oE) 1055 (a5 103 2123 7056 —51 267 312x10 (oL R 1) [59]
DFBT(DTS- . - » ) 80%, 500 h, NE
B Th, MAPbI, p 17.3 17.4 1100 207 76 —527 141 178x10 (0% light, 1) [60]
p- . -
DTS(FBTThy), MAPbI, p 18"2;56‘3;’;) S'% ; 11 206 794 -515 na 107 x 104 ; 7&?;/1%0}11“;5‘;3E [62]
/PCDTBT g o K,
CcMO MAPbI, p 15.92 1670 930 2519 679 —478 296 14x10°5 - ; [63]
PhCz- 92%, 1200h, NE
Csp.05(MA.17FA0.83)0.95Pb(I0.83Bro.17)3 M 16.04 19.20° 1.08 21.52 69 —5.06 3.12 1.13 x 1074 - (ambient air, dark, [64]
40MeTPA 80°C)
18.18 (best) 16.73 o B » 85%, 216h, NE
Cz-SY1 MAPbI, I o) 12.33¢16.92 109 2157 767 —529 222 819 x 10 - (40% REL b, 20 [65]
18.96 (best) 17.67 e - . ) 85%, 216h, NE
Cz-SY2 MAPbI, I o) 12.33<16.92 1102 2176 791 —526 227 941 x 10 (@0 B licht, ) [65]
] 15.86 (best) 14.39 o ~ » ) 88%, 216h, NE
Cz-SY3 MAPbI; I Al 12.33¢ 16.92 106 2044 732 —528 239 679 x10 o R Tk, ) [65]
] 18.44 (best) 17.42 o - . ) 84%, 216 h, NE
Cz-SY4 MAPbI, I phids 12.33< 16.92 1102 2171 771 —521 245 181 x 10 (@0 light, 18 [65]
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Table 1. Cont.

Standard PCE

VOC

Jsc (mA

FF

HOMO B,

HM f (cm?

Conductivity

o g g
HTM PSK a PCE (%) (%) mV) em-2) (%) V) V) V-1g-1) (S em-1) Stability & (h) Reference
17.7 (best) 16.9 . L 72%, 288 h NE
C202 (FAPbI3)0.55(MAPbBrs)g.15 M SN 19.8 1.05 23 731 523 274 15x10 - 40% REL 22°C [66]
g
DBC-1 CH3NH;PbI;_,Cly P 18.81 18.18" 1.05 2214 8091 -526 277 7.09x 1074 - - [68]
DBC-2 CH;NH;Pbl;_, Cly P 20.02 18.18"P 1.11 2269 7878 —522 273 985 x 1074 - 83%, 1 month, NE [68]
(N2, 1t)
DBC-3 CH,3NH;Pbl;_, Cly P 16.77 1818 1.06 2144 7379 514 276 223 x 1074 - - [68]
Br-4C MAPbI; p-i-n P 15.6 12.5¢ 1000 19.5 79  —522 297 - - [67]
A 80%, 50 d, NE
i . i C _ —5 _ ’ 7
3-F-br-4C MAPbI; p-i-n P 16.9 12,5 1040 19.8 80 537 299 4.0 x 10 (50% RH. 1) [67]
mDPA- b 4 81%, 33 d, NE.
DBTP MAPbI, P 18.09 6.85b/17.82 1120 21.13 76  —531 287 634x10 - (ambient ;nr, light, [69]
rt
%LPTA; MAPbI; P 15.63 685°/17.82 1090 201 72 52 273 352x 104 - - [69]
ICTH1 MAPbI; M 17.91 14.74° 1010 2456 722 -53 212 32x10°% - 74%, 0d, NE, [70]
(ambient air, rt)
ICTH2 MAPbI; M 1875 14.74° 1030 2478 735 —541 223 31 x 10 - 86%, 40 d, NE [70]
(ambient air, rt)
DTPCS- 18.37 (best) 17.74 . B i ) )
ThTPA MAO'7FAO'3PbI2'35Br0'15 P (average) 19.85 1.094 22.66 74.1 4.82 221 2.14 x 10 [71]
DTPC13- 20.38 (best) 19.30 b B s
ThTPA MA7FA( 3Pbl; g5Brg 15 P (average) 19.85 1.135 22.82 78.7 482 221 3.48 x 10 - - [71]
y 21.04 (best) 20.36 b B » ] 85%, 60 d, NE
DTP-C6Th MAFAq3Pbl; P (average) 20.61 1157 2276 799 —487 222 418 x 10 (35% RHL 1) [34]
MPA-BTI Cs-FAMA I 17.2 19.85P 1.09 2158 731 —528 212 399x1075 690 x 106 - [35]
MPA-BTTI .
(same as Cs-FAMA [ 2117 (best) 207 19.85° 112 2323 814 —524 192 202x10%  135x10°° 212//°§§’01.h'hlj’ft [35]
BTTI-C12) (average) (24% RH, light, rt)
BTTI-Cé Cs-FAMA P 19'6(95132?22:)9'06 19.90® 1.1 24 746 —525 192 219x107*  3.02 x 1075 8?2/23/1?3;}13]5 [72]
BTTI-C8 Cs-FAMA p 1889 (best)18.04 19.90 109 241 7136 —525 192 208x10* 294 x 105 ; [72]
(average)
BTTI-C112
(same as: Cs-FAMA P 17'4(9af/iizt)el)6'83 19.90 1.03 2426 6991 —524 192 202x10% 279 x10°° - [72]
MPA-BTTI) &
83 x 1075
15.59 (best) 14.88 . not i 85.2%, 400 h, NE.
PCA-1 MAPbI, P (average) 165 1024 2081 732 -53% 266 MO . (ambient air, 1t (73]
8.31 x 1072

annealed
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Table 1. Cont.

Cell o Standard PCE Voc Jsc (mA FF HOMO Bg HM f (cm? Conductivity aeg
HTM PSK a PCE (%) (%) mV) em-2) (%) V) V) V-1g-1) (S em-1) Stability & (h) Reference
8.3 x 1075
18.17 (best) 17.23 . not ) 85%, 400 h, NE
PCA-1 MAPbI, M (average) 18.30 1062 23 767 -534 266 O (ambient air, rt) (73]
8.31 x 1072
annealed
TPA-ANT- 175 (best) 160 16.8° (best) 13.8 - » 84%, 50 h, NE
ey MAPbI, M A vy 1080 2107 796 —541 248 26 x 10 - (a8 R 32.°0) [74]
b
BTF3 (FAPbI3)o.55(MAPbBr3)g 15 p 1634 9'3136 4/21f'8 1080 204 743 519 17 636 x 105 - - [75]
933°/18.8
BTF4 (FAPbI3)o.55(MAPbBr3)g 15 p 18.03 2 1060 225 756 502 159 117 x 104 - ; [75]
FBA1 MAPbILCly. p 16'8(213’;22:)6'24 17.57b 105 2157 742 -5 248 891 x 10~ - 8?330/181%&1” i\J)E [76]
FBA2 MAPbLCl;_, p 18'7&‘(]]3;2261)7'97 17.57° 106 2232 79 —498 224 136 x 10~ ; 8?36’0/181251" ?J)E [76]
FBA3 MAPbLCl;_, p 19‘2(7;1 f}beerztg)el)&% 17.57° 109 2212 799 —507 229 212 x 104 ; 8?36’0/18I2§' };I)E [76]
FTA1 MAPbLCl;_, p 15’1(‘1 f}l’eersagel)‘L'Sz 17.57° 101 2076 723 -5 249 483 x 105 ; 8?36’0/181251" ?J)E [76]
17.73 (best) 17.12 . - » ) 80% 180 h, NE
FTA2 MAPbLCl;_, p Pl 17.57 103 2204 781 —499 221 107 x 10 (0% R 1t [76]
YN3 (FAPbI3)o 55(MAPbBr3) 15 M 18.84 18.41° 112 2243 75 531 154 225x10% 198 x 104 9@@;/3(1’3;';;]5 [77]
98%, 1080 h, NE
PYR16 [Csp.05(FA983MA017)0.95]Pb(Ip83Bro17)3 M 17 19.74° 1.11 21.56 71 —5.14 236 1.19 x 1074 - (ambient air, dark, [78]
80°C)
ACE-QA- . - » 81%, 30 d, NE
o MAPbI, M 182 15.2 106 2241 77 —559 212 23x10 ; (750 BEL durk 50 [79]
TPA-QA- . - » ) 78%,30 d, NE
o MAPbI; M 16.6 15.2 099 224 751 —541 198 1.6 10 (7300 L dark 50 [79]
DI]’;‘I;EA' MAPbI; M 155 1521 095 2238 732 —528 187 12x 104 - (7573 /‘l’ééogéﬁ]it) [79]
17.34 (best) 16.20 18.14° (best) . ) 504 h, NE (30%
SY1 MAPbI; M (o) 1657 (voragy 1010 2368 721 0941402874 25510 R 35 °C) [80]
16.10 (best) 14.46 18.14 ° (best) 5 504 h, not enc.
Sy2 MAPbI, M o) 1657 vy 1000 2187 732 0SHES7IEDL 346 10 (30% K135 00) [80]

M, mesoporous TiO,; P, planar compact TiO,; b reference standard spiro-OMeTAD (bold if doped); © reference standard PEDOT:PSS; d reference standard PTAA (bold if doped); © reference standard NiOy, f HM
= hole mobility; & stability: (1) % = PCE retained percentage; (2) time—h = hours, d = days, m = months; (3) NE = non-encapsulated devices; (4) RH = relative humidity; (5) rt = room temperature. PSK, perovskite;
FF, fill factor; V., open circuit voltage; Js, short-circuit current density.
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The Fused-F HTM [81] was the first example of a star-shaped molecule used for
PSCs, showing a tripodal branching. It was based on the quinolizino-acridine nucleus
forming a D-m—A system. Every branching arm is composed by one dithienosililole moiety,
one benzothiadiazole and three thiophenes capped with an alkyl chain. The star-shaped
molecules often stack in a face-on assembly. However, nothing was said for this molecule
for which the organization in the film was not studied.

It showed good hole mobility (6 x 107> cm? V! s71), similar to spiro-OMeTAD,
very good thermal stability and film forming ability. The final efficiency of this “historical”
in PSC with MAPbI3 perovskite was 12.8%. An easy way to make star-shaped molecules
is to exploit the triphenylamine scaffold which has a Czh symmetry. This kind on central
core was largely exploited, giving very interesting results. In the series of the triarylamine
small molecules, the stilbene linker was used to prepare several triarylamine derivatives.
In a first case, a trisubstituted tris(4-bromophenyl)amine central core was reacted with the
4-(N,N-dibutylamino)styrene by Heck reaction, to give ST1. This is a D-n—D structure
with the molecule showing trigonal Czh symmetry. ST1 showed good thermal stability, up
to 400 °C [82]. The material was cost-effective since it needs only one synthetic step and
the synthesis is scalable. Its HOMO energy level is better at matching the perovskite level,
while its LUMO energy level, which is higher than the corresponding spiro-OMeTAD level,
is better able to block the recombination, by avoiding electron transport from perovskite to
the metal counter electrode. The ST1 hole mobility is about twice that of spiro-OMeTAD,
producing less hysteresis between forward and backward scans in the current vs. voltage
J-V measurements. A remarkable 15.4% PCE was obtained in the undoped state for ST1.
A stability test (not encapsulated devices, 30% humidity for 2—4 weeks) was run, and the
ST1 showed a decrease from 15.4% to 13.2% (86% PCE retention), while spiro-OMeTAD
decreased from 16.3% to 10.3%, showing a better performance over a long time [82].

Stilbene-based triarylamine dimeric structures, Z33 and Z34, and an analogous com-
pound containing a carbazole moiety, Z35, were prepared [83]. In principle, their struc-
tures are strictly related to the ST1, as shown above. They were easily assembled by the
Wittig reaction between a triarylamine bearing two formyl groups and a diarylaminoben-
zylphosphonium salt. The yield was good and the products were reasonably cheap. Their
hole mobilities were higher than spiro-OMeTAD and, in mesoscopic PSCs, gave 15.3%
and 15.9% PCE for Z33 and Z34 in their undoped state, reasonably close to the doped
spiro-OMeTAD (16.6%), while Z35 achieved a well lower PCE. Stability tests (not encapsu-
lated devices, 30% humidity, for over 1000 h) showed a slight increase in PCE for Z33 and
734 (16.1%), while spiro-OMeTAD decreased substantially. Another triarylamine related
HTM, Z1011, already based on stilbene linker, was synthesized by the same researchers.
This molecule can be considered about a “dimeric” version of ST1 obtained by connection
with a triarylamino core through stilbene linkers. This HTM showed a PCE of 16.3% in its
undoped state [84]. This was the result of a hole mobility more than four times higher than
spiro-OMeTAD. During stability tests (not encapsulated devices, dry air, up to 1008 h) the
PCE increased slightly for Z1011 while decreased for spiro-OMeTAD.

Strongly related to Z1011, the structures 21012 and Z1013, contain a TPA or tris
(4-styryl)phenyl)amine central core, which was reacted by Buchwald-Hartwig coupling
with the bis(4-(2-(4-N,N-dibutylaminophenyl)ethenyl)phenyl)amine [85]. The hole mobili-
ties were similar (21012) or higher (Z1013) than spiro-OMeTAD, while the HOMO energies
matched the perovskite valence band level. The Z1013 HTM reached a PCE of 15.4%, while
71012 reached only 12.4%. Stability tests (not encapsulated devices, 30% humidity, 80 °C,
in the dark) established that while Z1012 and spiro-OMeTAD decreased their PCE of 21.5%
and 39.9%, the devices prepared from Z1013 increased slightly their performances.

Another TPA structure was proposed by using a dimeric stilbene linker further extend-
ing the conjugation with respect to ST-1. While not reaching the PCE cutoff limit, the TP-1
HTM is reported for comparison reasons. The TP-1 showed a slightly lower hole mobility
than spiro-OMeTAD, but however reached a PCE of 12.63% in its pristine state, quite close
to the 14.93% shown by doped spiro-OMeTAD [86]. The use of dopants did not improve
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the performances of TP-1. The stability tests (under 30% humidity, 5 weeks) showed a
PCE decrease of 30% for TP-1 and about 48% for spiro-OMeTAD. This case was reported
to show that sometimes the continuous elongation of the conjugation in those molecules
does not provide the expected effects in photovoltaic efficiency. As a final possible hint
on this series of strictly related molecules, it seems that the best result was obtained by
trying to “dimerize” the ST1 structure by using a TPA core and connecting to other TPA by
and ethylene space in a “stilbene-like” way. This could be extended to an oligomeric or
polymeric structure to search for PCE improvement.

Further triarylamino-based HTMs, TPD-4Me, TPD-4MeOTPA and TPD-4EtCz, were
prepared with a central biphenyl linker and stilbene “arms”. Different groups were used
of the terminal TPA groups: methyl, methoxy and carbazole. Working on a PSC hav-
ing an architecture based on FTO/c-TiO,/m-TiO, /perovskite/HTM/Au with the per-
ovskite [(FAI)g g5(Pbly).85(MABr)o 15-(PbBrs)o 15], the three HTMs performed well, with
PCE 11.73% for TPD-4EtCz, 14.33% for TPD-4Me and 15.28% for TPD-4MeOTPA, which
followed exactly the order for hole mobility [87]. The stability was evaluated at room
temperature in ambient air for over 600 h, demonstrated a PCE retention of about 92% for
all three HTMs, while spiro-OMeTAD retained about 70%.

Tripodal star-shaped Donor—-n—Acceptor (D-n—A) structures were prepared, based
on a flexible triphenylamine (TPA-CN) or the rigid quinolizino-acridine Donor cores
(FA-CN), to which, the peripheral groups were assembled by the Suzuki reaction [88]. The
peripheral pods are based on a terthiophene, capped with a dicyanovinyl moiety which
was inserted at the and by the Vilsmeier-Haack reaction. For both molecules, the hole
mobility was found about five times that of spiro-OMeTAD. One should note that the
FA-CN is an evolution of the Fused F, cited above [81]. It is important to note that arms of
FA-CN are shorter than those of Fused F, and also easier to prepare.

The FA-CN showed an impressive PCE of 18.9% (average PCE: 18.06%), while TPA-CN
exhibited a PCE of 17.5% (average PCE: 17.2%). This showed the superior performances
for star-shaped molecules having a central planar and rigid core, similar to the truxenes
(see below). The stability of devices was tested (unsealed devices under argon, constant
illumination: 100 mW cm~2) by keeping the maximum power point tracking. The perfor-
mances decreased for all the compounds, at the beginning, while for spiro-OMeTAD, they
decreased dramatically during the first 100 h. Probable migration of Au metal from the
electrode into the perovskite layer was the reason of this degradation of the performances.
The FA-CN was stable for 500 h, while both TPA-CN and spiro-OMeTAD decreased con-
tinuously for 1000 h. At 1300 h, FA-CN retained 65% of the initial PCE, while TPA-CN
retained 35% and spiro-OMeTAD only 15%.

Some truxene-based compounds appeared on the scene as a new family of HTMs.
Truxenes are well-known to be a discotic mesogen, showing a columnar packing face-on
arrangement in solids [89].

The specific Czh symmetry of truxene molecules helps them to pack in a discotic
way in the so-called face-on arrangement, so that the molecules pack in pillars, with the
truxene aromatic rings parallel to the deposition surface. This greatly helps the vertical
conductivity needed to give high efficiency in PSC cells, because this shortens substan-
tially the hole diffusion pathway towards the metal electrode. The first truxene used in
PSCs, Trux-OMeTAD, was prepared as a mimic of spiro-OMeTAD built on a truxene
scaffold [36]. The molecule was synthesized in four steps and easily purified. The central
core needed three steps from indanone to obtain a reactive tribromotruxene, which was
reacted by the Buchwald-Hartwig reaction with the bis(4-methoxyphenyl)amine. The
Lewis basic heteroatoms (oxygen) can act as passivators for perovskite surface, by coor-
dinating lead ion [32,90-92]. The six alkyl chains of this material are directed from the
surface towards the air giving a high hydrophobicity to this material. This feature helped
to protect the perovskite (water contact angle of 90.4°). Trux-OMeTAD also showed a very
high hole mobility (2.3 x 1073 em? V=1 s71, which increased to 3.6 x 1073 cm? V-1 57!
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after annealing at 150 °C). The final PCE boosted to the impressive value of 18.6%, showing
Trux-OMeTAD as a reliable material to substitute the spiro-OMeTAD.

A further evolution, TBDI, was prepared as an aza-truxene structure [93]. The aza-
truxene core was a simple and easily accessible truxene, built as a result of a one-step
reaction starting from a cheap material, such as 2-indolinone, which was dehydrated
with POCI;3. The hole mobility of TBDI was two orders of magnitude higher than that
of spiro-OMeTAD and in fact its hole extraction ability was higher than the standard
material, as demonstrated by fluorescence quenching. When used in its pristine form,
without any additives/dopants, TBDI showed a PCE of 7.3%, which raised up to 14.85%
when a MO3 was deposited on the ITO. The MOj thin layer did not act as a barrier as it
could expect from the energy alignment, but it worked as a thin dielectric layer and helped
to better tune the energy levels; moreover, the hole extraction ability was improved.

A further series of D-m—-A star-shaped molecules, K321, K353 and K355 were prepared.
The core is of the aza-truxene type [8]. The aza-truxene core was prepared as shown above
for TBDI. The connection with its pendant arms was performed by the Suzuki reaction.
The arms contain 3-hexylthiophene (K355), 3,3"-dihexyl-2,2":5,2"-terthiophene (K321)
and 4,4-dihexyl-4H-cyclopenta[2,1-b:3,4-b]dithiophene (K353), capped with dicyanovinyl
groups. The arms used in K321 are the same used in the FA-CN and TPA-CN molecules
shown just above [88]. The vertical hole mobility was shown to be very high for K321,
about one order of magnitude higher than for K353 and three orders of magnitude than
K355. By using Grazing-Incidence Wide-Angle X-Ray Scattering (GIWAXS) (Figure 6), it
was demonstrated the discotic columnar stacking (due to 7—t interactions) of the K321
molecules in a face-on orientation on the perovskite surface, which explain the high vertical
hole mobility. The molecular structure heavily affects the aggregation and orientation of
molecules on the surface. As a final result, the K321 gained an excellent PCE of 19.03%,
while for K353 and K355, the PCE was 14.87% and 8.88%, respectively [8].
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Figure 6. (a) GIWAXS pattern of the KR321 film coated from tetrachloroethane on a silica wafer
(schematic illustration of the molecular surface arrangement), and (b) azimuthal integration of the
p-stacking and intercolumnar reflections (the star indicates scattering at the beam stop). Reproduced
from Reference [8], with permission from The Royal Society of Chemistry.

Several other truxene HTMs were prepared by modulating alkyl chains or the
substituents, M115, M116, M117 and M118 [94]. The difference between M115 and
M116 was simply due to the change from propyl to the hexyl chains. Differently to
the typical bis(4-methoxyphenyl)amine substituent, in these HTMs the substituents are
N-(4-methoxyphenyl) substituted amines, based on the triphenylamine (MDPA, M115 and
M116), the 9-phenyl-9H-carbazol-3-amine (MPCA, M117) and the 4-(9H-carbazol-9-yl)aniline
(CPMA, M118). The HOMO levels were all similar, around —5.05-—5.08 eV, apart from
M118 which showed a deeper HOMO (—5.27 eV), due to the specific characteristics of the
CPMA substituent. The M118 energy level closer matches the valence band for the MAPbI;
perovskite. Besides, this substitution makes M118 to be more transparent and to be less
competitive with perovskite for light absorption. All those materials showed a high hole
mobility, around 50-fold than spiro-OMeTAD. The HOMO levels are delocalized over the
triphenylamine and truxene core, while the LUMO levels are delocalized on the truxene
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core, apart from M117, in which it is delocalized on the truxene core end the carbazole
nucleus. This should be beneficial for the hole mobility, since this HOMO-LUMO overlap
reduces the reorganization energy and increases the intramolecular electrical coupling
strength. The efficiency was found to be 13.2% for M115, 15.5% for M116, 15.7% for M117
and 17.1% for M118. Most of them were superior to the 14.4% PCE shown by the standard
PEDOT:PSS. The PCE was following the hole-mobility order, apart for the switch between
M117 and M118. In this series one should expect the highest PCE performance for M117,
but M118 was better. The reasons were found into a smoother and better film for M118.

Based on the already prepared BTT-3 compound [95] which reached the excellent
efficiency (18.2%) in its doped state, the two new HTMs, YKP03 and YKP06 were prepared,
looking for a C-H activation protocol [96]. The scaffold is the benzodithiophene (BTT)
and the differences were simply based on the absence of a spacer (BTT-3), the thiophene
(YKPO06) or the EDOT (YKP03) spacer between the core and the TPA moiety. This clever
approach made it possible to achieve reasonable yields while saving time, synthetic steps
and money. The authors made an effort to make the C-H activation useful for practical
applications and their work was rewarded by finding that YKP03 was working better in
the dopant-free state, giving a 16.15% PCE in a mesoporous MAPbI; based PSC, when
spiro-OMeTAD reached 17.59%. The other compound showed a lower PCE, around 13%
in its doped state. These efficiency results were mainly due to the higher Donor ability of
the EDOT group which act as a spacer in the molecule and gave a two-fold increase of the
hole mobility with respect to the BTT-3 which does not have any spacer.

Another core that was used to build star-shaped molecules was the simple benzene,
whose substitution pattern can give several opportunities. As a first example, two mim-
icking spiro-OMeTAD, i.e., TPP-OMeTAD and TPP-SMeTAD, were synthesized, still
containing triarylamine moieties as substituents [97]. The central core, 1,4-dimethyl-2,3,5,6-
tetraphenylbenzene was prepared in one step by a Diels—Alder reaction. The only difference
between the two HTMs is the substitution of phenyl rings of the triphenylamines with
methoxy or methylthio groups. The TPP-OMeTAD and TPP-SMeTAD showed higher
thermal stability than spiro-OMeTAD and the TPP-SMeTAD HOMO was deeper than
TPP-OMeTAD, resulting better aligned with the perovskite level. The two materials
showed very good efficiencies (14.6% for TPP-OMeTAD and 16.6% for TPP-SMeTAD).
The highest PCE of TPP-SMeTAD seems to be related to the passivation of trap states at
the grain boundaries of perovskite nanocrystals by Pb-sulfur interaction [97]. Since the
HTM was deposited on ITO and the perovskite was prepared on this HTM layer, it seems
that a small quantity of HTM can be solubilized, interacting with the formation of the
perovskite, which, for TPP-SMeTAD, formed larger crystals and a lower number of grain
boundaries and defects.

Other two HTMs having Czh symmetry (TCP-OH and TCP-OCg) were prepared
by attaching three N-phenylcarbazole residues to a phenol central core in its 2, 4,
and 6 positions [98]. Despite their apparently very low hole mobility, in the range
of 107 cm? V! 571, they showed respectable PCE (16.97% and 15.28%). These HTMs
showed excellent thermal stability a high hydrophobic character, and they can produce
good films that protect the perovskite layer. The very deep HOMO (—5.47 eV for TCP-OH
and —5.56 eV for TCP-OCg) prevented their use for the common MAPbI3 perovskite, for
which the valence band is located at —5.40 eV. The authors chose a different perovskite,
(DMPYV: double-mixed perovskite, (FAI)g g1 (Pbly)o.85(MAPbBr3)0.15)), whose valence band
is located at —5.65 eV. Coupled with this perovskite, the LUMOs of these HTMs are so
high that these materials can also work well as electron-blocking materials. The apparent
mismatch between HTMs hole mobility and PCE was deeply discussed into this paper [98],
giving further information about the complex role that several parameters play into defin-
ing the final Power Conversion Efficiency. This system was also studied by theoretical
calculations, confirming the good properties shown by the experimental values [99].

The XSIn847 and XSIn1453 are two HTMs based on the benzene scaffold with triary-
lamine substituent. The core of those HTMs is a diphenylethene molecule bearing two
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methoxy groups. This was assembled by a Wittig reaction. Alternatively, XSIn847 could be
considered as an evolution of TPP-OMeTAD, where the benzene substitution pattern was
modified from a TPA to a 4-methoxy phenylethene. The XSIn847 HTM is an asymmetric
molecule while XSIn1453 is its symmetric partner. They were used on MAPbI; perovskite,
showing their HOMOs at —5.26 eV and 5.24 eV, respectively. Their UV-Vis absorption,
showing an onset well below 450 nm, made them transparent. The XSIn847 showed a
higher mobility than XSIn1453 (7.75 x 1072, and 3.09 x 107> cm? V~! s71). Their use
in inverse PSC (glass/ITO/HTL/MAPDbI; /PCBM/Ag) gave PCE 15.02% and 12.65% for
XSin847 and XSin1453 in their pristine state, respectively. In the doped state, the PCE of
XSin847 was 17.16% [100].

Similar to the previous star-shaped molecules, the X-shaped series D31, D32 and D33
was easily prepared from cheap materials [101]. The phenyl central core bears two TPA and
two N-phenylimino groups. The molecules differ for the substituents on the phenylimino
residue. The HOMO levels are close to each other, while the thermal stability and film
forming ability were good (386—404 °C), with D31 being the worse since it is less soluble.
The CN electron withdrawing substituent showed to reduce consistently the charge on
the TPA residue, being the only site on which the negative charge is concentrated, while
for D31 and D32 the negative charge is found on the nitrogen of TPA groups. As a matter
of fact, D33 gave the best efficiency results with a PCE of 17.85%, also overcoming the
methoxy group substituent of D32 (15.83%), with D31 performing only 13.47%.

Always looking at a central benzene-like ring as a core, a variant example was given
by three small-molecules HTMs, D104, D105 and D106 [102]. They were conceived by
attaching TPA and/or methoxyphenyl groups on a central pyridine core. They differ for
the number of TPA residues inserted into the central pyridine core, one for D104, two for
D105 and three for D106, while the residual positions are occupied by methoxyphenyl
groups. The synthesis was straightforward and affordable. The increase in TPA groups
raised the HOMO, from —5.36 eV for D104 to —5.30 and —5.29 eV for D105 and D106,
respectively, while the hole mobility reached the best value for D104. The thermal stability
was around 400 °C or above. The pyridine ring, as for the commonly used additive
t-BP, acted as a passivating agent for interfacial traps, while also the oxygens of methoxy
groups worked in similar way. As far as the arrangement in single crystals is concerned,
D104 and D105 adopted a columnar arrangement referred as “slipped” stacking in which
molecules ad arranged in a face-on way in the single column and a tight adjacent columnar
edge-on packing. D106 adopted a brick layer stacking, in which the molecular distances
are increased. It is known that this arrangement can boost the charge transport in two
dimensions and increase the efficiency [103]. The final PSCs gave efficiencies as high as
16.28% for D104, 17.40% for D105 and 18.24% for D106, showing an improvement when
the TPA residues were increased. Stability tests were performed at 20 °C, at 30% of relative
humidity, in the dark. The D106 maintained 75% of the initial PCE after 275 h, while the
degradation for the other materials was higher.

A final possibility to exploit the benzene scaffold was to attach to substitute it completely,
giving a propeller-like compound. A hexaphenylbenzene and a hexathienylbenzene cores
were capped by Suzuki reaction, with the pinacol ester of the bis(4-methoxyphenyl)aniline,
giving the compounds HPB-OMe, and HTB-OMe, respectively [104]. The synthesis is
relatively short and proceeds with high yield. The HTB-OMe showed higher thermal
stability and a better-aligned HOMO, lower than that of HPB-OMe. Moreover, the hole
mobility of HTB-OMe was more than five times that of HPB-OMe, which accounted for a
better photovoltaic efficiency: 15.92% vs. 10.95% (best cells: 17.29% vs. 12.94%).

The smallest scaffold to make a 2D star-shaped molecule while maintaining the
planarity is ethylene. A few examples can be found, which gave even a huge increase of
PCE, up to 20%.

The FT-OMeTPA and FB-OMeTPA were prepared in a two-step synthetic pathway
which afforded a reasonably cheap procedure [105]. In principle, it is a star-shaped
(Y-shaped) molecule. While the solubility in organic solvents was higher for FB-OMe-
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TPA, the HOMO and LUMO levels of those two HTMs were nearly similar, making them
well aligned with perovskite and prone to avoid charge recombination from the conduction
band of perovskite. Both HTMs showed excellent stability, over 400 °C and a Tg of 133 °C
and 120 °C for FI-OMeTPA and FB-OMeTPA, respectively. The lower steric hindrance of
thiophene caused the FT-OMeTPA to be a bit more planar and to show better delocaliza-
tion than FB-OMeTPA. Moreover, also connected with these observations, the hole mobility
was 4 to 5 times higher for FI-OMeTPA over FB-OMeTPA, and when those HTMs were
used in inverted PSC, the FT-OMeTPA gave an efficiency of 16.65%, while FB-OMeTPA
reached only 13.66%. No information on the long-term stability was reported.

The dibenzofulvene-based HTMs YC-1, YC-2 and YC3, were synthesized [106]. They
are quite similar to the above cited FTI-OMeTPA and FB-OMeTPA and differ from them
due to the presence of DPA instead TPA as substituents on the benzene ring of the central
core. The thermal stability was excellent for YC-1 and YC-2 but around 200 °C for YC-3.
Interestingly, the YC-1 which does not have methoxy groups on the triphenylamine units
shows the highest HOMO, whilst the YC-2 and YC-3 show lowest and close HOMOs. This
is quite unexpected, and the authors attributed this behavior to the extended conjugation
through the alkyliden-9H-fluorene core. In the inverted PSC based on MAPbI3;, YC-1
reached a PCE of 16.53% and when a NiOy layer was prepared just below the HTM layer,
the PCE raised to an excellent 19.57% PCE, while YC-2 and YC-3 performed bad, since
their too low HOMOs were not correctly aligned with the perovskite. While NiOx helped
YC-1 to perfume better, YC-1 helped the NiOy to overcome its interfacial defects, which
often a detrimental on its performances. Both kind of PSC, with or without NiOx, retained
more than 92% of their PCE after 100 h at 25 °C and 30% relative humidity.

Lai et al. obtained the new DMZ HTM by coupling the dimethoxytriphenylamine
onto the bifluorenylidene scaffold (tetrabenzo[5,5]fulvalene), which was obtained from the
dimerization of dibromofluorenone [107]. This is a particular case in which the ethylene
is the central scaffold or at least at center of a more complex scaffold. The authors were
inspired by the concept of FCTC (Flexible Core with Tunable Conformation). When the core
is flexible, the HTMs can modify its configuration based on the interactions between side
arms and perovskite or interactions between side arms themselves. By obtaining a material
with sufficiently planar structure to get an easy 7— stacking (to show high hole mobility)
and modulated rigidity (to extract holes efficiently) one can achieve a reasonable balance of
mobility and charge recombination. The DMZ helped to grow perovskite with larger grains
than PEDOT:PSS. The optimization of the HTM concentration in the deposition solution
(2 mg/mL) and of the deposited film thickness (around 13 nm), brought to an efficiency of
17.62% (18.61% for the best device). The stability, measured on non-encapsulated devices
at 25 °C and 45-50% relative humidity, showed a retention of 90% of the pristine PCE over
556 h, while PEDOT:PSS was fully degraded in only 77 h.

How much is important a single bond? How is it critical to determine success or failure
for an HTM? This has been demonstrated in a paper from Chen et al., on tetrathienylethy-
lene (TTE) (Figure 7) [108]. Two HTMs were prepared, TTE1 and TTE-2. While TTE-1 has
a simple TTE core, in TTE-2 two thienyl groups were further connected by a single bond.
As a result, the conformations of the two molecules are largely different from each other.
TTE-1, which contains the simple TTE core shows an orthogonal conformation in which
the two orthogonal planes are defined by the alkene and two thienyl group in trans (or
E) relationship to each other. This is roughly mimicking the orthogonal conformation of
spiro-bifluorene. TTE-2, on the contrary possess a semi-locked conformation, in which
two cis (Z) thienyl groups and the double bond are lying in the same plane (since they
constitute an aromatic triannular heterocycle).
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Planar-Orthogonal
Hybridization

Figure 7. Orthogonal and planar-orthogonal arrangements for TTE-2. Reprinted with permission
from Reference [108]. Copyright 2019, John Wiley and Sons.

The other two thienyl groups are rotated in an orthogonal way with respect to the
large heterocycle, to attain a conformation that was defined as “planar—orthogonal”. It was
also found that the fully locked planar conformation gives high degree of stacking and low
solubility for its derived HTMs and was no more exploited. The semi-locked conformation
gave a good balance among the mobility and morphology modulations, also lowering the
HOMO with respect to the unlocked conformation (—5.01 eV for TTE-1 and -5.30 eV for
TTE-2). Due to this, it also reduced the UV absorption limit from 600 nm to less than 500
nm, since it breaks the conjugation with the other thiophenes. The higher planarity gave
to TTE-2 a hole mobility higher about one order of magnitude than that of TTE-1. Both
TTE-1 and TTE-2 showed higher Tg than spiro-OMeTAD (139 °C and 158 °C vs. 126 °C,
respectively). This should help to obtain homogeneous films which can be resistant when
in operative conditions at high temperature. The photovoltaic efficiencies of the two HTMs
were assessed in planar PSC, based on the (FAPbI3)(95(MAPbBr3)g g5 perovskite (VB at
—5.5 eV). A simple bond changed the photovoltaic efficiency from 13.68% for TTE-1, to
20.04% for TTE-2!

A star-shaped molecule, DTPC8-ThDTPA was built around a dithieno-[3,2-b:2’,3'-d]
pyrrole core (DTP), by assembling two thieno-DTPA arms onto it [109]. This core was
already used for 1D linear HTMs and also for polymeric ones, demonstrating to be
very powerful. The HTM showed a HOMO at —4.85 eV and a higher hole mobility
than spiro-OMeTAD. It was observed that the HOMO is delocalized partly also on
the TPA in position 3- of the thiophene spacer. This accounts for a participation of
all the TPA moieties to the hole transport. A high thermal stability (444 °C) was ob-
served, which is good for potential applications in PSCs. The HTM was used into
a planar cell with SnO, ETL, MA( 7FA( 3Pbl; g5Brg 15 perovskites into PSC, having a
FTO/5n0,-Cgp-SAM/ perovskite/PMMA /HTM/ Au structure. The PMMA was used
as a passivating layer for the perovskite. The DTPC8-ThDTPA gave a PCE of 19.42%,
comparable to the doped spiro-OMeTAD (19.59%) and well higher than the undoped
spiro-OMeTAD (12.83%). The doping of this HTM did not improve the PCE.

4.3. Three-Dimensional Spiro—-Orthogonal Structures

Three-dimensional spiro—orthogonal structures (Table 3 and Scheme 3) contain a
central “spiro” motif, or some tilting motif that mimics the spiro arrangement. Starting from
the reference state-of-the-art spiro-OMeTAD, researchers prepared molecules by inserting
the fluorene moiety, which has a sp® carbon inducing a spiro/spiro-like arrangement. In
some cases, also the crowding caused by the substituents at the lateral positions induced
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tilting in molecules not having a specific spiro group. Most molecules in this context
still need dopants, but some of them rose to the domain of dopant-free HTMs, showing
excellent results. In this case, a relatively small number of produced materials reached a
good level of photovoltaic efficiency.

A triarylamine-related compound, BTPA-TCNE, was prepared as a D-A structure
with a bis(triphenylamine) Donor and tricyanoethylene Acceptor counterparts [110]. While
this material at a first look should be based onto a planar core, one triphenylamino group
is tilted and the whole system achieve a “spiro-like” arrangement, while still conjugated
with the second triphenylamino group. For this reason, it was included in this section.
The strong D-A structure was confirmed by NMR and, principally, X-ray diffraction.
This compound adopts a some quinoidal form for the arylene system, which indicated a
nearly fully conjugated skeleton, which stabilized a zwitterionic form. The strong dipolar
character of the molecule induces resonance forms in the ground state, which outcome is
an inherent internal doping effect, that enhances the conductivity and the performances as
a dopant-free HTM. This material showed higher hole mobility than its precursor BTPA
and the spiro-OMeTAD, reaching the remarkable PCE of 17.0% in its undoped state.

The indacenodithiophene (IDT) and indacenodithienothiophene (IDTT) were used
as the core of triarylamino-based molecules, IDT-TPA and IDTT-TPA, having excellent
thermal stability [111]. The cores were transformed into their stannyl derivatives and
coupled with the bromo derivative of the 4,4'-dimethoxytriphenylamine by the Stille
reaction. The IDTT-TPA showed higher hole mobility and proneness to —m stacking,
as determined on single crystal X-ray structure determination. The hexylphenyl groups
lye quite perpendicular to the indacenothiophene and/or indacenothienothiophene cores,
giving a 3D spiro-like arrangement, but they oppose to the stacking for IDT-TPA more than
for IDTT-TPA. This explains the better -7 stacking contact between IDTT-TPA molecules,
explaining its better performances. While both structures showed reasonable efficiencies,
IDTT-TPA gave the best average PCE (15.1%, best cell 15.7%). In the same PSC architecture,
the spiro-OMeTAD performed better only in its doped state (17.0%).

Three triarylamine HTMs (AS37, X41 and X44), having a dihexylfluorene central linker
were developed [112]. The goal of the study was to introduce charges directly into the HTM
structure, along with counterions., in order to make the compound a better hole transporter.
The X44, in fact, contains two cationic ammonium groups with TFSI counterions.

The presence of the TFSI counterions, intimately connected with the HTM structure,
improved the performances. The AS37 and X41 were taken as standards, for reference.
The HOMOs of these HTMs were very similar to the HOMO of spiro-OMeTAD. The X44
showed a hole mobility higher of an order of magnitude than that of spiro-OMeTAD.
While X41 showed very low photovoltaic properties, AS37 gave a PCE of 7.8% and X44
gave an interesting PCE of 15.2%. Stability tests (N, atmosphere, 20% humidity, 25 °C,
15 days) showed an increase of PCE from 15.2% to 16.2% for X44, indicating that this HTM
has a great potential for future applications [112].

The FMT HTM had an even simple structure than X44, since it was developed as a
simple HTM, not being internally doped as X44. Notwithstanding, FMT was prepared by
a dihexylfluorene as the scaffold and two N,N-di(4-methylthiophenyl)amine groups as
substituents and showed an impressive PCE [113]. Its HOMO was found at —4.89 eV, in
agreement to be aligned with MAPDI; perovskite (—5.4 eV) and the thermal stability was
excellent (387 °C). The hole mobility was quite low (2.28 x 107% cm? V! s~1) with respect
to most of the HTMs shown in the literature. However, the very thin layer of HTM used
in the inverted PSC could make the hole mobility not so relevant for final performances.
The FMT was used into p-i-n inverted PSCs, obtaining an efficiency of 19.06%, which is of
absolute interest if one considers the simple structure and limited cost of the material, along
with the minimal quantity required for the cell (a 12.5 nm thick layer). Interestingly, the
devices needed at least 24 h to stabilize their efficiency output, since they were increasing
in PCE with time, due to a slow reorganization and stabilization of the perovskite onto the
HTM, which brought to a better passivation of traps. The stability at 25 °C under nitrogen,
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the FTM PSCs showed a retention of 86% of PCE after 270 h. In the same conditions, but
working at 60 °C, the FMT retained 59% of the pristine PCE after 132 h.

Two HTMs based on spiro-[dibenzo[c,h]xanthene-7,9'-fluorene], X61 and X62 were
prepared as analogs of the spiro-OMeTAD [114]. The two HTMs differ for the presence
of two (X61) or four (X62) bis(4-methoxypnehyl)main substituent groups. The HOMOs
of these HTMs are lying at —5.11 eV (X61) and —5.14 eV (X62). The hole mobility and
conductivity were higher for X62 than spiro-OMeTAD. This was ascribed to a better m—m
stacking interaction in the solid-state film, supported by the fact that X62 showed a better
film forming ability than X61. On PSCs having a structure (FTO/c-TiO, /m-TiO; /mixed-
perovskite/HTM/Au) the PCE of X62 was 15.9% overcoming the spiro-OMeTAD (10.8%),
while X61 gave only 8.0% [114]. Under 50% humidity, the not encapsulated devices showed
a PCE retention of 81%, 49% and 80% for spiro-OMeTAD, X61 and X62, respectively, after
10 days. Crystal structures were studied to relate the short contact distances between
molecules to the performances in PSC. The X62 showed a higher number of very short
contact distances with respect to X61, demonstrating that there is a high probability to
promote a high and fast charge transfer within the HTM.

The 2mF-X59 HTM is based on the modified version of the SEX core, which is a spiro
compound, spiro(fluorene-9,9’-xanthene), a mimic of the spiro-OMeTAD core. This core
was already used for a few HTMs which worked well in their doped state, like X59, which
gave PCE as high as 19.8% in its doped state but only of 3.95% in the undoped state [115].
In this case, the core of 2mF-X59 contained two fluorine atoms in meta position with
respect the xanthene oxygen. The goal was to induce similar structures to work as effective
dopant-free HTM, at least avoiding the sensitive dopants (LiTFSI, t-BP, etc.). The 2mF-X59
HTM had a HOMO at —5.14 eV which was deepened a bit by the addition of the FATCNQ
additive. The thermal properties were very good with a stability up to 410 °C and a Tg
of 113 °C. It was used into a planar PSC having a FTO/TiO,/CH3NH;3Pbl; /HTM/Au
architecture. As a dopant-free HTM, it gave a PCE of 15.45%, and the fluorination showed
to be effective to increase the PCE of 3.9 times with respect to X59. The performances
were further raised up to 18.13% by the addition of the FATCNQ additive, which is not a
sensitive dopant. This efficiency is comparable with the doped spiro-OMeTAD in the same
conditions. The material was transparent and useful for inverted PSC, and its costin $/g
was quite low, making it reasonably interesting for potential commercial use. Finally, the
stability of PSC was evaluated for not encapsulated devices, at 30% relative humidity and
25 °C. The 2mF-X59 retained up to 90% of the pristine PCE after 500 h, and the 2mF-X59
with the FATCNQ additive was even better, retaining up to 95%.

The IDF core (6,6,12,12-tetrahexyl-6,12-dihydroindenol[1,2-b]fluorene) was function-
alized with a few amino substituents: two or four (bis(4-methoxyphenyl)amine groups
(IDF-DiDPA and IDF-TeDPA, respectively), or a 4-methoxylphenylamine bearing a fur-
ther SFX substituent on the nitrogen (IDF-SFXPh) [116]. While the other material did
not show an interesting PCE, IDF-SFXPh had a remarkable efficiency. The base concept
for the choice of these molecules was to modulate the properties by building molecules
having a planar core, which increases the hole mobility, and inserting twisted units, which
inhibit excessive aggregation. The authors used the typical DPA substituent and modulate
the steric hindrance by varying the number of units and tried to use also a more steric
demanding DPA based substituent. In particular, the huge steric hindrance of SEX helped
to obtain a reliable and interesting HTM. The HOMO of the best-performing material,
IDF-SFX-Ph can be found to be —5.22 eV with a 2.79 eV band gap, which makes this HTM
transparent and also useful for inverted PSCs. As a result, in the (FTO)/Cg/perovskite
(CH3NH3PblI;_Cly)/HITM/MoOs3/ Ag PSCs, only IDF-SFXPh reached a PCE > 15%, (best
cell PCE: 17.6%), as the spiro-OMeTAD.
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Table 2. Selected 2D star-shaped dopant-free HTMs, based on performances exceeding 15% (see legend for details).
P % p g g
o Standard Jsc (mA o HOMO HM (cm? Conductivi s
HTM PSK Cell 2 PCE (%) PCE (%) P Voc (mV) 2;72) FF (%) @V) B (eV) V-1g-1) (S em-1) ty Stability (h) Reference
ST1 MAPbI, M 154 163 1059 21.07 66 524 261 457 x10°4 ; 80%, 30, i\tI)E (30% RH, 182]
15.4 (best) .
_ 100%, (incr.), 1000 h,
733 MAPbI M 15.3 39%/16.6 1087 20.46 66 —5.34 2.72 4.67 x 107* - > o 83
3 (everae) / NE (30% RH, rt) [83]
16.1 (best) .
_ 100%, (incr.), 1000 h,
Z34 MAPbI M 15.9 39%/16.6 1053 21.27 69 —5.14 2.71 7.46 x 1074 - > ; 83
3 (averge) / NE (30% RH, t) 1831
71011 MAPbI; M 163 9.6/16.5 1096 20.52 70 —521 2.64 8.49 x 10~4 - >100% ((g;;rzirlgf;) h, NE [84]
. B o i >100%, (incr.), 1000 h,
71013 MAPbI; M 15.4 16.7 1027 21.33 70.2 5.14 2.6 6.67 x 10 NE (30% RH, 80 °C) [85]
TPD- b . 92%, 600 h, NE (RH 30%,
aMeOTPA  (FAPPI3)oss(MAPbBr3)o.15 M 15.28 17.26 1099 20.84 66.7 —5.28 2.59 492 x 10 - ) [87]
17.5 (best) 19.2° (best) 0
TPA-CN  (FAPbI3)g85(MAPbBr3)0.15 M 16.4 18.06 1090 20.85 77 —5.38 2.03 1.1 x107* 25%, 11?0&]“; STE (Ar [88]
(average) (average) gt
18.9 (best) 19.2 b (best) o
FA-CN  (FAPblL)ogs(MAPbBrs)yys M 17.2 18.06 1130 2171 77 53 199 12x 104 65%, 11?0&11; SIE (Ar, [88]
(average) (average) o
Trux- . 1637 16.2°¢ 3
OMeTAD MAPbI; p-i-n M 18.6 le1e 1020 232 79 —5.28 298 3.6 x 10 - - [36]
TBDI MAPbI; p-i-n P 14.85 15.30 ¢ 1.09 18.73 72.8 —5.25 327 5.95 x 103 - - [93]
KR321 (FAPbI3)g.85(MAPbBr3)g 15 M 19.03 19.01° 1130 21.7 78 —5.24 2.05 26 x107* - - [8]
M116 MAPbI; P 15.5 14.4¢ 1.03 21.1 72 —5.05 295 142 x 1073 - - [94]
M117 MAPbI; P 15.7 14.4¢ 1.03 21.7 70 —5.08 2.88 241 x 1073 - - [94]
M118 MAPbI; P 17.1 14.4¢ 1.06 224 72 —5.27 3.1 1.75 x 1073 - - [94]
YKP03 MAPbI, M 16.15 1759 1.03 23.07 68 516 26 580 x 10~ ; 80%, 800 h, NE 5% RH, [96]
glove-box, rt)
TPP- .
OMeTAD MAPbI; p-i-n P 14.6 - 1000 18.56 79 —5.08 3.2 - - - [97]
TPP- .
SMeTAD MAPbI; p-i-n P 16.6 - 1007 20.15 77 —5.18 3.25 - - - [97]
g (FAI)o.81(Pbl2)o.s5 b _ 7 ) 87%, 720 h, E (ambient
TCP-OCg (MAPbBrs), 10) M 15.28 13.26°/18.85 1090 22.38 61.4 5.56 345 2.56 x 10 i, 45 °C) [98]
. (FAD)o.81(Pbl>)o.s5 b _ 6 ) approx. 85%, 720h, E
TCP-OH (MAPbBr3)o 1) M 16.97 13.26/18.85 1070 23.15 66.7 5.47 3.45 5.85 x 10 (ambient air, 45 °C) [98]
XSIn847 MAPbI; p-i-n P 15.02 11.95¢ 1090 21.58 65.7 —5.26 3.16 7.75 x 1075 - - [100]
15.83 (best) 48%, 400 h, NE (35% RH
D32 MAPbI; I 14.32 13.16¢16.19 ¢ 1 20.86 75.9 —5.36 2.62 1.39 x 1074 - ’ ’ ’ [101]

(average)

rt)
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Table 2. Cont.

Standard Jsc (mA HOMO HM (cm? Conductivity e
a 0, 0,
HTM PSK Cell PCE (%) PCE (%) b Voe (mV) em-2) FF (%) @V) Bg (eV) V-1g-1) (S em-1) Stability (h) Reference
17.85 (best) o o
D33 MAPbI, I 16.38 1316 16.19¢ 1.02 2219 78.8 538 232 241 x 104 ; 70%400 h'rlf)E @5%RH, 1109
(average)
D104 MAPDI; I 16.28 14.37 ¢ 1.05 22.22 734 —5.36 2.88 7.1 x 107 - 33%, 275 ;') I;Iéi)(?)O % RH, [102]
D105 MAPbI, I 17.4 14.37°¢ 1.04 21.96 76.1 53 2.94 241 x 1074 - 70%, 275 %Ij(lji)(SO % RH, [102]
D106 MAPbI; I 18.24 14.37°¢ 1.05 22.32 77.8 —529 29 1.65 x 104 - 75%, 2752'0?5(30 %o RH, [102]
g;ﬁ' MAPbI; P 17.29 - 1030 22.79 73.7 —533 2.78 548 x 10~4 - - [104]
17.57 (best)
FT- (CsPbl3)o.05[(FAPbI3)0.83 -5
I 16.65 18.67 © 1.09 20.5 78.43 —5.11 2.03 1.42 x 10 - - [105]
OMeTPA (MAPbBr3)0,17]0'95 (average)
16.53 (best) o o,
YC-1 MAPbI; I 15.78 1438 °¢ 1.022 20.98 72.9 —5.28 2.57 - - 93%, 10§?{h; STE (30% [106]
(average) !
19.37 (best) o o
1 I;{HC(')X MAPbI, I 18.18 1.069 22.14 79.5 —528 2.57 - 96%, 1013?{11; STE (30% [106]
(average) !
18.61 (best) o o
DMZ MAPBI, I 17.62 12.03¢ 1.02 22.62 81.05 —5.15 2.27 3.71 x 105 90%, 556 h'rlt\;E (50% RH, [107]
(average)
TTE-2 (FAPbI3)(.95(MAPDbBr3)( 05 P 20.04 - 1.11 23.26 77.53 —-5.3 2.62 6.18 x 10* 85%, 10[3(I)-Ih’1‘§E (35% [108]
DTPC. 19.42 (best)
ThpTeA  MA07FA0sPbLssBro1s P 18.37 12.83%/19.59 1.14 23.02 74.1 ~485 2.26 6.50 x 1075 - - [109]
(average)

2 M, mesoporous TiOy; P, planar compact TiO»; b reference standard spiro-OMeTAD (bold if doped); © reference standard PEDOT:PSS; d reference standard PEDOT:PSS/ polyTPD; € reference standard PTAA (bold
if doped); f HM, hole mobility. (g) Stability: (1) % = PCE retained percentage; (2) time—h = hours, d = days, m = months; (3) NE = non-encapsulated devices; (4) RH = relative humidity; (5) rt = room temperature.
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The DFH (N2,N2,N7,N7-tetra-p-tolylspiro[ﬂuorene-9,20-[1,3]dioxolane]-2,7-diarnir1e),
a simpler spiro HIM, was prepared in an expensive way, so that its scaled-up cost should
be around 3$/g [117]. The core is an acetal of the fluorenone with ethylene glycol. The
use of DFH in an inverted p-i-n PSC gave an impressive PCE (20.6%). Despite its simple
structure, DFH behaved properly, since it has a properly alighed HOMO level and it can
induce an anisotropic molecular ordering which improves the hole mobility and electronic
conductivity in the normal direction to the cell plane. The film annealing with temperature
induced an organization of the molecules orthogonal to the substrate, without a long-range
ordering in the film, so that the C-H and oxygens of the 1,3-dioxolane group are in close
contacts and also C-H— interactions take place. While the annealed film organizes in a
crystalline way, this ordered structure does not promote the formation of pinholes. This
annealing promoted crystallization occurs above the Tg and was also studied and confirmed
by 13C solid-state NMR and XRD (Figure 8). From XRD it was shown that the electroactive
TPA groups are kept exceptionally close to each other, without producing large crystals.
This mediates for a preferential direction of the charge extraction and hole mobility which is
normal to the substrate. The hole mobility was found to be around 1.0 x 103 em2Vv-1g1,
for both crystal and annealed film, similar to the single crystal of spiro-OMeTAD but well
higher than the dopant-free state-of-the-art HTMs and of the doped spiro-OMeTAD. The
annealing at 135 °C gave the best results, with a pinhole-free and smooth film. Using a
MA 9FA( 1Pbl;_Cly perovskite, in an ITO | DFH | perovskite | C60 | BCP | Ag inverted cell
(BCP = bathocuproine), the DFH showed to outperform (PCE: 20.6%) both PTAA (annealed
at 100 °C, PCE: 19.2%) and the already cited star-shaped molecule KR321 (PCE: 19.0%). As
a final result, this specific ordering shows another feature that can be exploited to improve
the vertical charge mobility other than the columnar stacking [117].
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Figure 8. (a) Molecular structure of spiro HTM DFH; (b) X-ray crystalline structure showing the close C-H—O interactions.
(c) DSC (Differential Scanning Calorimetry) showing the Glass Transition Temperature (Tg) of DFH; (d) solid-state 13C NMR
line width for specific carbons of DFH, based on annealing temperature; (e) powder XRD diffractograms of DFH before
and after annealing at different temperatures. Reproduced from Reference [118], with permission from The Royal Society
of Chemistry.

Yin et al. recently published the synthesis of two bicarbazole-based HTMs, 3,6-BCz-
OMeTAD and 2,7-BCz-OMeTAD [118]. The only difference between the two HITMs
was related to the substitution position on the carbazole core. The two HTMs showed
excellent performances, with a PCE of 17.0% and 17.6% for 3,6-BCz-OMeTAD and
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2,7-BCz-OMeTAD, respectively, overcoming the undoped spiro-OMeTAD and being

comparable with the doped one. These important results were related to interesting charac-
teristics, mainly the natural attitude of this core structure to behave like spiro molecules,
since the two sections of the core are perpendicularly twisted, like the 9,9’spirobifluorene.
They are transparent materials (absorption onset below 450 nm), HOMO lying at

—5.11 and —5.15 eV, hole mobility of 1.13 x 10~% and 0.95 x 10~* cm? V! s~ for

3,6-BCz-OMeTAD and 2,7-BCz-OMeTAD (higher than for spiro-OMeTAD) respectively,
Their cost is very low (8.55$/g and 14.00 $/g for 3,6-BCz-OMeTAD and 2,7-BCz-OMeTAD,
respectively) compared with the spiro-OMeTAD (92 $/g and commercial price around

170-475 $/g) [119] and the excellent PCE obtained is worth of competing with it. Besi, they

show very good thermal stability. They were employed with the Csp g5FAg 70MAq 16Pbl; 49Brg 51

perovskite (valence band at —5.56 eV). The HTM was deposited by spin-coating onto per-
ovskite, and the film morphology was good and smooth, fully covering the perovskite. The

2,7-BCz-OMeTAD HTM gave smoother than the 3,6-BCz-OMeTAD, thus protecting the

perovskite from moisture in a better way. This was confirmed in the stability tests, show-
ing that under 30% humidity and not encapsulated devices, the PCE retention was 74%

and 90% for 3,6-BCz-OMeTAD and 2,7-BCz-OMeTAD over 85 days (around 2000 h), ac-
cordingly with the better film forming and protection ability of 2,7-BCz-OMeTAD. Under

65% humidity and light soaking conditions, the 3,6-BCz-OMeTAD and 2,7-BCz-OMeTAD

maintained 46% and 71% of the pristine PCE, after 150 h.

Some other spiro-like compounds were prepared by attaching aromatic moieties onto a
fluorene or a thieno[2,3-b]thiophene scaffold. While not being true “spiro” molecules, these
behave like it since the high crowding caused by their specific structure. The first case is
related to two fluorene-based HTMs, TPA-2,7-FLTPA-TPA and TPA-3,6-FLTPA-TPA [120].
Two triphenylamines were connected with the central fluorene sp® carbon. The only
difference between the two HTMs was the TPA substitution pattern on the 2,7- or
3,6-fluorene positions. The HOMO levels were lying quite low (—5.45 and —5.57 eV,
respectively) with respect to MAPDbI; (—5.46 eV). This made the TPA-3,6-FLTPA-TPA to
be unfavorably aligned to receive holes from perovskite. The PSCs were built onto an
ITO/MoO3/HTM/MAPDI3/Cy/BCP/Ag inverted architecture. The TPA-2,7-FLTPA-TPA
gave a 17.1% PCE, overcoming the PCE (15.9%) of the standard TaTm (here also reported
as TPB, N* N* N*',N*'-tetra([1,10-biphenyl]-4-yl)-[1,1":4’,1""-terphenyl]-4,4’'-diamine, see
above for a lower PCE in mesoporous PSCs), while the TPA-3,6-FLTPA-TPA showed only a
13.9% efficiency.

The XY1 molecule was prepared from the scaffold thieno[2,3-b]thiophene, to which
four TPA substituents were attached [121]. Since the crowding generated by four sub-
stituents on a small scaffold, a relevant twist of the different TPA groups was found,
which makes the structure not planar, thus mimicking the spiro arrangement. The struc-
ture appeared to be not symmetric also from the electronic point of view. This made
XY1 able to act as an HTM with good hole mobility (3.76 x 10~* cm? V~1 s71), higher
than spiro-OMeTAD. The two sulfur atoms make the core electron rich and can effec-
tively interact to passivate the Pb?" surface traps. In the inverted PSC architecture and
(CSPbIg)0.05[(FAPbIg)O.gg (MAPbBr3)0.17]0.95 perovskite, the XY1 HTM gave an efﬁciency of
18.30% (18.78 for the best device). Besides, large area cells were prepared (1 cm?) for which
an efficiency of 17.82% was obtained. The stability after 480 h at 25 °C in a glove-box under
constant illumination was determined by the retention of 86% of the pristine PCE.
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Table 3. Selected 3D-orthogonal dopant-free HTMs, based on performances exceeding 15% (see legend for details).

Standard A\Y Jsc (mA FF HOMO B HM € (cm? V-1 Conductivity .
a % oc sc g £

HTM PSK Cell PCE (%) PCE" (%) (mV) cm-2) (%) (eVv) V) s-1) (S em-1) Stability * (h) Reference
BTPA-TCNE MAPbL; nip p 17.0 496°/1570 1040 20.84 78 535 162 314 x 105 - ] [110]
IDTT-TPA SnO2/PCBM/ MAPbI, p 15.7 78°/17.0 1050 2125 705  —500  2.50 6.46 x 10~ - 96%, 168 h, NE (air, rt) [111]
X44 (FAPbI3)o.55(MAPbBrs)o15 M 15.2 7.5b 1080  21.04 670  —506 294 9.03 x 104 ; 106 /‘Ez(gs /R)er S' NE. [112]
FMT MAPbI; I 19.06 139¢ 1.07 252 7927 489 295 2.8 x 10 - 86%, 270 h, NE (N,rt) [113]
X62 (FAPbI3)0.55(MAPbBr3)g 15 M 15.9 10.8° 1010 2.4 704 514 29 795x10-5  514x10°  80%,10d,NE (50% RH,rt)  [114]
2mF-X59 MAPbI, p 1545 1822° 097 24.00 6633 —514 2.8 7.14 x 10~ - 90%; 500 h'rlt\)IE (30% RH, [115]
IDF-SFXPh CH3NH;Pbl,_, Cl P 17.6 17.6b 1.05 215 773 522 279 141 x 104 ; 92% 500 h, NE (N, rt) [116]

20.6
DFH MAgsFAq1 PblsCl, I (best)/19.3  19.29 1.08 220 081 —527 298 15 x 103 ; ; [117]
(average)
OSII\?I-EBTS\Z]-) CSO'05FAO'79MAO‘16Pb12'49BI‘0'51 M 17.0 18.5 b 1121 21.34 714 —5.11 2.81 1.13 x 1074 - 740/0, 85 d, NE (300/0 RH, I't) [1181
021'51':3&11') Cso0sFAG7oMAg 16PbL 4oBros; M 176 18.5° 1089 2238 725 515 291 9.5 x 105 ; 90%, 85 d, NE (RH30%, rt)  [118]
TPA-2,7- .
L MAPbI, I 171 152 1.05 19.85 78 —545 295 ; ; ; [120]
(CSPbI3)Olo5 [(FAPbI3)0(83 c _ 4 _ 860/0, 480 h, NE (glove-box,

XY1 AR p 18.78 16.31 111 221 7618 544  3.02 3.76 x 10 lght, [121]
g&?}':g CsFAMA M 17.22 683> 105 2151 7637 530  2.39 288 x 10~ - 86%, 800 h, NE (dry air, rt)  [122]

2 M, mesoporous TiO,; P, planar compact TiO,; b reference standard spiro-OMeTAD (bold if doped); © reference standard PEDOT:PSS; d reference standard PTAA (bold if doped); © HM, hole mobility. f Stability:
(1) % = PCE retained percentage; (2) time—h = hours, d = days, m = months; (3) NE = non-encapsulated devices; (4) RH = relative humidity; (5) rt = room temperature.
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A saddle shaped molecule, COTh-Ph-OMeTAD, was obtained by Lai et al. [122]. The
central core was constituted by the cyclization of four thiophenes linked at their 2 and 3 posi-
tions and was further decorated with four dimethoxytriphenylamine arms (Figure 9) [122].
The HOMO was found at 5.30 eV, and the band-gap was 2.39 eV, while the thermal stability
was good, however, at over 300 °C. The COTh-Ph-OMeTAD can pack quite easily, since the
nearly 45° dihedral angle between couples of thiophenes in the central core. This is a perfect
example of the FCTC concept, discussed above for the DMZ HTM (see above for a better
definition). This helps the molecule to behave as spiro-like structure and to obtain a good
hole mobility (2.88 x 10~% cm? V! s71), well higher than the undoped spiro-OMeTAD
but lower than the same doped standard HTM. When COTh-Ph-OMeTAD was used into a
mesoporous PSC based on the (CsPbl3)g o5(FAPbI3)g 79(MAPDbBr3)g 16 perovskite, it reached
a PCE of 17.22%, higher than the spiro-OMeTAD (16.83%). Stability test were performed
on non-encapsulated devices at 25 °C, in dry air and in the dark for 800 h, showing a
retention of 86% of the pristine PCE for COTh-Ph-OMeTAD, while the spiro-OMeTAD
retained around 20% after 600 h.

Figure 9. Example of tridimensional arrangement following the FTCT (Flexible Core with Tunable
Conformation) concept, for COTh-Ph-OMeTAD (see text for FTCT concept and Scheme 3, for the
chemical formula). Reprinted with permission from Reference [122]. Copyright 2019, John Wiley
and Sons.

5. Conclusions

Dopant-free organic HTMs are molecular materials able to transport hole without any
doping. Their story started in 2014 but gave impressive efficiencies in Perovskite Solar
Cells in just a few years, achieving, up to now, efficiencies as high as 21.17% and very high
hole mobilities (higher than > 10~* cm? V=1 s71) in their undoped state (e.g., DOR3T-TBDT,
026 cm?2V-1sland DFH, 1.5 x 103 ecm?2 V-1571).

In this review, we collected all dopant-free small-molecule Hole Transporting Mate-
rials (HTMs) used in Perovskite Solar Cells (PSCs) exceeding the photovoltaic efficiency
of 15%. Several building blocks were detected as recurring cores used to prepare the
HTMs. HTMs, based on benzodithiophene, dithienosilole, benzodipyrrole, dithienopyr-
role, bithiophencarboximide, truxenes, spirobifluorene and spiro[ﬂuorene—9,9’ -xanthene]
cores, showed high efficiency, which attained efficiency exceeding 20-21%. Truxene cores
in general can promote the face-on organization on the perovskite surface, improving the
performances. Some other molecules gave the same face-on arrangement due to tuning of
structural elements. In general, the molecular planarity extended in two-dimension greatly
helps the HTMs to adopt this behavior. Another important topic is the best compaction of
molecules in the solid-state film. A reduced contact distance between packed molecules
improves the hole mobility, especially when the minimum contact distances include the
chemical centers which can be easily oxidized /reduced. Sometimes the fine-tuning of alkyl
chain length can be used to optimize the HTM efficiency, since the steric hindrance and
molecular crowding can hamper the conditions for a good hole mobility. As a general
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rule of thumb, all factors that promote the molecular planarity, such as (a) the presence
of polinuclear aromatic or heteroaromatic groups, (b) the limited number on single ro-
tatable bonds among those groups or (c) arrangements that limit the molecular tilting
away from planarity (such as sulfur-oxygen interactions or hydrogen bonding, can help
to improve the stacking and the close contact of molecules in the solid state and thus
the photovoltaic performance. The complex interaction among all the above factors and
the correct alignment of the HOMO energy level makes the HTM structure planning a
real challenge and opportunity for organic chemists. However, it is essential to learn
the lesson of the simplification of the HTM structure such as for DFH, which mimics the
spiro-OMeTAD. This very simple structure can be produced with a three synthetic step
path, attaining an exceptional PCE (20.6%). Similarly, the MPA-BTTI, which possesses a
complex 4H-thieno[2’,3:4,5]thieno[3,2-c]thieno[2’,3":4,5]thieno[2,3-e]azepine-4,6(5H)-dione
core capped by two TPA moieties, was shown to be truly linear and planar, attaining the
exceptional PCE of 21.17%.

Researchers still have to face several challenges to obtain better performance and
stability for PSCs. At least in part, the organic chemistry can help to propose novel
structures. The introduction of novel Donors and Acceptors and the judicious coupling
of them can open the way to more performant HTMs, while the introduction of an alkyl
chain having a specific length can improve the packing in the solid state and the HTM
properties. The insertion in the HTM of passivating moieties (containing N, O or S atoms)
already for the perovskite surface traps (often on the lead atoms) can help to increase
the photovoltaic efficiency by improving the hole transfer at the interface, due to the
suppression of perovskite surface traps. This was developed mainly in polymeric HTMs,
but in some cases, one can forecast that also small-molecule HTMs containing specific
passivating groups can be developed and used to create a thin layer to passivate the
perovskite surface hole traps. This last topic is now very hot in the perovskite community
since it was recognized that, while the electron and hole transfer in the perovskite are
impressive, the presence of surface traps is hampering the device efficiency. A huge work
is now under development also on the perovskite side, trying to use all possible small
molecules to cover the perovskite surface to suppress the traps.

A lot of data were collected not only about the efficiency but also about the time-
stability of the PSCs made with dopant-free HTMs. In view of industrial preparation
of PSCs, it is of utmost importance to guarantee the cell stability. Some of the reported
materials showed the ability to save at least 80% of the initial efficiencies in tests performed
for 1000 h or more, on not-encapsulated devices, which is a rough viable indication of an
acceptable stability for potential commercialization.

In conclusion, in a few years, the efficiencies of PSCs based on organic dopant-free
HTMs rose to values over 21%. This suggests and confirms that there is still a lot of space
for invention and imagination for organic chemists, just making bonds.
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