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Abstract: Supercritical water gasification (SCWG) is a promising technology for the valorization of
wet biomass with a high-water content, which has attracted increasing interest. Many experimental
studies have been carried out using conventional heating equipment at lab scale, where researchers
try to obtain insight into the process. However, heat transfer from the energy source to the fluid
stream entering the reactor may be ineffective, so slow heating occurs that produces a series of
undesirable reactions, especially char formation and tar formation. This paper reviews the limitations
due to different factors affecting heat transfer, such as low Reynolds numbers or laminar flow regimes,
unknown real fluid temperature as this is usually measured on the tubing surface, the strong change
in physical properties of water from subcritical to supercritical that boosts a deterioration in heat
transfer, and the insufficient mixing, among others. In addition, some troubleshooting and new
perspectives in the design of efficient and effective devices are described and proposed to enhance
heat transfer, which is an essential aspect in the experimental studies of SCWG to move it forward to
a larger scale.

Keywords: supercritical water; gasification; reforming; heat transfer; tubular reactor; heating rate

1. Introduction

Supercritical water gasification (SCWG) is a promising technology that has attracted
the interest of many researchers around the world for the past two decades. The main
application of SCWG is wet biomass, as no feed drying is required. Supercritical water
(SCW) has singular properties, such as a very low dielectric constant, lower density than
liquid water, and transport properties similar to those of a gas, especially the viscosity that
increases the diffusion coefficient [1–3]. These properties make it favorable as a medium,
reactant, solvent, and even as a catalyst to convert organic material into syngas, mainly
composed of H2, CO2, CO, and CH4.

Many studies on SCW gasification have been carried out, not only by experimentation
but also by modeling and simulation. In fact, the general gasification reaction of an organic
feed in SCW involves a series of coupled physical and chemical processes, including multi-
ple reactions along with mass and heat transfer, in such a way that numerical simulation
may overcome some drawbacks that occur in experimental methods to gain insight into
the details of the gasification process under SCW conditions [4–6].

Similarly, there are review articles that deal with different aspects of SCWG, such as
model compounds, lignocellulosic or microalgae biomass, types of reactors, energy and
exergy, thermodynamics, catalysts, techno-economics, hydrogen production, modeling,
and simulation [6–17], but there are few references to heat transfer in SCWG processes,
especially at the lab scale, which is used most frequently in experimental studies carried
out so far. In this regard, the heating rate/time applied to a specific reactor and how
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heat is transmitted from the energy source to the stream containing organic material and
water that suffers a transition from subcritical to supercritical are crucial to understand the
phenomena occurring inside the reactor and for scaling up.

Therefore, the reactor type applied to supercritical water gasification (SCWG) is of
utmost importance. Three main types of reactors have been used. First, batch reactors with
or without a stirrer, then tubular reactors, and finally fluidized-bed reactors. Regarding the
topic of this review, the latter type of reactor allows the best heat transfer and appears to
avoid or reduce some detected problems, especially in tubular reactors, such as plugging
due to char formation [18]. In fact, char formation has been reported to occur at 200 ◦C
and tar is formed mainly from 300 ◦C to the critical temperature of water [3], while other
researchers have found that char and tar form more quickly between 350 and 370 ◦C [19].
These shortcomings are related to the heating section of the reactor, which is generally
performed by an electric furnace. However, heat transfer in a fluidized bed is more
complex than in a tubular reactor as it implies fluid, particles, and a reactor wall that
includes mechanisms affecting all pairs of these elements (fluid-particles, etc.) due to
heterogeneous flow within the bed [20]. Furthermore, in the operation of fluidized bed
under SCW conditions, there is instability of the gas product, nonuniform temperature
distribution, and particle overflow [21]. In addition, when SCWG is simulated in fluidized-
bed reactors, the existing correlations of heat transfer may not be appropriate because
the applicability and operation conditions can have a large deviation from those found
in conventional fluidized beds, which requires more experimental research. There are a
number of additional studies on this type of reactor [6,9–12], although the design of SCWG
fluidized-bed reactors is currently incomplete, especially with respect to the heat transfer
characteristics of SCW [22]. Further study on fluidized-bed reactors is required, as it is a
promising type of reactor to be used on SCWG, especially when the technology is more
developed and investment may be justified, which is easier using a simpler based-on tube
reactor as next described, and fluidized-bed reactors are beyond the scope of this paper.

One of the aspects regarding tubular reactors is how to heat the stream entering the
reactor and the inside of the reactor to avoid the operation problems mentioned above. The
residence time in the tubular reactor is about a few seconds, which is much shorter than the
reaction time in a batch reactor, where it is between minutes and hours. In fact, a prolonged
reaction time leads gasification reactions to chemical equilibrium, thus greatly increasing
the gas yield [23], one of the main objectives in SCWG. In spite of such a favorable potential
result, it does not seem to be a good reactor type for scaling up the reactor to move the
technology to an industrial scale. In addition, heat recovery in a batch reactor becomes
difficult, but not in a continuous-flow reactor, so the latter concept is more appropriate for
commercial application. Despite this, several studies using batch reactors can be found in
the literature [24–29].

Therefore, most of the experimental research on SCWG has been carried out using
tubular reactors [30–38] with the aim of addressing a future scale of the process. However,
the design of this type of reactor may and must be improved to apply it to SCWG technology.
One of the aspects related to heat transfer in the SCWG fluidized-bed reactor is the high
heating rate, which is probably the solution to avoid the main operation problems in
tubular rectors. Therefore, heat transfer and, specifically, the heating rate of the feed must
be analyzed to improve the behavior of this type of reactor.

In the following sections, several aspects will be discussed in this short review, such
as the heat transfer deterioration taking place at the lab scale, an analysis of heat transfer in
experiments carried out at lab scale, a summary of limitations in experimental facilities, a
series of potential troubleshooting, and proposals of new ways to boost the technology by
improving the heat transfer performance in SCWG processes.

2. Heat Transfer Deterioration in SCWG Experiments

The abrupt changes that water undergoes in its physical properties near the critical
point contribute to the deterioration of heat transfer, due to the decrease in turbulent
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thermal conductivity and eddy viscosity, leading to lower turbulent heat flux and therefore
higher surface temperatures [39]. This deterioration may be the result of a significant
density variation near the critical point that deforms the velocity profile, flagging the
turbulence [5], or even due to the thickening of the viscous underlayer depending on the
fluid flow rate [40]. Many research works, mainly performed numerically, have been pub-
lished on this phenomenon, known as heat transfer deterioration (HTD) [41–47]. Recently,
Wang et al. [48] obtained, by simulation, that semicircular heating decreased the degree of
HTD due to the greater turbulence produced by the greater density difference between the
heating side and the adiabatic side.

Figure 1 illustrates the trend of the physical properties of water versus temperature
at 23 MPa and 25 MPa, obtained by [21], where the maximum values of specific heat and
thermal conductivity define different pseudocritical temperatures; in fact, each pair (P, T)
above the critical point leads to a pseudocritical point. The pseudocritical temperature
increases as the (supercritical) pressure increases, and at this point and on, there is no
longer a difference between the liquid and gas/vapor phases.
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Regarding the change in water properties, at 25 MPa, a temperature variation from
377 ◦C to 393 ◦C, that is, about 4.2%, leads to a density change from 488.85 kg/m3 to
194.89 kg/m3, i.e., roughly 60% [49]. Therefore, viscosity and density are greatly reduced
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from subcritical to supercritical water conditions, thus improving mass transfer [50], al-
though thermal conductivity decreases and specific heat capacity changes a lot [2].

The low flow rate in lab-scale reactors leads to deterioration in heat transfer due to
buoyancy forces and flow acceleration, which is promoted by the change in physical prop-
erties during heating; therefore, this aspect should be taken into account when improving
heat transfer performance.

In lab-scale research, low mass flow rates are commonly used, and although a tubing
with a small internal diameter (ID) is also utilized, the fluid velocity is quite low, so
turbulence is almost nonexistent.

A lower heating rate leads to longer residence and reaction times, but there is still a
large section in the reactor with a lower temperature, thus forming char and tar. Therefore,
it seems that there must be a trade-off between reaction time and heating rate with respect
to the temperature increase experienced by the stream fed to the reactor, since the reactants
are heated up at a certain rate clearly lower than the heating rate programmed for the
heating process unit. As a consequence, a lapse of time is required to reach the reaction
temperature. Consequently, this time needs to be minimized in the experimental facilities,
thus inhibiting the formation of char and tar.

Heating of the reactor is mostly performed by external heating, typically with an
electric radiant furnace, although it could also be carried out by internal heating from the
fuel value of the feedstock in an autothermal operation, using a fraction of the gas produced
in the process or even with an external fuel. These other options are not common at lab
scale, and electric heating is most frequently used at lab scale, normally housing the reactor
inside an electric furnace. In addition, preheating the reactor inlets and ducts upstream of
the reactor is usually conducted using resistive wires or auxiliary radiant heaters [9].

Electric radiant furnaces are designed by considering a number of sections, each one
with a temperature PID controller based on a thermocouple measuring the external wall
of the reactor and using a thyristor or state-solid relay (SSR) as a final control element
to switch on/off the resistor inside the correspondent furnace section. Several sections
involve more sets of thermocouples, controllers, and SSR, but better temperature control
can be achieved inside the furnace. It is common to preheat the electric furnace before
entering the feed stream containing the organic compounds to approach the final reaction
temperature. In addition, the heating may not be uniform throughout the reactor, as it has
several meters of length, where liquid feed converts into supercritical in a section of reactor,
so the properties change inside the reactor and oblige to activate the different SSR more or
less, as these are linked to the controllers and thermocouples of each heating section. In
this sense, a nonuniform temperature distribution along the pipe is another consequence
of the slow and initially dense feed that may occur in the inlet zone of the reactor housed
in the electric furnace. This non-uniformly heated tubular reactor needs to be treated as a
transition process when modelling, despite steady-state equations frequently found in the
literature to describe this process.

As mentioned above, the measurement of temperature of the stream at the reactor
outlet is typically performed on the tubing external surface, and not inside the stream at
high temperature and pressure, mainly for safety reasons, so the real fluid temperature is
not usually measured in the section with the highest pressure and temperature.

Beyond the inlet zone of the reactor, another additional aspect that occurs is related to
the transition from the subcritical to the supercritical fluid state, i.e., the effect of change in
physical properties that leads to an intermediate zone inside the reactor, which is not well
defined and is difficult to experimentally determine. A low Reynolds number characterizes
the fluid flow, leading to a laminar flow regime where heat transfer is not effective enough
and convection controls the heat transmission process. Additionally, as the temperature
increases progressively and the transition from subcritical to supercritical states takes place,
the Reynolds number changes significantly along the reactor as a result of the notable
change experienced in both the density and the dynamic viscosity of water. However, the
flow regime remains laminar. In fact, when the Reynolds number is expressed as a function
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of the mass flow rate, which is constant, the only property that affects the Reynolds number
is the dynamic viscosity, and this changes from 10−3 Pa·s to about 3 × 10−5 Pa·s (Figure 1).
Thus, the Reynolds number would be multiplied by a factor of up to 30 through the reactor,
and still laminar flow regime is below 2300 (i.e., laminar flow), or perhaps slightly over,
but always too low to achieve effective turbulent mixing. Furthermore, several researchers
have reported deterioration in heat transfer [51] for SCW when the flow regime is laminar
at a temperature higher than the pseudocritical temperature, where the properties of SCW
are more gas-like at a given operating pressure. In this regard, at such low velocity, the
effect of mixing is negligible, and heat transfer is poor.

As Kawasaki et al. [52] pointed out, the low mixing rate due to a low Reynolds number
results in slow heating of the fluid through the stage in which the subcritical condition
takes place, involving a low reaction rate and the appearance of primary and secondary
nucleation that forms large char particles during the heating period.

The problem becomes more complex if the tubular reactor is vertically positioned
instead horizontally, since the great change in density implies a significant buoyancy
effect at low flow rates and flow acceleration at high flow rates; at laboratory scale, the
first effect is the most relevant. Under these conditions, the velocity increases near the
wall region so that the velocity profile is flattened, reducing the turbulent heat transfer
coefficient, thus causing further deterioration of the heat transfer [53]. Moreover, some local
turbulence may occur due to the higher flow near the wall produced by natural convection
induced by gravity force related to the weighty change in density close to the pseudocritical
temperature despite the laminar flow regime due to the low Reynolds numbers [51].

3. Experimental Deficiencies and Feasible Troubleshooting

When an experimental facility is assembled to study an SCWG process, the first
attempt is to use an electric furnace that houses the reactor that heats the stream entering it.
This has been applied by numerous researchers over the past two decades [54–61]. Heat
is transmitted by radiation to the reactor wall, then by conduction through the wall, and
finally by convection inside the reactor. Although the furnace power may be high to increase
the heating rate inside the furnace at several tens of ◦C/min, the stream flowing inside the
reactor is heating up more slowly, as the flow regime is laminar and the resistance to heat
transfer by convection is larger than those of radiation and conduction. Thus, a Nusselt
number of 3.66 (isothermal conditions) for forced convention in an internal circular tube
leads to a significant decrease in the temperature of fluid, neglecting the rest of resistances
due to radiation and conduction. As a consequence, the heating rate of the stream is slow,
even though the heating rate of the electric device may be very high, and char and tar will
form, as previously mentioned. If the feed is preheated in another equipment or by another
electrical resistance, the problem will persist as the cause is not solved.

Reducing the reactor section to minimum would increase the velocity but decrease the
residence time, which involves a higher length and an increase in pressure drop through
the reactor, so there might be different pressures along the reactor. Although the heating
rate would also increase as the inner diameter of the tube is decreased, there will be a
section in the inlet zone with an insufficient temperature, clearly lower than the reaction
temperature, leading to char formation and tar formation.

A possible solution consists of using two streams, one containing the organic load
and the other containing only water [62–65]. Here, once the stream with only water is
pumped to a pressure greater than 221 bar and preheated to the reaction temperature
(higher than 374 ◦C) by resistive wires or a radiant furnace, it is mixed with the cold stream
with the organic compounds before entering a second furnace aimed at holding the reaction
temperature through a long reactor or a short reactor.

Yakunanto et al. [66] developed a computer fluid dynamics (CFD) model to gain
insight into the flow pattern, mixing, and heat transfer during SCWG of glycerol simulating
a tee fitting where the SCW stream and the cold glycerol stream were mixed. Their modeling
output was compared with the experimental study carried out by Guo et al. [67], who used
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a 10.85 mm ID tube for the SCW stream and another 4 mm ID tube to inject the glycerol
stream. The former was in a horizontal position and the latter in a vertical position. Figure 2
shows a scheme of this assembly. The authors reported that the simulation output was 6%
higher than the experimentally measured outlet temperature. Furthermore, the authors
verified that with a larger injection tube for glycerol, the recirculation inside the injection
tube increased, leading to a longer preheating of the glycerol, which is negative because
it leads to char formation, and a higher residence time, which is positive for achieving a
higher gas yield. The opposite was found with a smaller injection tube. These researchers
concluded that the best option was to use an injection tube with a small ID or increase the
flow rate of the injection tube, thus reducing the partial heating caused by flow recirculation,
and to position the tubular reactor horizontally.

 

 

 

 

Figure 2. Tee fitting and injection zone [66]. Reprint with permission from ref. [66]. Copyright
2017 Elsevier.

This is an approach to try to overcome the slow heating, but there are also some
aspects that put into question this way of operation: (1) it is not representative for scaling
up the facility, as the feed stream is unique, especially, when the water content is as high
as 80 wt.% or even more; and (2) slow heating also can occur in the mixing zone of the
two streams.

In the Matsumura group [68], a spiral reactor was developed and tested (Figure 3)
proposing a similar heat exchanger design as a process unit more effective than the con-
ventional shell-and-tube or plate-type heat exchanger. The good results with this spiral
reactor were further explained by Yi et al. [69] when the concept was applied to the SCWG
of methylhydrazine; they pointed out that in the spiral reactor the effective collision proba-
bility between reactants is higher than in a straight tube, because of the different proportion
of water around the reactants in such a geometry. However, looking at their results, at least
a 25% reactor length was needed to react the reaction temperature, so slow heating was not
effectively avoided.
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Another alternative consists of using a vertical or horizontal helically coiled tube,
as proposed by different researchers. Thus, as pointed out by some researchers in the
review by Vashisth et al. [70], vertical symmetric secondary flows appear due to buoyancy
forces and, at the same time, horizontal symmetric secondary flows arise; these secondary
flow structures make the mechanisms of heat transfer difficult, especially when consid-
ering changes in properties through the transition from subcritical to supercritical state
conditions. Zhao et al. [71] simulated turbulent SCW flow in straight and helical tubes of
3.75 mm ID, which is a common diameter of laboratory tubes, using the SST k–ω model
to obtain the effects of changes in properties, as well as buoyancy and centrifugal forces.
They achieved that axial velocities are speeded up as a consequence of the decrease in
density and the centrifugal forces, and hence, secondary flow becomes more and more
intense, thus increasing velocity gradients in the core region. Likewise, above the pseudo-
critical point, the temperature profile in the core region flattens because of the maximum
thermal conductivity, and the temperature distribution of the wall becomes more uniform.
Yukananto et al. [72] performed a CFD modeling of glucose SCWG in a tubular helical
reactor with an additional tube to inject the glucose stream with SCW coming through the
helical tube (Figure 4). They obtained slow heating of the flow inside the injection tube due
to recirculation in the tee fitting caused by the buoyancy forces. As a consequence, char
is formed.
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Li and Bai [73] performed another numerical study using the RNG k-ε model, assum-
ing a constant heating flux for the inner coil and the outer coil adiabatic, analyzing the effect
of specific heat, secondary flow velocity, and buoyancy. They found that the heat transfer
coefficient (HTC) reaches a maximum before the pseudocritical point and decreases as the
pressure increases under uniform heating, previously mentioned [51].

Regarding the HTC correlations for SCW, the one by Mokry et al. [74] has been widely
used and discussed (Figure 5). Most of the HTC correlations have been developed on the
basis of tests carried out in circular tubes with circumferential, uniform heating, which
matches well with most of the experimental setups used in SCWG.
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Another feasible way to solve this problem is the use of pieces in the input stream that
cause a swirling motion in the flow, which contributes to obtain turbulence and residence
time for the reaction, as already mentioned by Lester et al. [75] and also by other researchers.

The use of rifled or internally ribbed tubes heated uniformly or by one side has been
examined and recently reviewed by Gu et al. [76], and summarized the enhancement
of heat transfer in this type of geometrical configuration (Figure 6), mainly the higher
area-to-volume ratio, the higher turbulence from the induced vortexes, the appearance
of secondary and swirling flows due to the induced change in the fluid flow, and the
continuous disturbance of the boundary layer that promotes better mixing.
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Liang et al. [23] examined a way to try to increase the heating rate, using electromag-
netic induction instead of resistance as a heating source in a first stage and an electric
heating furnace to maintain the temperature. However, the basic problem related to
resistance to heat transfer inside the reactor still remains with this type of heating.
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In this regard, one more interesting option consists of using the principles of pro-
cess intensification as an effective method to enhance heat transfer in the SCWG process,
described in further detail in the next section.

4. Next Perspectives in Design

On the basis of the concept of a tubular reactor that may be extended to a multitube
reactor, some ideas may be proposed and discussed to enhance heat transfer by designing
involved process units.

There must be fast and effective heating inside the reactor, where fluid flows, and that
is the zone where the highest resistance to heat transfer is found. In this way, a new reactor
design could enhance this aspect. Here, process intensification may play an important role
and there are a number of possibilities.

First, a nonmetallic reactor made of quartz could be used, for instance, instead of
metallic alloys, such as Inconel 600 or 625, AISI 316, or different Hastelloy, along with
microwave heating, where the frequency would be adjusted to selectively supply the energy
required by the reactants to allow their molecules to overcome the activation energy, which
is the energy barrier. This could be more efficient for the energy supply required for the
reactions and even for the heating of all of the streams, which would take place more
quickly and selectively. In fact, considering an Arrhenius-type kinetic law, heating must
serve to increase the temperature term found in the exponential function. This heating
way, against electric heating by resistances (directly disposed on the tube wall or applied
externally to the reactor and transmitted by radiation), avoids temperature gradients that
produce an energy distribution, and hence energy losses.

Second, a maximum specific surface area should be used to further improve mass and
heat transfer. Thus, different and specific heat transfer equipment and reactors may be
applied to achieve this target. The diffusion-bonded compact heat exchanger is a compact
type heat changer that can operate up to 100 MPa or 900 ◦C, reducing up to 90% of the area
compared to multitube heat exchangers, where the heat transfer area per unit volume is at
least 1000 m2/m3, so the size can be reduced to 85% compared to conventional multitube
heat transfer [77]. This heat exchanger could be used as both a microreactor and a microheat
exchanger. Mortean et al. [78] evaluated heat transfer in a diffusion-bonded compact heat
exchanger at low flow rates for low Reynolds numbers, mainly in the laminar flow regime,
and more recently Sarmiento et al. [79] extended the study in a series of Reynolds numbers
between 2600 and 7500, thus covering the transition to a turbulent flow regime. Currently,
there are already several manufacturers [80,81], and Figure 7 shows the details of one
of them.
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Likewise, microchannel reactors show a surface-to-volume ratio much larger than that
of multitube reactors, which could be the logical selection for scaling up as tubes may be
multiplied as the flow rate does, especially considering that the lower thickness of small ID
tubes has mechanical resistance similar to that of tubes with larger ID and thickness under
the severe conditions of SWG. The use of microreactors with thousands of microchannels
allows for good mixing of reactants and the removal of heat is more efficient. There is
another possibility of a micro reactor plus a micro heat exchanger.

Regarding heat transfer in lab-scale tests, apart from using a different energy source,
the use of compact devices, such as those mentioned above, could allow for better heat
transfer performance using flue gas coming from a burner at high temperature acting as
the hot fluid. In addition, the design of a series of heat exchangers should be performed,
especially the one where the transition from subcritical to supercritical state takes place
because of the strong change in the physical properties of the feed, mainly wet biomass
with a high proportion of water.

Furthermore, the use of static mixers promotes turbulence without mobile parts
and presents resistance to interphase mass transfer that is noticeably smaller than in
conventional equipment, such as stirred tanks, and the flow pattern is close to the plug
flow and is more uniform, and the residence time of the molecules is closely distributed.
As a consequence, the collisions of molecules will be more effective and energy losses will
be lessened [82].

It is clear that despite the proposed devices being real, further research must be carried
out to improve their performance and applicability and, in particular, to reduce capital
costs so that they may be used at full scale.

5. Conclusions

In this short review, the shortcomings found in the SCWG experimental facilities and
heat transfer limitations are described, and the main causes are analyzed. The low flow
rate in lab-scale reactors leads to deterioration in heat transfer because the fluid velocity
is quite low and so turbulence is almost nonexistent. As a consequence, the probability
of forming char and tar is higher than if a better heat transfer took place. Beyond the
inlet zone of the reactor, the transition from subcritical to supercritical fluid state involves
a drastic change in physical properties, although the flow regime is too low to achieve
effective turbulent mixing. Similarly, a series of troubleshooting options are proposed to
overcome the limitations of heat transfer, such as using two streams, one containing the
organic load and the other containing only water, a spiral reactor as well as a vertical or
horizontal helically coiled tube, and also the use of pieces in the input stream that cause
a swirling motion in the flow. Despite all these attempts, the basic problem related to
resistance to heat transfer inside the reactor still remains with this type of heating, which
is essentially slow, at least in some part of the reactor. In this regard, several options with
respect to new perspectives in equipment design are described as different proposals to
improve experimental studies, based on the intensification process. Among these, we
propose the use of static mixers, a different way to heat the feed entering the reactor,
and the reactor design and heat exchangers, which could be integrated into a unique
equipment. To advance the technology from the lab scale, new experiments should be
carried out in facilities that include both conventional and new process units, to compare the
process performance using these experiments or the others, while keeping the remaining
operating conditions for comparison. Nevertheless, regardless of the results of these new
experiments, all previous experimental studies with the described limitations are useful,
enabling increased knowledge and understanding of different phenomena, which can be
applied in future development of the technology.
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