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Abel Tablada, Zdravko Trivic,

Miljana Horvat, Milena Vukmirović,
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Abstract: Metro-bikeshare integration, an important way of improving the efficiency of public
transportation, has grown rapidly during the last decades in many countries. However, most
previous analysis of metro-bikeshare transfer trips were based on limited sample size and the number
of recognized metro-bikeshare trips were not sufficient. The primary objective of this study is to derive
a method to recognize metro-bikeshare transfer trips. The two data sources are provided by Nanjing
Metro Company and Nanjing Public Bicycle Company over the same period from 9–29 March 2016.
The identifying method includes three steps: (1) Matching Card Pairs (2) Filtering Card Pairs and
(3) Identifying Card Pairs. The case study indicates that the Support Vector Classification (SVC)
performs best with a high prediction accuracy of 95.9% using seamless smartcards. The identifying
method is then used to recognize the transfer trips from other types of cards, resulting in 17,022 valid
metro-bikeshare transfer trips made by 2948 travelers. Finally, travel patterns extracted from the two
groups of identified transfer trips are analyzed comparatively. The method proposed presents new
opportunities for analyzing metro-bikeshare transfer trip characteristics.

Keywords: metro-bikeshare integration; smartcard; identifying method; prediction model

1. Introduction

Due to the heavy reliance on the automobile, several problems such as traffic conges-
tion, air pollution, respiratory health issues and climate change have been caused around
the world [1–3]. To reduce energy consumption and air pollution, the construction or exten-
sion of an existing metro system with sufficient capacity is often promoted [4]. However, the
metro network cannot be too dense regarding the feeding of traffic demand, especially in
the suburban areas of a city, due to the high construction costs and low service efficiency [5].
As a result, transit use is affected by the first mile/last mile problems [6], particularly by
the access/egress distances between metro stations and trip origin/destination locations
that are greater than that which travelers are typically willing to walk [7]. Therefore, an
effective multimodal transfer system has received attention from transport policymakers
and planners to increase the catchment of metro stations and attract more passengers [5].
As a feeder mode, cycling has a relatively faster speed than walking and is a more flexible
and economical service than bus transit [8]. The combination of bikes and metro is consid-
ered as a competitive alternative to private cars and feeder buses, because of the seamless
connections [9–11].

A marriage between bikeshare and metro offers an approach to sustainable transporta-
tion, a mode pursued by many countries. European countries such as The Netherlands,
Denmark and Germany, have already integrated public transit with bikeshare as its feeder
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mode [12]. Fishman et al. and Martens et al. suggested that “improved public transport
integration” is one of the most important developing trends in the bikeshare domain [13,14].
The bikeshare programs can reduce users’ travel time, increase the peak-hour capacity of
the metro and enlarge the service area of metro transport, which will improve the efficiency
of the metro and make it more attractive [15]. Combined with other public transportation,
a bikeshare system attracts more cyclists and saves much time for travelers [16]. To un-
derstand such trip-chain behavior of the transfer users can improve the performance of
metro–bikeshare integration.

The current bikeshare systems worldwide can be classified into two categories: docked
bikeshare and dockless bikeshare [17]. Unlike the dockless bikeshare system [18,19], which
allows users to find and use shared bikes through their smartphone APPs [20], docked
bikeshare systems instead require users to rent the shared bikes from designated docking
stations and then return them to available lockers in docking stations [21].

Nowadays, smartcards have been widely adopted in both metro and docked bikeshare
systems across many cities worldwide. It is necessary to identify valid metro-bikeshare
transfer trips from a massive amount of smartcard datasets for behavior analysis of metro–
bikeshare integration. The metro–bikeshare trip-chain behavior can be derived from the
information from three types of card, dedicated bikeshare cards, dedicated metro smart
cards and seamless smartcards for bikeshare and metro. Dedicated bikeshare cards can
only be used for public (docked) bikeshare systems. Dedicated metro smart cards can only
be used for metro. Finally, seamless smartcards allow use of different transport modes,
both shared bikes and the metro. Specifically, in this context there are two streams of
such trip-chain information: a. transfer records of the same travelers using only seamless
smartcards. b. transfer records of the same persons using different types of card. For the
former, the valid transfer records can be easily identified from the seamless smart cards of
the same identified IDs. Previous studies have utilized such information to reveal the travel
patterns of such metro–bikeshare integration. There is also abundant information from the
second data source [21,22]. However, to identify the transfer trip chain by matching the
metro and bikeshare smartcards used by the same travelers is a challenging task. This work
develops an identifying algorithm to meet such a challenge.

The main contribution of this research is that it develops a method to identify metro–
bikeshare transfer trips from bikeshare dedicated bikeshare card data and metro smartcard
data. Specifically, four types of conflict (personal attribute conflict, temporal conflict, spatial
conflict and highest frequency) are proposed to filter out invalid metro–bikeshare card
pairs. Secondly, five features (transfer time, transfer distance, transfer speed, the variance
of transfer speed and frequency of card pair) are defined as the input features for matching
metro–bikeshare trips. The experimental results and analysis presented in this study can
serve as benchmarks for future studies with regard to metro–bikeshare integration. The
algorithm can also work to integrate docked bikeshare trips with metro trips, and it can
be extended to match the transfer trips with dockless bikeshare legs. Moreover, previous
studies explored travel behavior on metro–bikeshare trips based on the survey data or the
spatial relationship between shared bikes and the catchment of metro stations. This study
can help fill the gap by recognizing metro–bikeshare trips for travel behavior analysis, and
further informs planners of how to integrate a bikeshare system around metro station areas.

The rest of the paper is organized as follows. The next section reviews existing
research on the recognition methods, travel characteristics of metro–bikeshare trips and
use of classifier in metro and bikeshare area. Subsequently, the paper introduces the study
area, data source, and the methodology used to recognize transfer trips from smartcard
data, followed by the results and conclusion.

2. Literature Review

There is extensive literature on the integration of (regular) cycling and metro trips,
covering topics such as travel patterns of bike–metro integrated trips [5,23], the accessibility
of bike–metro [24,25], bike parking issues around metro stations [26] and bike–metro
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transfer demand prediction [27]. This literature review focuses on the integration of
bikeshare with the metro, including recognition of metro–bikeshare transfer trips, and
metro–bikeshare usage patterns.

2.1. Recognition of Metro–Bikeshare Transfer Trips

Previous studies have adopted a variety of methods to understand how bikeshare
services interact with transit systems. A few studies focused on passengers who integrated
bikeshare with metro and conducted surveys to explore passengers’ preferences for travel
mode choices [28–30]. However, conducting surveys is costly and it is hard to get informa-
tion on precise travel time, location and variation in trip records for multi-days [21]. Some
studies used historical dockless bikeshare data and the spatial distributions of dockless
shared bikes around metro stations to recognize metro–bikeshare transfer trips. Ji et al. ex-
plored the temporal and spatial usage patterns of dockless bikeshare around metro stations
using dockless bikeshare trip data and metro station data [31]. If the origin/destination
location of a dockless shared bike falls within the buffer area of 150 m around each metro
station, then a transfer trip is expected to occur between dockless bikeshare and metro.
Lin et al. analyzed the catchment areas of dockless shared bikes connecting metro stations
using dockless trajectory data. They extracted the metro–bikeshare trips by tracing the
bikeshare trips which start or end within a distance of 50 m around the metro station
entrance [32]. Li et al. collected dockless data and adopted K-means clustering to ana-
lyze the travel patterns of dockless bikeshare systems around metro stations [33]. The
metro–bikeshare trips were recognized if the dockless shared bikes are located within
100 m around the metro station. Wu et al. selected the dockless bikeshare trips within
100 m originated from any metro station entrance and measured the cycling destination
accessibility of metro station areas [34]. Ni et al. compared the temporal–spatial distri-
bution of two modes (dockless bikeshare and taxi) as first mile/last mile connectors to
metros and found out that socio-demographic and built-environment factors impacted their
usage [35]. Different thresholds were set for recognizing transfer trips for connecting metro
networks,50 m for dockless bikeshare and 100 m for taxi, respectively. Xu et al. focused
on the parking problem of dockless bikeshare around an urban metro system. They found
that most of the dockless shared bikes were parked within a 300 m radius from the metro
stations. Liu et al. found that 150 m is an acceptable transfer distance between bikeshare
and metro and explored the spatiotemporal characteristics of bikeshare as a feeder mode
to metro [10]. Recently, studies used historical trip data from both docked bikeshare and
metro networks to recognize metro–bikeshare transfer trips. Ma et al. revealed the travel
patterns of metro–bikeshare integration by isolating metro–bikeshare transfer trips from
an integrated payment system in which users can use the same smart card to pay for both
docked bikeshare and metro trips [19]. Song et al. developed a spatial-temporal framework
to explore the potential competitive and complementary relationships between bikeshare
and metro systems by using docked bikeshare and public transit historical trip data [36].

2.2. Usage Patterns of Metro–Bikeshare Transfer Trips

Numerous studies have been conducted to investigate the analysis of metro–bikeshare
integration behavior. Using a nested logit model, Ji et al. found that female travelers,
the elderly, and low-income commuters were less likely to use bikeshare integrated with
the metro [28]. In addition, commuters with bike theft experience are more likely to use
bikeshare integrated with metro. Yang et al. reported that male commuters who have
experienced unpleasant trips were more likely to be attracted to metro–bikeshare integra-
tion [29]. Audikana et al. reported that long-trip-distance commuters were more likely to
use bikeshare as a complementary mode to public transit [37]. Ma et al. analyzed the usage
pattern of metro-bikeshare from four aspects: transfer time, date, space and access/egress
modes [21]. They found that metro-bikeshare travel patterns vary across different user
groups. Ji et al. found that the access/egress distance for metro stations had a negative
association with metro–bikeshare integration [22]. Bachand-Marleau et al. reported that
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bikeshare users with a regular subscription (i.e., monthly or annual membership) were
more inclined to integrate bikeshare with metro [38]. Population density within the metro
station’s catchment area is negatively associated with passenger intention to use bikeshare
when they exit from metro stations [9,39]. A few studies found a strong positive association
between bikeshare usage and proximity distance to train and metro stations [40,41], espe-
cially near the interchange stations and terminal stations on metro lines [39]. A high density
of bikeshare stations near passengers’ homes encouraged metro–bikeshare integration [42].
Bikeshare was found to be more closely connected with metro ridership in suburban or
exurban areas than core urban areas [43]. Xu et al. reported that the integration between
bikeshare and metro was greater in smaller, less transit-intensive cities than in bigger
cities [44].

2.3. Use of Classifiers in Metro and Bikeshare Area

Several classifiers have been used for demand forecasting, passenger flow forecasting
and travel mode selection forecasting in the field of metro and bikeshare. Xiao et al. used
a naïve bayes (NB) classifier with selection procedures to detect the next travel modes
after metro trips [45]. Chin et al. applied NB to explore the impact of weather data on
short trips for cyclists [46]. Support vector machine (SVM) can also generate selection
procedures [47,48], identify travel mode and predict the usage demand of bikeshare sys-
tems [49]. Apart from forecasting demand for bikeshare, Joo et al. used SVM to classify
the bicycle environment, defined by the safety and comfort of the riders [50]. In addition,
a large number of studies have also applied SVM to the prediction of metro passenger
flow [51–54]. Similarly, the random forest (RF) method can also provide a good under-
standing of passengers’ travel mode choice and the prediction of metro passenger flow [55].
Lin et al. used RF combined with a Long Short-Term Memory (LSTM) model to forecast
short-term metro passenger flow [56]. Some research has focused on short-term forecasting
for bikeshare usage with RF, which can help cyclists plan their trips and help operators
make effective decisions properly [57–60]. Similar to the previous algorithms, decision tree
(DT) can also predict bikeshare demand and short-term metro ridership [61]. In addition,
Lee et al. inferred bikeshare trip purpose with DT and revealed the causes of bikeshare
movement in the city [62]. In other studies, gradient boosting decision trees or gradient
boosting regression trees were also employed in predictive research into bikeshare and
metro [61,63–65].

2.4. Research Gap

Most of the aforementioned studies aim to give a portrait of metro–bikeshare trip
chaining based on survey data or the spatial relationship between the rent/return location
of shared bikes and the metro stations. Studies using survey data are difficult to implement
at a multi-day level and to explore the integration usage from a spatial-temporal perspective.
When the focus is on historical bikeshare trip data and metro station data, the transfer
distance threshold between the rent/return location of bikeshare and the metro stations
varies from 30 m to 300 m in different case studies, thus the recognized metro–bikeshare
transfer trips are not sufficiently compelling. Recently, Ma et al. recognized metro-bikeshare
transfer trips derived from seamless smart cards based on the same identified IDs [21].
However, there are also abundant passengers who use both seamless smartcards for metro
and dedicated bikeshare cards to form metro–bikeshare transfer trips. To the best of our
knowledge, proposing a method to recognize metro–bikeshare transfer trips for the same
persons who are using two different types of smartcard, which can only be used for either
accessing metro or bikeshare system, respectively, is rare. This paper aims to fill this gap
and advances a method to combine metro smartcard records and bikeshare smartcard
records, which cannot be connected by the smartcard ID.
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3. Methodology
3.1. Study Area and Data Source

Nanjing is the capital of Jiangsu province and a core area of the Yangtze River Delta
economic zone, which has long ranked second as the commercial center of the East China
region, following Shanghai. The city covers an area of 6587 km2 and has an expected
urban population of 9.1 million by 2020. By the end of 2017, there are 9 metro lines with
164 stations, which cover 347.38 km, and 2576 docked bike stations with 100,115 bikes [66].

Bikeshare smartcards used in Nanjing fall into two categories: seamless smartcards
that are sold by Nanjing Metro Company and dedicated bikeshare cards that are released by
Nanjing Public Bicycle Company. The former allows the usage of both the public bikeshare
system and other public transportation modes (such as metro, bus and ferry). At the same
time, the seamless smartcard records the transactions of all public transport trips with the
same IDs. The second is only used for bikeshare. Therefore, there are two trip streams in
metro–bikeshare integration: a. transfer records of the same travelers using only seamless
smartcards (with the same card IDs); b. transfer records of the same persons who are using
two different types of smartcard (with different card IDs). The main assumption for the
first dataset is that the two transfer legs recorded by the same seamless smartcards (thus
the same IDs) are conducted by the same travelers.

This study aims to identify transfer trips that belong to the same travelers from the
second data source, namely metro–bikeshare transfer trips that are identified through metro
smartcard data and bikeshare smartcard data. The data sources are obtained for the period
from 9 March 2016 to 29 March 2016, from the Nanjing Metro Company and the Nanjing
Public Bicycle Company, respectively, shown in Figure 1.

Figure 1. Structure of the datasets of Nanjing Metro and Bikeshare (Note: “Member ID” of dedicated
bikeshare cards begins with letters “NJ”, whereas the ID of seamless smartcards begins with number
“9”). (a) Structure of the datasets of Nanjing Bikeshare, (b) Structure of the datasets of Nanjing Metro.
Note: User ID are not fully presented to ensure privacy of smartcard users.
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Bikeshare smartcard data (Figure 1a) and metro smartcard data (Figure 1b) have the
same structure, including three profiles regarding trips, stations and customers. The trip
profile includes the following anonymous information: member ID, trip origin date and
time, trip destination date and time, trip origin station ID, trip destination station ID. The
station profile includes station ID and the longitude/latitude of the docking or metro
station. The customer profile includes age information from bikeshare users, and card types
of metro smartcards regarding different age groups (e.g., Student card (below 18 years old),
elderly card (above 60 years old)). The age group of holders of student cards and elderly
cards can be inferred.

3.2. Methodology for the Identification of Metro–Bikeshare Transfer Trips

The proposed method is used to identify valid transfer trips recorded by a dedicated
bikeshare card (“Member ID” begins with letters “NJ”) and a metro card (“Member ID”
begins with letters number “9”) used by the same person, which cannot be recognized
with the same ID. Note that the transfer trip information derived solely from the seamless
smartcard for the same period is used for algorithm demonstration, model calibration
(training), and model validation. This is because the ground truth information is available:
the transfer trips in two legs recorded by the same seamless smartcards are always featured
by the same card IDs, and therefore valid transfer trips can be easily identified by checking
if the records of two connected legs have the same IDs. Next, the validated methodology
will be further applied to the second data type.

This method contains three main steps: (1) Matching Card Pairs; (2) Filtering Card
Pairs; (3) Identifying Card Pairs. Figure 2 and Algorithm 1 illustrate the schematic process
of the method. In the rest of this section, we will elaborate the method step by step.

Algorithm 1: Generation of Metro-Bikeshare Trips

Input: card pair database call, judge value jud
Output: prediction accuracy acc
1 correct_predction← 0 # Recording the number of correct prediction
2 N← total number of card pair
2 for i← 1 to N do
3 x← Average of all match records prediction value in call[i]
4 if x > jud then
5 correct_predction← correct_predction + 1
6 end if
7 end for
8 acc← correct_predction / |call|
9 return acc

3.2.1. Generating Card Pair

As a basic element in the algorithm, we introduce a concept called Card Pair, which
describes the potential connection between two smartcard types (metro and bikeshare)
according to two attributes: maximal transfer time and transfer distance.

• Transfer time and distance range

Transfer time (T_trans) refers to the egress/access time duration between the moment
of exiting/entering the metro ticket gate and the moment of leasing/returning a public
bike. This definition is based on the fact that smartcard data in Nanjing metro stations
is only collected at the moment that a passenger exits or enters through the metro ticket
gate. Thus, the walking time from the metro compartment/platform to the ticket gate is
not captured in the data analysis. Transfer distance (D_trans) is defined as the Euclidean
distance between the locations of metro stations and bikeshare docking stations, which is
calculated through their geographic coordinates. The Euclidean distance is commonly used
in bikeshare related literature [67–69].
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Previous studies showed that most passengers finish their transfer trips within 300 m
and 10 min [21]. Therefore, in this study, transfer distance less than 300 m (D_trans ≤ 300 m)
and transfer time less than 10 min (T_trans ≤ 10 min) are defined as a basic matching rule
to generate Card Pairs.

• Two types of transfer trip

“Access” transfer trip: return bikeshare and enter metro within maximum transfer
distance of 300 m and transfer time of 10 min; “Egress” transfer trip: exit metro and lease
bikeshare within maximum transfer distance of 300 m and transfer time of 10 min [21].

• Card pair generation process

Card pair indicates a potential combination of a metro trip recoded by a seamless
smartcard and a bikeshare trip recorded by a dedicated bikeshare card, which was con-
ducted by the same card owner. Each card pair consists of a set of metro–bikeshare matching
records satisfying the rule of a transfer distance and transfer time. There are four main
steps: (1) Transfer time calculation; (2) Transfer distance calculation; (3) Testing matching
rule; (4) Card pair generation.

Figure 3 shows an example of the process for card pair generation. In this example,
we take the trip records only from the seamless smartcard with the same ID, since it can be
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assured that the transfer trips were accomplished by the same person. The transfer time
is calculated as 100 s (the time difference between the bikeshare return time 9:27:19 and
the metro enter time 9:28:59). The transfer distance is calculated as 95.78 m (the distance
between the bikeshare docking station 14,023 and the metro station 5). The same process
can be used to generate card pairs with different card IDs.
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970071260853).

3.2.2. Filtering Invalid Card Pair

Based on the method presented in “Generating card pair”, we might obtain a substan-
tial number of matching card pairs that do not reflect the actual transfer trips performed by
the same individual travelers (referred to as invalid card pairs). In this work, four types of
conflicts are considered to filter out invalid card pairs.

• Personal attribute conflict

As it is assumed that a transfer trip recorded by two smartcards in a card pair should
belong to a same person, the age information from the bikeshare card must be consistent
with that of its paired metro card, which could be inferred from the card type. If not, then
this card pair must be an invalid match and all its matching records should be wiped out.
For example, if the type of a metro card shows that its owner is over 60, but its paired
bikeshare card shows that the user age is 24, this is conflict information.
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• Temporal conflict

Bikeshare riding duration is defined as TimeBikeshare = {Lease time, Return time}, and
metro riding duration defined as TimeMetro = {Enter time, Exit time}. Both are available
from their respective trip records. If TimeBikeshare and TimeMetro intersect, the situation will
be determined as a temporal conflict. As a result, all the related matching records from
the card pair should be wiped out due to the fact that the same person cannot use two
transport modes at the same time. The concept of temporal conflict is shown as follows:

TimeBikeshare ∩ TimeMetro 6= ∅ (1)

Figure 4 shows an example of the process considering temporal conflict. The TimeMetro
of situation (A) is 7:06:10–7:28:11, and the TimeBikeshare of situation (A) is 7:33:47–7:43:50,
and TimeBikeshare ∩ TimeMetro = ∅. Therefore, temporal conflict does not occur. However,
the TimeMetro of situation (B) is 8:20:34–8:47:03, and the TimeBikeshare of situation (B) is
8:33:22–8:44:09, and the TimeBikeshare ∩ TimeMetro 6= ∅. Therefore, temporal conflict occurs.
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• Spatial conflict

We introduce the rule for spatial conflict: the transfer distance between bikeshare
stations and metro stations should be smaller than the transfer period times the (predefined)
maximum travel speed. If it is not a walking transfer between the metro and bike station,
it is not a metro–bikeshare transfer. Therefore, the walking speed of 5 km/h is regarded
as the maximum travel speed [38]. The maximum travel speed is used to calculate the
maximum transfer distance. Spatial conflict occurs when the calculated maximum transfer
distance is lower than the actual transfer distance. The concept of spatial conflict is shown
as follow:

Max DistanceWalking = TimeTrans f er ×Vmax < DistanceTrans f er (2)



Energies 2022, 15, 203 10 of 19

Figure 5 shows an example of the process considering spatial conflict. The TimeTrans f er
of situation (A) is 1042 s (the time difference between metro exit time 18:13:12 and the bike-
share lease time 18: 30:34), and Max DistanceWalking = 1447.2 m (calculated by the maximum
walking speed and transfer time duration) which is longer than the DistanceTrans f er= 1302 m
(through their geographic coordinates of bikeshare and metro stations). Therefore, spatial
conflict does not occur. However, the TimeTrans f er of situation (B) is 441 s, and
DistanceWalking = 612.5 m, which is shorter than the DistanceTrans f er = 835 m. Therefore,
spatial conflict occurs.

Energies 2022, 14, x FOR PEER REVIEW 10 of 19 
 

 

• Spatial conflict 
We introduce the rule for spatial conflict: the transfer distance between bikeshare 

stations and metro stations should be smaller than the transfer period times the (prede-
fined) maximum travel speed. If it is not a walking transfer between the metro and bike 
station, it is not a metro–bikeshare transfer. Therefore, the walking speed of 5 km/h is 
regarded as the maximum travel speed [38]. The maximum travel speed is used to calcu-
late the maximum transfer distance. Spatial conflict occurs when the calculated maximum 
transfer distance is lower than the actual transfer distance. The concept of spatial conflict 
is shown as follow:  Max 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ௐ௔௟௞௜௡௚ = 𝑇𝑖𝑚𝑒்௥௔௡௦௙௘௥ ൈ 𝑉௠௔௫ ൏ 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒்௥௔௡௦௙௘௥ (2)

Figure 5 shows an example of the process considering spatial conflict. The 𝑇𝑖𝑚𝑒்௥௔௡௦௙௘௥  of situation (A) is 1042 s (the time difference between metro exit time 
18:13:12 and the bikeshare lease time 18: 30:34), and Max 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ௐ௔௟௞௜௡௚ = 1447.2 m (cal-
culated by the maximum walking speed and transfer time duration) which is longer than 
the  𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒்௥௔௡௦௙௘௥ = 1302 m (through their geographic coordinates of bikeshare and 
metro stations). Therefore, spatial conflict does not occur. However, the 𝑇𝑖𝑚𝑒்௥௔௡௦௙௘௥ of 
situation (B) is 441 s, and 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒ௐ௔௟௞௜௡௚  = 612.5 m, which is shorter than 
the 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒்௥௔௡௦௙௘௥ = 835 m. Therefore, spatial conflict occurs. 

 
Situation (A) 

 
Situation (B) 

Figure 5. Process of considering spatial conflict. 

• Highest Frequency 

Figure 5. Process of considering spatial conflict.

• Highest Frequency

After deleting the card pairs with personal attribute conflicts, temporal conflicts, and
spatial conflicts, a bikeshare card ID may be matched with several metro card IDs in the
remaining card pairs. The identification frequency means the frequency of a card pair in
the remaining card pairs. A bikeshare card ID may have several identification frequencies
of card pairs. We will keep the card pair with the highest identification frequency and
delete others. The highest frequency of the card pair implies the highest possibility of a
valid matching.
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3.2.3. Valid Card Pair Identification

In this section, we establish five prediction models to identify valid pairs of metro
and bikeshare smartcards after the filtering process. The models are Naive Bayes, Support
Vector Classification, Random Forest, Decision Tree and Boosting Algorithm.

There also exist both valid and invalid card pairs in the full list of generated card pairs.
The main objective of the prediction models is to identify the valid card pairs, based on the
transfer patterns observed in the matching records. Specifically, we extract transfer features
and define the identifier to each matching record. Then, we construct a new dataset based
on card pair in order to classify the matching record (See Table 1). To this end, the prediction
model is used. The result from the prediction model for each matching record is called
the Predicted Identifier. Then, the concept of Card Pair Value is proposed to determine
whether the two cards belong to the same person. The Card Pair Value will compare with a
threshold and then obtain the final prediction. Finally, we propose a performance indicator
to quantify the accuracy of different models.

Table 1. The structure of the dataset used in the model.

Card Pair Transfer Time (s) Transfer
Distance (m)

Transfer
Speed (m/s) Speed VAR Frequency

(Times)

Matched card pair

970475145994–970475145994 288 109.97 0.382 0.008 4

970475145994–970475145994 204 109.97 0.539 0.008 4

970475145994–970475145994 176 109.97 0.625 0.008 4

970475145994–970475145994 212 109.97 0.519 0.008 4

Unmatched card pair

970071247468–990776080090 72 94.25 1.309 2.600 4

970071247468–990776080090 434 94.25 0.217 2.600 4

970071247468–990776080090 22 94.25 4.284 2.600 4

970071247468–990776080090 187 94.25 0.504 2.600 4

• Features extracting and identifier definition

Five features of the matching records for the prediction model are defined in view of
the transfer pattern and are shown as follows:

(a) Transfer time; (b) Transfer distance; (c) Transfer speed: transfer distance divided by
transfer time; (d) The variance of transfer speed: calculated by all the matching records of
one card pair; (e) Frequency of card pair: the number of times one card pair appears in the
dataset (over 21 days in this study).

Transfer time, distance and speed are the basic parameters of a transfer trip. Besides,
speed VAR is calculated to reflect the variance of travel speeds among these trips. High
frequency identification of a card pair means that these two cards more often satisfy the
matching rule, indicating a higher possibility that these two cards are used by the same
person.

To examine whether the extracted card pair is the valid one, we define the concept
of Identifier. By observing the card ID, the value of the Identifier can be determined.
Specifically, if the two card IDs in the card pair are the same, the card pair will be recorded
as valid and the Identifier for this card pair is 1. Otherwise, the card pair will be invalid,
and the Identifier is 0.

• Dataset construction

The dataset for prediction modeling consists of three parts: card pair, input parame-
ters/features and identifier. The format of the dataset is shown in Table 1. Transfer time,
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Transfer distance and Transfer speed vary between different matching records. Speed VAR
and Frequency should be the same between the matching records that belong to the same
card pairs, but different from the other card pairs. This dataset will be used to train the
prediction models.

• Definition: predicted identifier, card pair value and prediction value of card pair

I. Predicted Identifier: When Predicted Identifier equals 1, the trip of this card pair is
predicted as a valid trip. When Predicted Identifier equals 0, the trip of this card pair is
predicted as an invalid one.

II. The Average of Predicted Identifier: Predicted Identifier is used to calculate The
Average of Predicted Identifier, which can be calculated as Equation (3).

The Average o f Predicted Identi f ier =
The sum o f Predicted Identi f ier

Total number o f trips generated by the Card Pair
(3)

III. Predicted Value of Card Pair: To depict the prediction results for card pairs, the
Prediction Value of Card Pair is defined based on Identifier Threshold and The Average of
Predicted Identifier, which can be calculated by Equation (4). When the Prediction Value of
Card Pair equals 1, the card pair is considered as valid according to the prediction result.
Otherwise, the Prediction Value of Card Pair equals 0, and the card pair is predicted as
an invalid card pair. Before the determination of Prediction Value of Card Pair, Identifier
Threshold is defined to represent to what extent the card pair can be considered as valid by
the prediction model.

Prediction Value o f Card Pair =
{

1 , i f The Average o f Predicted Identi f ier > Identi f ier Threshold
0 , i f The Average o f Predicted Identi f ier ≤ Identi f ier Threshold

(4)

Corresponding to the Prediction Value of Card Pair, the range of Identifier Threshold
is set between 0 and 1. We set four values (0.5, 0.6, 0.7, 0.8) for this parameter to find the
best one in the sensitivity analysis.

Table 2 illustrates prediction results for seamless card pairs. Identifier Threshold is
set to 0.6 as an example. The output of the prediction model is the Prediction Value of
Card Pair, which is binomial. For model evaluation, the validity of seamless card pairs is
observed from card IDs, and then compared with the predicted validity. Prediction results
are classified into four types, including a valid card pair predicted as valid; a valid card
pair predicted as invalid; an invalid card pair predicted as valid; and an invalid card pair
predicted as invalid.

• Model evaluation

The application of prediction models is to extract valid card pairs for transfer behavior
investigation. Predicted valid card pairs (the card pairs labeled as “a valid card pair
predicted as a valid one” and “an invalid card pair predicted as a valid one”) are used to
calculate the Prediction Accuracy P (Equation (5)). The value of Prediction Accuracy P
indicates the proportion of correct prediction (the card pairs labeled as “a valid card pair
predicted as a valid one”, which are observed values) among all predicted valid card pairs
(the card pairs labeled as “a valid card pair predicted as a valid one” and “an invalid card
pair predicted as a valid one”, which are predicted values).

P =
VV

VV + IV
(5)

where VV represents the number of card pairs labeled as “a valid card pair predicted as
a valid one” and IV represents the number of card pairs labeled as “an invalid card pair
predicted as a valid one”.
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Table 2. Four types of prediction result for card pairs.

Card Pair Predicted Identifier The Average of Predicted
Identifier Prediction Value of Card Pair

993171107872–993171107872 1

0.75 (> threshold 0.6) 1 (a valid card pair predicted
as a valid one)

993171107872–993171107872 0

993171107872–993171107872 1

993171107872–993171107872 1

976675052251–976675052251 0

0 (< threshold 0.6)
0 (a valid card pair predicted

as an invalid one)
976675052251–976675052251 0

976675052251–976675052251 0

970071637524–996572494834 0

0.67 (> threshold 0.6)
1 (an invalid card pair

predicted as a valid one)
970071637524–996572494834 1

970071637524–996572494834 1

970071637524–970074774741 0

0.33 (< threshold 0.6)
0 (an invalid card pair

predicted as an invalid one)
970071637524–970074774741 0

970071637524–970074774741 1

4. Case Study

In this section, the data solely from seamless smartcards that contain both bikeshare
and metro trip legs are used to train the proposed models. After choosing the best perform-
ing prediction model, we further apply to identify the card pairs that consist of dedicated
bikeshare card and metro smartcard data. Finally, general patterns between the seamless
card users and dedicated bikeshare card users are compared to validate the model

4.1. Card Pair Generation and Filter

Firstly, the dataset of seamless cards for bikeshare and metro is used to generate the
matching records. Based on the card pair generation methods, 2,143,229 matching records
are extracted. Then, 240,828 matching records are deleted due to personal attribute conflict;
609,678 matching records are deleted due to temporal conflict; 360,610 matching records are
deleted due to spatial conflict; and 705,647 matching records are deleted due to frequency
conflict. After the filtering step, there are 226,466 matching records left and all these trip
records belong to 217,147 different card pairs.

4.2. Model Training

Five models were applied to predict the validity of extracted card pairs, Naive Bayes,
Support Vector Machine, Random Forest, Decision Tree and Boosting Algorithm in Python
package named “sklearn”, which are: the “Multinomial NB” function in “naïve_bayes”
module; the “SVC” function in “svm” module; the “Decision Tree Classifier” in “tree”
module; “Random Forest Classifier” and “Gradient Boosting Classifier” function in “en-
semble” module. All the models are trained and tested on a Windows 10 computer with
CPU (Intel(R) Core (TM) i5-5200U CPU @ 2.20 GHz), 16 GB random-access memory (RAM)
and one NVIDIA GeForce 940 M with 1 GB memory.

For simplicity, transfer time, transfer distance, transfer speed, speed variance and
identification frequency are abbreviated respectively as T, D, V, V’ and F; Multinomial Naive
Bayes, Support Vector Classification, Random Forest Classifier, Decision Tree Classifier and
Gradient Boosting Algorithm are abbreviated respectively as MNB, SVC, RFC, DTC and
GBC. The input parameter is added one by one in the order of T, D, V, V’ and F to find the
best input parameter. Four different Identifier Threshold values (0.5, 0.6, 0.7 and 0.8) are
used to test five models with different input parameters. We assume that the card pairs
with low frequency may affect the prediction accuracy of models. In order to explore the
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influence of frequency on model prediction accuracy, we run the models by putting four
different datasets, including “All the card pairs”, “All the card pairs with more than one
frequency”, “All the card pairs with more than two frequencies” and “All the card pairs
with more than three frequencies”.

Figure 6 only presents the predicting accuracy of five predicting models using the
dataset “All the card pairs with more than three frequencies” (because of its high predicting
accuracy overall). Results show that the high predicting accuracy for each dataset is 0.467
of RFC, 0.620 of DTC, 0.805 of DTC, and 0.959 of SVC, respectively. The total training
time consumed by MNB, SVC, RFC, DTC and GBC are similar, all at around 0.5–1.5 s,
where MNB is the fastest and SVC is the slowest. Nevertheless, the training time of all
prediction models is acceptable. When using the SVC model with parameters of TDVV’F
and Identifier Threshold of 0.5 or 0.6, the highest prediction accuracy (0.959) occurs. For
each prediction model with parameters of TDVV’F, higher prediction accuracy can be
obtained by setting Identifier Threshold to 0.5 and 0.6, rather than 0.7 and 0.8. Figure 6a,b
show that using parameters of TDVV’F, for SVC, GBC, the prediction accuracies are the
same with an Identifier Threshold of 0.5 and 0.6, which are 0.959 and 0.886, respectively. For
RFC and MNB, models with Identifier Threshold of 0.6 outperform those with Identifier
Threshold of 0.5. In contrast, DTC performs better in Figure 6b. based on the prediction
results analysis, SVC model with parameters of TDVV’F and Identifier Threshold of 0.6 is
chosen for model application.
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4.3. Model Application

This section shows the model application on the dataset of seamless card pairs and
the dataset of dedicated bikeshare card and metro smartcard. We identified all the card
pairs using dedicated bikeshare card data and metro smartcard data. The data structure
of dedicated bikeshare card and dedicated metro smartcard are the same as that for the
seamless card, which means that all the input parameters can be obtained using the pro-
posed methods. Firstly, we derived 1,903,316 card pairs consisting of 19,634,609 matching
records from the card pair generation process. After checking personal attributes, temporal,
spatial and frequency conflicts, invalid records were deleted and 3101 card pairs consisting
of 17,687 matching records remained to be put into the trained prediction model. Finally,
2948 card pairs consisting of 17,022 identified records were obtained.

The temporal patterns of predicted valid transfer trips are visualized respectively.
There are similarities between these two types of transfer trips, which were analyzed
in detail. Figure 7 shows the temporal distribution of two groups of the transfer trips
identified by the prediction model. The selected prediction model is the Support Vector
Machine. Transfer time, transfer distance, transfer speed, speed variance and identification
frequency are used as input features of trips. The parameter Identifier Threshold is set as
0.6. Figure 7a consists of 17,022 matching records extracted from seamless smartcard data
for bikeshare and metro. Figure 7b consists of 226,466 matching records extracted from
dedicated bikeshare card data and metro smartcard data.
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As Figure 7 shows, obvious travel peaks can be observed in the morning (7:00–9:00)
and in the afternoon (17:00–19:00) on workdays for both identified transfer trips, which
reveals that the main purpose of integration bikeshare and metro integration is commuting.
For the transfer trips extracted from seamless bikeshare smartcard data and metro smartcard
data, there are 46% and 24% of users a week traveling during the morning peak hours and
afternoon peak hours, respectively. Similarly, for transfer trips extracted from dedicated
bikeshare smartcard data and metro smartcard data, there are 65% and 20% of users on
workdays who are traveling during the morning peak hours and afternoon peak hours,
respectively. It can be seen that, for both identified transfer trips, more people travel during
the morning peak hours, compared with afternoon peak hours. This is reasonable because
after-work trips in the afternoon tend to have less strict time constraints and are more likely
to relate to diversified travel purposes than morning commuting trips. Specifically, for
both transfer trips, during the morning peaks, trips during 8:00–9:00 are more than that
during 7:00–8:00. During the afternoon peak hours, the number of trips during 17:00–18:00
is higher than that during 18:00–19:00.

5. Conclusions

This paper explores the bikeshare mode as a feeder to metro by mining smartcard
data. The matching method consists of three steps: (1) Generating card pair using a max-
imum transfer distance of 300 m and maximum transfer time of 10 min. (2) Filtering
the invalid card pair using personal attributes, temporal, spatial and frequency conflicts.
(3) Using prediction models to recognize valid transfer trips recorded by metro and bike-
share smartcards. SVC model (accuracy of 95.9%) is chosen with input parameters including
transfer time, distance, speed, variance of speed, frequency. Identification Threshold equals
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to 0.6. Finally, by comparing the temporal patterns of two groups of identified transfer
trips, the identifying method is validated.

This study has several limitations. First, although personal attributes, temporal
attributes, and spatial attributes have been considered for matching the metro-bikeshare
trips, land use attributes around metro stations are not considered. Second, the authors
only used docked bikeshare vendor data, which provides an incomplete picture of metro–
bikeshare trip recognition. Future research can be developed along the following directions.
First, although the prediction accuracy of SVC using card pair identification results can
reach 0.959, the prediction results can still involve invalid card pairs. It is possible that a
metro trip and a bikeshare trip generated by two different travelers may be predicted as
a transfer trip by one traveler. To solve this problem, advanced deep learning methods
can be used to improve the model prediction accuracy, especially for card pairs with low
frequency. Second, this work could be extended by obtaining data over a longer period
and including more features, which helps in the in-depth exploration and analysis of travel
behavior. Last but not least, future work could apply the proposed method to identify
transfer behavior between dockless bikeshare trip legs and public transit trip legs.
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