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Abstract: In this paper, a new method to calculate the self-inductance of the Archimedean spiral
coil is presented. The proposed method is derived by solving Neumann’s integral formula, and the
numerical tool is used to calculate the inductance value. The calculation results are verified with
several conventional formulas derived from the Wheeler formula or its modified form and 3D finite
element analyses. The comparison with simulation results shows that the conventional formula
has an error of above 40% compared to the proposed method, which has below 7% when the wire
diameter is reduced. To further check the validity, different sizes of the spiral coil are fabricated
by changing the geometrical parameters such as the number of turns, turn spacing, inner radius,
outer radius, and wire diameter. Litz wire is chosen for making the spiral coil, and bobbins are made
using a 3D printer. Finally, the calculation results are compared with the experimental result. The
error between them is less than 2%. The comparison with the conventional formulas, simulation,
and measurement results shows the accuracy of the proposed method. This method can be used to
calculate the self-inductance of wireless power coils, inductors and antenna design.

Keywords: Archimedean spiral; Neumann integral formula; self-inductance; spiral coil

1. Introduction

The spiral coil has been widely used in electromagnetic applications such as wireless
power transfer, radio frequency identification, near field communication, and biomedical
implant. There are many types of spiral coil such as the circular, rectangular, hexagonal,
and octagonal spirals [1–8]. In this paper, the Archimedean spiral coil is chosen due to its
simple geometry and high performance.

The Archimedean spiral is a circular spiral named after the mathematician Archimedes [9].
It is the locus of points corresponding to the locations over time of a point moving away from
a fixed point with a constant speed along a line that rotates with an angular velocity.

To design the spiral coil, one of the main factors is self-inductance. It depends on
geometrical parameters such as the number of turns, inner radius, turn spacing, wire
diameter, and outer radius. In high-frequency application, the wire diameter is considered
an important parameter.

To calculate the self-inductance of spiral coils, many studies have been conducted [10–16].
However, most of them adopted the Wheeler formula or its modified form, which is an
empirical method and does not reflect the real physical phenomena. Moreover, the accuracy
of the conventional formulas is limited, and the error increases when the wire diameter is
changed. Further, all the parameters which influence the inductance are not included.

In [11], the self-inductance of the circular spiral coil is derived from the modified
Wheeler’s formula. This formula is inaccurate for most structures when the wire diameter
is just changed. In other words, this formula has not taken into account the wire diameter.
The difference between the calculation result and 3D finite element method (FEM) is
over 40%.

In [12], the self-inductance of the spiral coil is calculated using the Harold A. Wheeler
approximation. It is applied at low frequency applications using an enameled copper wire.
Therefore, it is not suitable for high frequency applications using Litz wire.
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In [13,14], the self-inductance of a circular-spiral coil is approximated through modifi-
cation of Wheeler formula. This formula is derived by using the average of the initial and
final diameter of a spiral coil and taking their logarithm. The wire diameter has not been
taken into account too in these formulas.

In [15], the effect on structural parameters of the spiral coil is studied on the self-
inductance. The spiral coils are designed and developed in the FEM-based commercial
software and verified experimentally. However, due to the absence of the analytical
background, it is highly dependent on the simulation result.

In [16,17], the wire diameter is included in the calculation of the self-inductance.
For Litz wire with a uniform wire diameter and an evenly distributed current density, a
geometric mean distance method is proposed. In this method, the difference between the
calculation result and the FE analysis increase as the number of turns increases.

Instead of the analytical method, the self-inductance of the spiral coil is approximated
empirically [18–20] simplified the spiral into several concentric circular coils to estimate
the self-inductance. This method increases the computational complexity. Therefore, there
is some inconsistency between the approximated and measurement value.

The FEM is one of the best methods to calculate the self-inductance of the spiral coil
with any geometry. However, it requires computational burden. To address this problem,
we propose a new accurate method for the self-inductance of the Archimedean spiral coil.
The proposed method is derived analytically by solving Neumann’s integral formula. The
Archimedean general equation is used to decide the inner and outer radius of the spiral
coil. Each derivation step is presented in detail. The spiral inductance of any configuration
can be obtained by putting its parameter numerically in the final inductance equation.

The inductance of several spiral coils are calculated. The calculation results are verified
by finite element method (FEM) ANSYS Maxwell software. For experimental validation,
a 3D printer is used to construct special bobbins for winding the spiral coil. Finally, a
comparison between the calculation and measurement results certify its correctness.

2. The Self-Inductance of the Archimedean Spiral Coil

The self-inductance primarily depends on geometric parameters such as the number
of turns, the gap between turns, the wire diameter, and the initial and final radius of the
Archimedean spiral coil. Figure 1a shows the Archimedean spiral coil. In this paper, the
self-inductance of the Archimedean spiral coil can be computed by Neumann’s formula as
shown in Equation (1).
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Neumann derived this formula for mutual inductance, but it can be used to find
self-inductance [21].

L =
µ0

4π

∮
C1

∮
C2

dl1dl2
R

, (1)

where µ0 is the vacuum permeability, dl1 and dl2 are line elements, and R is the distance
between dl1 and dl2. Eventually, the self-inductance of the Archimedean spiral coil can be
determined by finding dl1, dl2 and R in Equation (1).

The Archimedean spiral coil can be described by

R = Ri + aθ, θi ≤ θ ≤ θ0, (2)

θ = 2πN, (3)

a =
s + w

2π
, (4)

where Ri is an initial radius, s is the gap between turns, a is the pitch factor, θi and θo are
the initial and final angles of the Archimedean spiral coil, N is the number of turns, and w
is the wire diameter. The pitch factor a affects the gap between turns. We assume that the
spiral coil is placed on the x–y plane.

In Figure 1b, C is the Archimedean spiral coil and it has been moved by the distance of
wire diameter w in the z-axis direction to get its duplicate C′. The duplicate coil C’ is exactly
same and coaxial with the original coil, C. Now, C′ can be used as a secondary spiral coil.
The self-inductance is due to the flux produced by the current in spiral C that links the
C′. Thus, the self-inductance of the spiral coil C can be calculated by finding the mutual
inductance between the original coil C and its duplicate coil C′.

In Figure 1b, line elements dl1 and dl2 are represented as follows:

dl1 = R1dθ1, (5)

R1 = Ri + aθ1, (6)

dl2 = R2dθ2, (7)

R2 = Ri + aθ2, (8)

The dot product of Equations (5) and (7) is shown in Equation (9)

dl1·dl2 = (Ri + aθ1)(Ri + aθ2) cos(θ2 − θ1)dθ1dθ2, (9)

The distance R between R1 and R2 can be denoted using the law of cosines

R2 = (Ri + aθ1)
2 + (Ri + aθ2)

2

−2(Ri + aθ1)(Ri + aθ2) cos(θ2 − θ1) + w2,
(10)

Substituting Equations (9) and (10) in Equation (1), the self-inductance of Archimedean
spiral coil is obtained in Equation (11)

L = µ0
4π

s

2πN

kdθ1dθ2√
(Ri+aθ1)

2+(Ri+aθ2)
2−2k+w2

,

k = (Ri + aθ1)(Ri + aθ2) cos(θ2 − θ1)

(11)

Since Equation (11) is a double integral form, it cannot be represented by an ele-
mentary formula, and thus it is solved by a numerical tool. This is a disadvantage for
the proposed method. However, maintaining the accuracy in various spiral coils is its
powerful advantage.
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3. Comparison Results

In order to compare the result of the proposed method with the FEM and conventional
formulas results, the maximum size of the spiral coil is constrained to the maximum
capability of the printer. Hence, the outer diameter of our big coil size is fixed to 170 mm.
By considering this limitation, the inductance is calculated for several coils with a different
number of turns, the gap between turns and wire diameter, inner radius, outer radius.

Regarding FEM simulation, it is performed in ANSYS Maxwell 15. The solution type
is chosen as Magneto static, and mesh is assigned as length based. The maximum length of
the element is selected as default value. For the purpose of simplicity, constant current is
distributed at the cross section of the coil.

In [11], the modified Wheeler’s formula for a single-layer spiral coil is given by
Equation (12)

L =
N2(Do − N(w + s))2

16Do + 28N(w + s)
× 39.37

106 , (12)

where Do is the outer diameter of the spiral coil. Equation (12) shows that self-inductance
will increase when the number of turns, outer diameter, the gap between turns, and wire
diameter increase.

In the next case, the Equation (13) is considered, which was another modified Wheeler’s
formula, similarly to Equation (12).

L(µH) = r2 A2

(30A−11Di)
,

A = (Di+N(w+s))
2

(13)

where Di is the inner diameter, s is the gap between turns, w is the wire diameter, N is
the number of turns. The unit of Di, s and w is in inches. Equation (13) includes the inner
diameter while Equation (12) has the outer diameter.

To further show the validity of the proposed method, it is compared to other self-
inductance formulas. In Equation (14), the self-inductance is evaluated using the concepts
of geometric mean distance, arithmetic mean distance, and arithmetic mean square dis-
tance [13]. The resulting expression is shown below.

L =
µo N2(

dout+din
2 )

2

[
ln

(
2.46

(
dout−din
dout+din

)

)
+ 0.2γ2

]
,

γ = (dout−din)
(dout+din)

(14)

where din and dout are the inner and outer diameter of the spiral coil, and γ is the fill ratio.
Equation (15) expresses the simplified inductance of the single-layer circular coil [14].

L =
µo N2davgC1

2

((
ln C2

σ

)
+ C3γ + C4γ2

)
,

davg = dout+din
2

(15)

where davg is the mean diameter, and C is the layout dependent coefficient. For the circular
coil, C1 is1.0, C2 is 2.45, C3 is 0 and C4 is 0.2.

Another self-inductance expression based on the geometric mean distance principle
for a spiral coil is derived [16].

L = µo
4π

θ∫
0

θ∫
0

1√
(X2−x1)

2+(Y2−y1)
2+(g)2

[(a cos θ1 − y1)(a cos θ2 −Y2)
+(a sin θ1 + x1)(a sin θ2 + X2)]dθ1dθ2,

(16)
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where a = γ/(2π), θ = 2Nπ, x1 = (Ri + aθ1)cosθ1, y1 = (Ri + aθ1)sinθ1, X2 = (Ri + aθ2) cosθ2,
Y2 = (Ri + aθ2)sinθ2, Ri is the inner radius, and g is the geometric mean distance of the cross
section of the wire

g =
e−

1
4 w
2

= 0.3894w, (17)

where w is the wire diameter. Equations (12)–(16) are well-known self-inductance formulas.
Their results are presented in the following Tables.

3.1. Case 1

In Table 1, the inductances of different coil geometries are computed for constant
wire diameter w, while in Table 2, it is calculated when w is changed. The error of
inductance of the proposed method, Equation (11), and other conventional formulas,
Equations (12) and (13), are compared relative to FEM.

Table 1. Comparison results.

Parameters Results

N s
(mm)

w
(mm)

FEM
(µH)

(11)
(µH)

Error
(%)

(12)
(µH)

Error
(%)

(13)
(µH)

Error
(%)

5 11.40 3.6 1.92 1.85 3.6 1.84 4.16 1.84 4.16
6 8.90 3.6 2.71 2.63 2.9 2.65 2.21 2.65 2.21
7 7.11 3.6 3.60 3.58 0.5 3.61 −0.27 3.61 −0.27
8 5.77 3.6 4.70 4.69 0.2 4.71 −0.21 4.71 −0.21
9 4.33 3.6 6.01 5.99 0.3 5.97 0.66 5.97 0.66

10 3.90 3.6 7.50 7.56 −0.8 7.37 1.73 7.37 1.73
11 3.21 3.6 9.14 9.09 0.54 8.96 1.96 8.91 2.51
12 2.65 3.6 10.55 10.50 0.47 10.61 −0.56 10.61 −0.56
13 2.16 3.6 12.34 12.28 0.48 12.98 −5.18 12.44 −0.81
14 1.75 3.6 14.49 14.46 0.20 14.48 0.06 14.43 0.41
15 1.40 3.6 16.47 16.38 0.54 16.58 −0.66 16.58 −0.66

Table 2. Comparison Results with changing wire diameters.

Parameters Results

N s
(mm)

w
(mm)

FEM
(µH)

(11)
(µH)

Error
(%)

(12)
(µH)

Error
(%)

5 14 1 3.17 2.97 6.30 1.84 41.95
5 13 2 2.34 2.21 5.55 1.84 21.36
5 11.40 3.6 1.92 1.85 3.6 1.84 4.16
7 9.71 1 6.07 5.75 5.27 3.61 40.52
7 8.71 2 4.50 4.27 5.11 3.61 19.77
7 7.11 3.6 3.60 3.58 0.5 3.61 −0.27
10 6.50 1 12.92 12.07 6.57 7.37 42.95
10 5.50 2 9.51 9.03 5.04 7.37 22.50
10 3.90 3.6 7.50 7.56 −0.8 7.37 1.73
12 5.25 1 17.84 16.89 5.32 10.61 40.52
12 4.25 2 13.15 12.55 4.56 10.61 19.31
12 2.65 3.6 10.55 10.50 0.47 10.61 −0.56
14 4.35 1 24.18 23.18 6.07 14.48 41.32
14 3.35 2 18.16 17.27 4.90 14.48 20.26
14 1.75 3.6 14.49 14.46 0.20 14.48 0.06

In Table 1, the simulation results using FEM are compared with the three different
methods. Equation (11) is the proposed formula, Equation (12) is the modified Wheeler’s
formula and Equation (13) is another modified Wheeler formula. It is deduced from the
above comparison Tables that when the number of turns is increased, the error is generally
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decreased. For a larger number of turns, all cases have a similar difference. Therefore, the
number of turns was limited to 15 turns. Table 1 shows the comparison results for when
the wire diameter is fixed. Equations (11)–(13) have similar errors compared to FEM.

The wire diameter affects the self-inductance. Therefore, it is necessary to compare
the self-inductance of the spiral for the changing wire diameter. Table 2 indicates that the
error of the inductance values of the conventional formulas increases sharply when the
wire diameter decreases. However, the accuracy of the conventional formula improves
with the increase in wire diameter. On the other hand, the proposed method maintains
reasonable accuracy for all cases. For a very small diameter wire, Maxwell 15 was unable
to solve inductance. Therefore, we assume that the current approximation of the proposed
method is good until 1 mm wire diameter.

In both, Equations (12) and (13), the error increases as the wire diameter decreases.
However, the comparison Table of Equation (13) for changing w is not included due to
avoidance of repetition.

The influence of wire diameter on the inductance of the coil can be explained by
the high-frequency model of AC resistance. It states that when the wire diameter de-
creases, the AC resistance of the wire also decreases. The decrease in AC resistance will
strengthen the magnetic field. The high magnetic field increases the flux linkage, and thus
the inductance [22].

3.2. Case 2

Table 3 shows the comparison of the inductance of the proposed method with three
different conventional formulas for the calculation of self-inductance of the spiral coil. Their
errors are represented in Table 4

Table 3. Comparison results with different conventional self-inductance formulas.

Parameters Results

N s
(mm)

w
(mm)

FEM
(µH)

(11)
(µH)

(14)
(µH)

(15)
(µH)

(16)
(µH)

5 11.40 3.6 1.92 1.85 1.88 1.88 2.54
6 8.90 3.6 2.71 2.63 2.71 2.70 3.62
7 7.11 3.6 3.60 3.58 3.69 3.68 4.92
8 5.77 3.6 4.70 4.69 4.82 4.80 6.44
9 4.33 3.6 6.01 5.99 6.09 6.08 8.20
10 3.90 3.6 7.50 7.56 7.52 7.50 10.34
11 3.21 3.6 9.14 9.09 9.10 9.07 12.44
12 2.65 3.6 10.55 10.50 10.84 10.80 14.42
13 2.16 3.6 12.34 12.28 12.72 12.68 16.86
14 1.75 3.6 14.49 14.46 14.75 14.70 19.81
15 1.40 3.6 16.47 16.38 16.93 16.88 22.50

In Table 4, Equations (14) and (15) show relatively low errors and Equation (16)
indicates relatively high errors for all cases. In Equations (14) and (15), wire diameter,
which is one of the important parameters to determine self-inductance, is not considered.
If the wire diameter is changed from a higher to a lower value, the results will be similar to
the other conventional formulas, which is shown in Table 2.

Although Equation (16) applied a geometric mean distance in order to consider the
wire diameter, it shows large errors compared to the FEM and other conventional formu-
las. In Equations (12)–(15), the errors decrease when the number of turns was increased.
However, Equation (16) showed consistently large errors even if the number of turns was
changed. However, the proposed method maintains an error below 7% for all cases. These
results show the validity of the proposed method.
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Table 4. Comparison results of Errors.

Parameters Errors

N s
(mm)

w
(mm)

(11)
(%)

(14)
(%)

(15)
(%)

(16)
(%)

5 11.40 3.6 3.6 2.08 2.08 −32.29
6 8.90 3.6 2.9 0 0.36 −33.57
7 7.11 3.6 0.5 −2.50 −2.22 −36.67
8 5.77 3.6 0.2 −2.55 −2.12 −37.02
9 4.33 3.6 0.3 −1.33 −1.16 −36.43

10 3.90 3.6 −0.8 −0.26 0 −37.60
11 3.21 3.6 0.54 0.43 0.76 −36.10
12 2.65 3.6 0.47 −2.74 −2.36 −36.68
13 2.16 3.6 0.48 −3.07 −2.75 −36.62
14 1.75 3.6 0.20 −1.79 −1.44 −36.71
15 1.40 3.6 0.54 −2.79 −2.48 −36.61

4. Experiment Process
4.1. Bobbin

To validate the proposed method for the self-inductance of the spiral coil, seven
different sizes of spiral coils are constructed for the experimental purpose. These are
selected from the combination of the number of turns, inner radius, wire diameter, outer
radius and the gap between turns. In order to hold the wire position in the spiral coil, a
special bobbin is designed and printed using a 3D printer.

Two different sizes of Litz wire are selected for making the spiral coil. To make the
bobbin, the total diameter of the Litz wire should be decided. The total diameter of the Litz
wire is 3.6 mm and 4.2 mm. It is empirically decided by

De = 1.6
(√

(Ds/2)2Ns

)
2, (18)

where De is an estimated diameter of the Litz wire, Ds is the diameter of one strand of wire
and Ns is the total number of strands. Due to the printing size of the 3D printer, the bobbin
size is limited to 170 mm. The polylactic acid filament is used. Figure 2 shows spiral coils
with the bobbin.
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4.2. Selection of Wire

For the selection of the wire, the operating frequency and current are key components.
The operating frequency not only influences the wire construction but is also used to
determine the wire gauge. The eddy current loss occurs due to the high frequency effect.
The eddy current loss increases with the operating frequency. The source of this loss is the
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skin effect and proximity effect, which can be reduced by using the Litz wire. Therefore,
the Litz was chosen for the spiral coil [23].

The Litz wire has formed by combining many strands of thin insulated wire together
side by side. It is used to carry the high frequency current as each insulated strands carry a
part of the current and reduce the skin and proximity effect [24].

In this paper, the Litz wire with 500 strands and 0.12 mm diameter are used considering
the operating frequency and current. The applied frequency is 10 kHz.

4.3. Total Length of Litz Wire

In order to calculate the resistance, it is necessary to accurately estimate the total length
of the spiral coil. The total length is calculated by

Ltot =
θo∫
θi

√
R2

o +
(

dR0
dθ

)2
dθ + extra length,

Ro = Ri + aθ

(19)

In Figure 2b, an extra length can be added to the end of the spiral coil for measurement
or connection purpose.

Because the Litz wire consists of many thin wire strands, individually insulated and
twisted or woven together, the effective length of the spiral coil is longer than the calculated
one in Equation (19). To perform the measurement, a strand is selected and marked on
the surface, as shown in Figure 3. The next strand on the same side of the surface is also
marked. Then, the distance between the marks is measured.
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To increase accuracy, the measurement is taken over several lengths of lay. This method
has disadvantages, for example, it takes a lot of time and must be repeated a large number
of times to find the accurate value of the length of lay.

Le f f = Ltotktwist, (20)

In Equation (20), twist effect ktwist depends on the lengths of lay and the twist pattern.
The ktwist range of the Litz wire under 5000 strand is from 1.03 to 1.05.

Table 5 shows the comparison result between the calculated and the measures length
of the spiral coil.

4.4. Calculation of the DC Resistance of a Coil

The length of the spiral coil also affects the resistance. Therefore, it is important to
compute it accurately. It can be calculated by Equation (21).

R =
l(mm)

σnπr2 , (21)
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where l the length of wire in millimeter is, σ is constant and its values is 58,000, n is the
number of strands and r is the radius of a single strand.

Table 5. Comparison between the calculated and the measured length.

Number of Turns Calculated Length
(m)

Measured Length
(m)

Difference
(%)

6 (large Ri) 2.63 2.94 10.54
7 1.34 1.43 6.29

10 (small Ro) 2.19 2.35 6.80
10 (w = 4.2) 2.98 3.10 3.80

10 2.98 3.15 5.39
15 4.47 5 10.6
17 5.07 5.58 9.13

The DC resistances of the above spiral coils are calculated and also verified by mea-
surement with a Gwinstek LCR-6200. The comparison result and their differences are
shown in Table 6.

Table 6. Comparison between the calculated and the measured DC resistance of coil.

Number of Turns Calculated DCR
(mΩ)

Measured DCR
(mΩ)

Difference
(%)

6 (large Ri) 11.54 11.29 0.68
7 5.88 6.29 6.51

10 (small Ro) 9.61 9.94 3.42
10 (w = 4.2) 5.67 5.83 2.74

10 13.08 14.98 12.08
15 21.95 22.93 4.27
17 24.49 25.69 4.67

4.5. Soldering Quality

Several factors can be affected when calculating resistance and self-inductance. A
soldering quality is one of them. From previous results, the wire diameter was an important
factor for the self-inductance. Because actual wire diameter can be reduced due to the
soldering, a sequential soldering process is required.

In some cases, the solder pot and solder temperature must be compatible. The sol-
dering temperature varies with the type and the number of the strand of Litz wire being
soldered. Therefore, an appropriate solder set and special jig should be prepared as shown
in Figure 4a.
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The high temperatures are used to remove the enamel from each insulated strand.
However, too high a temperature will burn off not only the enamel but also the strands and
it will leave a black dreg, as shown in Figure 4b. Inspection of a crosscut of the soldered
end can be achieved to ensure a good solder termination, as indicated in Figure 5a.
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and measured resistance).

With a properly soldered joint, strands will be visible with solder tightly surrounding
them as shown in Figure 5b. However, in a poorly soldered joint, as shown in Figure 5c,
the strands are still with the visible insulator, increasing the resistance. In that case, solder
temperature or immersion time will need to be increased. The number of strands and
the wire diameter should be considered when the solder pot and solder temperature are
decided, empirically.

5. Experimental Results

Finally, the calculation results are verified experimentally. The fabricated coils, shown
in Figure 2a, are measured with the Gwinstek LCR-6200. Figure 6a–g indicate the measured
results. The measured results are compared with the calculation result. The comparison
detail is given in Table 7. The calculation result shows a reasonable error below 2%.

There are several self-inductance formulas. Most of them are derived from the Wheeler
formula or its modified form. These are obtained empirically in comparison to a proposed
method which is derived analytically. Some cases are discussed in this paper.

A coil in Figure 6a has a large inductance value compared to Figure 6b,c, which
relatively has a higher number of turns. This shows that inductance depends more on
the size than the number of turns for the same turn gap. Moreover, the inductance of the
hollow coil is higher than the full coil for a similar size spiral. Because inner turns lie near
the center of the spiral coil in the Full coil, it contributes more negative mutual inductance
than the positive mutual inductance. Therefore, the overall inductance is decreased.

For many reasons, some conventional formulas do not include the wire diameter
parameter which affects the self-inductance. The comparison of Figure 6d,e proves that
self-inductance is changed when the wire diameter is modified. The inductance will be
larger for smaller wire diameters or vice versa.

In this paper, we assumed that the uniform current is flowing in the spiral coil. How-
ever, the self-inductance could be different for the nonuniform current distribution. In this
regard, it requires further research. Moreover, the proposed method has a large error for a
coil of very small turns and large turn spacing. However, such a coil is not used in most
practical applications.
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Figure 6. Self-inductance. (a) Six-turn coil having parameters Ri = 85 mm, s + w = 5 mm, w = 3.6 mm.
(b) Seven-turn coil, s + w = 5 mm, Ri = 13 mm, w = 3.6 mm. (c) Ten-turn coil, s + w = 5 mm,
Ri = 10 mm, w = 3.6 mm. (d) Ten-turn coil, s + w = 7.5 mm, Ri = 10 mm, w = 3.6 mm. (e) Ten-turn coil,
s + w = 7.5 mm, Ri = 10 mm, w = 4.2 mm. (f) Fifteen-turn coil, s + w = 5 mm, Ri = 10 mm, w = 3.6 mm.
(g) Seventeen-turn coil s + w = 4.41 mm, Ri = 10 mm, w = 3.6 mm.

Table 7. Comparison between the proposed and measured self-inductances.

Number of Turns Calculated
Self-Inductance (uH)

Measured
Self-Inductance (uH)

Error
(%)

6 (large Ri) 6.94 7.00 0.85
7 2.37 2.39 0.83

10 (small Ro) 5.39 5.43 0.73
10 (w = 4.2) 7.26 7.34 1.08
10 (w = 3.6) 7.56 7.59 0.39

15 16.38 16.63 1.50
17 21.46 21.58 0.55

6. Conclusions

In this paper, a new accurate method to calculate the self-inductance of the Archimedean
spiral coil is proposed. It is derived by solving the Neumann integral formula. The detailed
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mathematical derivation of the spiral is presented. The proposed method is solved numerically
for several coil geometries considering all the parameters which influence the inductance,
such as wire diameter, inner radius, number of turns, outer radius, and turn gap.

To verify its accuracy, it has been compared in three ways: 3D FEM, Wheeler in-
ductance formulas, its modified form and another conventional formula, and finally, by
measurement. Utilizing the Wheeler formula or its modified form to calculate the self-
inductance, relative to the simulation result, the error increases gradually to more than
40% when the wire diameter decreases. The conventional formula Equation (16) has an
exception in this regard. The error does not increase with the decrease in wire diameter. Yet,
the error is increased to above 30% when the number of turns of spiral increases. However,
the proposed method shows errors below 7% for all cases. Therefore, the validity of our
method makes it a good candidate for applications where the self-inductance calculation
and designing of spiral coils is required.
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