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Abstract: Electricity trading is an effective measure to minimize carbon emissions and alleviate the
imbalance between reverse distribution of regional energy resources and power load. However,
the effects of China’s electricity trading on carbon emissions have not been fully explored due to
lack of complete and balanced inter-provincial power transmission data. Therefore, the electricity
generation–consumption downscaling model, logarithmic mean Divisia index (LMDI) model, and
random forest clustering algorithm within a general framework were used in the present study to
explore the effect of electricity trading on level of carbon emissions. Comprehensive inter-provincial
electricity transmission data were generated, driving factors including electricity imports and exports
were decomposed at the national and provincial scales, and clustered provincial policy implications
were evaluated. The results revealed that: (i) although economic activities were the main driving
factor for increase in carbon emissions at the national level, 382.95 million tons carbon emissions were
offset from 2005 to 2019 due to inter-provincial electricity importation, whereas electricity export
increased carbon emission by 230.30 million tons; (ii) analysis at the provincial level showed that
electricity exports from Sichuan and Yunnan provinces accounted for more than 20% of the nation’s
total electricity flow. Notably, this high level of exports did not significantly increase carbon emissions
in these provinces owing to the abundant hydropower resources; (iii) emission reductions were
only observed at the national level if the carbon intensity of the exporting provinces was lower
compared with that of importing provinces, or if the electricity trading was generated from renewable
sources; (iv) the effect of electricity import on emissions reduction was markedly higher relative to
the effect of electricity export in most provinces, which reflected the actual situation of sustaining
optimization of electricity generation structure in provincial grids of China. These findings provide
a basis for decision makers to understand the contributions of electricity trading to the changes in
carbon emissions from electricity generation, as well as form a foundation to explore practicable
carbon emission mitigation strategies in the power industry.

Keywords: inter-provincial; electricity trading; carbon emissions; LMDI; random forest clustering

1. Introduction

Electricity generation is a major source of greenhouse gas (GHG) emissions, con-
tributing to approximately more than 40% of carbon dioxide (CO2) emissions, worldwide
and in China over the past decade [1,2]. Previous findings indicate that CO2 emissions
from China’s electricity generation were 5.24 billion tons in 2019, accounting for 53.0% of
the national total carbon emissions in that year [3]. Policymakers and researchers have
made significant efforts in exploring strategies to reduce emissions from energy and power
systems [4]. Notably, inter-regional and inter-provincial electricity trading can alleviate the
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imbalance between the reverse distribution of regional energy resources and power load in
China, as well as promote consumption of renewable energy [5]. Inter-regional and inter-
provincial electricity trading is a key measure to improve the inconsistency between energy
supply and demand and to promote reduction in carbon emissions [6,7]. The total amount
of inter-regional and inter-provincial electricity trading increased from 276.27 billion kWh
to 1444.08 billion kWh between 2005 and 2019 in China, with an average annual growth
rate of 12.89% [8]. Studies should explore the effect of remotely transmitted electricity in
alleviating carbon emissions.

An accurate understanding of the contributions of electricity trading to the changes
in carbon emissions from power generation is necessary for providing theoretical basis
to explore practical mitigation approaches in the power industry. Several studies have
been conducted to evaluate the effect of electricity on levels of carbon emissions [9–17].
Karmellos et al. (2016, 2021) formulated logarithmic mean Divisia index-I (LMDI-I) model
to explore the driving factors of CO2 emissions from electricity generation in the European
Union for the periods between 2000 and 2012 as well as between 2000 and 2018. The
study results showed that electricity trading had a significant effect on reduction in CO2
emissions in some countries, particularly in Lithuania (92%), Luxembourg (24%), and
Hungary (18%) [10,16]. Diakoulaki et al. (2017) evaluated the driving factors of CO2
emissions from electricity generation in Greece from 2005 to 2012 using LMDI-I method. In
the study, the factor of electricity trading was added to represent the increasing electricity
exchanges in the liberalizing European electricity market [15]. Zhao et al. (2020) explored
the structural and technological determinants of provincial carbon intensity in the electricity
generation sector using the multiplicative LMDI-II method. The results demonstrated that
electricity trading markedly affected level of carbon emissions, followed by the geographic
distribution effect and electricity consumption intensity effect [11]. Quantification of drivers
of carbon emissions from the electricity generation sector is an area that has attracted high
attention among researchers and policy makers [18]. Index decomposition analysis is a
technique that has been widely used for this analysis, especially the LMDI model. Currently,
electricity trading effects play a significant role in carbon emissions reduction owing to
advances in liberalization of electricity markets and integration of power grids, thus it is
important to include the effect of electricity trading in the identity function. Electricity
trading effect is generally defined as the ratio of the entire electricity production to the
total electricity consumption in a certain year, whereby values greater than 1 represent net
exporters whereas values less than 1 indicate net importers. This implies that electricity
imports effect and export effect cannot be determined by this simplified function. Recently,
Lopez et al. (2018) proposed a novel identity function, whereby the effects of electricity
imports and exports on changes in CO2 emissions from electricity generation were both
quantified [19]. Currently, studies have not fully explored the role of China’s energy
and power systems on carbon emission. This is mainly because complete and balanced
inter-provincial power transmission data are not currently available [20,21].

LMDI model and clustering algorithm have been previously integrated to explore
the characteristics of different types of regions and the policy implications of carbon emis-
sions reduction [14,22–25]. Jiang et al. (2017) combined the two-layer LMDI method
with Q-type hierarchical clustering to systematically evaluate the effects of related factors
from 30 provinces to changes in China’s national carbon emissions [14]. Liao et al. (2019)
constructed a LMDI model based on K-means clustering to evaluate the factors that modu-
late the levels of CO2 emissions from the power sector in 30 provinces in China between
2005 and 2015 [22]. Wen and Hao (2020) explored the i factors that modulate levels of CO2
emissions from national, provincial, and cluster levels using the Shapley value and spectral
clustering based on the time-series data of China’s power industry from 2005 to 2017 [25].
He et al. (2022) combined the two-layer LMDI method with K-means clustering analysis
to explore the factors that affect carbon emissions and targeted countermeasures from the
electricity industry of China and the 30 provinces [23]. However, the number of clusters in
most previous studies were subjectively determined. In addition, the algorithms used were
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not suitable for the high-dimensional clustering problems. Random forest (RF) clustering
is a more robust method for clustering of data compared with the more commonly used
k-means algorithm. RF method has been widely applied in tumor classification of renal
cell carcinoma [26], video segmentation [27], multidimensional clinical phenotyping [28],
and social sciences [29]. RF algorithm consists of a collection or ensemble of classification
trees where each tree is built with a different bootstrap sample of the original data. Each
tree represents a class, and the majority rule is used for the final prediction. Out-of-sample
data are available for calculation of misclassification error since each tree is grown with a
bootstrap sample of the data. Moreover, the out-of-sample data can be used to determine
the variable importance for each variable [28]. However, no studies have used this robust
algorithm in high-dimensional energy and environmental data classification.

In the present study, comprehensive inter-provincial electricity transmission data from
2005 to 2019 were generated using the electricity generation–consumption downscaling
model and the electricity balance equation. Intergovernmental Panel on Climate Change
(IPCC) accounting method was then used to calculate the carbon emissions caused by
power production in 31 provincial grids (PGs). Subsequently, seven factors including
electricity imports and exports were decomposed using LMDI model. The 31 PGs were
then divided into five clusters according to the characteristics of carbon emissions by
random forest clustering technology to further explore the impact of electricity trading
on reduction in carbon emissions and policy implications. The subsequent sections of the
study include Section 2 which presents the methodology and data sources, Section 3, which
constitutes analysis of results and policy implications, and Section 4, which presents the
conclusions of the study.

2. Methodology and Data Sources
2.1. Downscaling of Inter-Regional Electricity Transmission Data

Electric power has been the main source energy that supports economic development
in China. Electricity consumption in China was 7.25 trillion KWh in 2019, accounting
for more than 27% of the total energy consumption [8]. However, the supply of energy
from primary energy sources such as coal and hydropower does not match the current
power consumption in China. The economically developed eastern coastal areas require
utilization of a high amount of power (accounting for more than 60% of the national power
consumption). In addition, several provinces experience bottlenecks and large power gaps
in power production. The central and western regions have several energy resources,
characterized by low power production costs, and excess power generation capacity. As a
result, inter-provincial and inter-regional electricity transmission is an important measure to
optimize power allocation and alleviate the disparity between regional power production
and consumption. China’s interregional and provincial power transmission has been
normalized in recent years, and the total amount of power transmission across regions has
been increasing yearly. The national inter-regional electricity trading volume increased from
80.38 billion KWh in 2005 to 540.43 billion KWh in 2019. Moreover, the proportion of trading
volume in the total social electricity consumption increased from 3.22% in 2006 to 7.38%
in 2019 [8]. China’s power grid development will shift to inter-regional electricity trading
owing to adoption of the framework of national energy strategic structure adjustment.

China’s power grids can be spatially divided into three scales namely, national grid
(NG), subnational grids (SNGs), and provincial grids (PGs) [22]. Notably, NG comprises
seven SNGs, including North China Grid (NCG), Northeast China grid (NEG), East China
Grid (ECG), Central China Grid (CCG), Northwest China grid (NWG), Southwest China
grid (SWG), and China Southern Power Grid (CSG) (Figure 1) [20]. Each SNG comprises
some adjacent PGs, as shown in Table 1. The regulations of the National Energy Adminis-
tration of China state that power dispatching agencies should report electricity exchanges
between SNGs and PGs since 2005, including autonomous regions and municipalities,
which are administrative units of the provincial level [2,30]. This implies that the provin-
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cial level should be the appropriate spatial resolution of exploring the effect of electricity
trading on carbon emissions of the power industry in China.
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Table 1. Composition of subnational grids.

Subnational Grids Symbol Provincial Grids (Abbreviations)

North China Grid NCG Beijing (BJ), Tianjin (TJ), Hebei (HEB), Shanxi (SX),
Inner Mongolia (IM), Shandong (SD)

Northeast China grid NEG Liaoning (LN), Jilin (JL), Heilongjiang (HLJ)

East China Grid ECG Shanghai (SH), Jiangsu (JS), Zhejiang (ZJ), Anhui
(AH), Fujian (FJ)

Central China Grid CCG Jiangxi (JX), Henan (HEN), Hubei (HUB),
Hunan (HUN)

Northwest China grid NWG Shaanxi (SAX), Gansu (GS), Qinghai (QH), Ningxia
(NX), Xinjiang (XJ)

Southwest China grid SWG Chongqing (CQ), Sichuan (SC), Tibet (TIB)

China Southern Power Grid CSG Guangdong (GD), Guangxi (GX), Hainan (HN),
Guizhou (GZ), Yunnan (YN)

Notably, inter-provincial electricity trading data are not directly available from statis-
tics [20]. The actual status quo indicates that there is power transmission between provinces
(PG-to-PG) and regions (PG-to-SNG or SNG-to-SNG). Therefore, the electricity generation–
consumption downscaling model was firstly used in the present study to preliminarily
downscale the inter-regional power transmission data to the provincial scale [20,21]. In the
current study, it was assumed that EAB is the amount of electricity transferred from subna-
tional grid A (SNGA) to B (SNGB). Two downscaling coefficient vectors for supply-side
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(λA) and demand side (λB) were then built based on the exporters’ electricity production
and importers’ electricity consumption as follows [20]:

λA =

 EGA
1

m
∑

i=1
EGA

i

EGA
2

m
∑

i=1
EGA

i

. . . EGA
m

m
∑

i=1
EGA

i

 = [λA
1 λA

2 . . . λA
m]

λB =

 EGB
1

n
∑

j=1
EGB

j

EGB
2

n
∑

j=1
EGB

j

. . . EGB
n

n
∑

j=1
EGB

j

 = [λB
1 λB

2 . . . λB
n ]

(1)

where m and n are the numbers of PGs acting as exporters in electricity-exporting SNG
(SNGA) and PGs as importers in electricity-importing SNG (SNGB), respectively. EGA

i
represents the level of electricity generation of PGi (i = 1, 2,..., m) in SNGA. ECB

j indicates

the electricity consumption of PGj (j = 1, 2,..., n) in SNGB. λA
i represents the percentage

of electricity delivered by PGi accounting for total electricity transmission (EAB), and λB
j

represents the percentage of electricity received from PGj accounting for total electricity
transmission (EAB). The inter-provincial electricity transmission matrix (TAB) is down-
scaled from subnational level transmission (SNGA to SNGB) based on λA and λB as shown
below [20]:

TAB = EAB × λT
A × λB

= EAB ×


λA

1
λA

2
...

λA
m

× [ λB
1 λB

2 · · · λB
n
]

=


tAB
12 tAB

12 · · · tAB
1m

tAB
21 tAB

22 · · · tAB
2m

...
...

. . .
...

tAB
n1 tAB

n2 · · · tAB
nm


(2)

where tAB
ij represents the electricity transmission from PGi in SNGA to PGj in SNGB, TAB

indicates the downscaled electricity transmission matrix between m PGs of SNGA and n
PGs of SNGB.

Notably, the electricity-importing/exporting balance and the actual connectivity of
the power grids at provincial level were not considered in TAB. Therefore, the data of
inter-provincial electricity transmission should be adjusted according to the electricity
balance equation and the actual connectivity between PGs and SNGs. Each PG is treated as
a node that can produce and consume electricity, and the nodes are directly or indirectly
connected to each other. The total electricity inflow consists of local electricity generation
and direct imports from other nodes whereas the total electricity outflow comprises local
electricity consumption and direct exports to other nodes [2,30]. The electricity balance
equation for each node is presented below:

Xi = EGi +
n

∑
j=1

Tji = ECi +
n

∑
j=1

Tji (3)

where Xi represents the total electricity flow of grid i, EGi indicates the total electricity
generation of grid i, ECi represents the total electricity consumption of grid i, and Tij
indicates the total amount of electricity transmitted from grid i to grid j within a year. The
comprehensive inter-provincial electricity transmission data can be generated by combining
all inter-provincial electricity transmission within the same SNG with data downscaled
from all subnational level transmission.
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2.2. Decomposition Analysis Using logarithmic Mean Divisia Method (LMDI)

The LMDI method is used to analyze the changes in carbon emissions caused by
electricity production at the provincial, regional, and national scales. Traditional drivers
such as carbon emissions intensity, power generation structure, and socio-economic factors,
as well as the influence of electricity trading (including imports and exports) are considered
in the decomposition model. The identity function in the present study was established
based on the findings by Lopez et al. (2018) [19,31], and is shown in Equation (4):

Ct =
n
∑

i=1

Cit
TPit
× TPit

EGit
× EGit

ELit
× ELit

ECit
× ECit

GDPit
× GDPit

Pit
× Pit

=
n
∑

i=1
CIit × Sit × EXPit × IMPit × EIit × Git × Pit

(4)

where Ct represents the aggregate total carbon emissions from electricity generation in a re-
gion or nation during period t, 106 tons of CO2e; TPit indicates thermal power generation of
province i during period t, 106 kWh; EGit represents total electricity generation of province
i during period t, 106 kWh; ELit indicates the portion of final electricity consumption locally
generated in province i during period t, 106 kWh; ECit represents total electricity consump-
tion in province i during period t, 106 kWh; GDPit indicates the Gross Domestic Product of
province i during period t, 106 RMB and Pit represents total population of province i during
period t, 106. The ratio of carbon emissions and thermal power generation (CIit (kg/kWh)),
represents carbon emissions intensity in province i during period t. Sit, EXPit, IMPit, EIit,
and Git represent electricity generation structure, electricity export effect, electricity import
effect, electricity consumption intensity, and economic activity effect of province i during
period t, respectively.

Notably, ELit is not directly available from statistic data [19]. Therefore, in the present
study it was assumed that all imported electricity is consumed locally (implying that there
is no secondary and higher-order transmission). ELit is calculated as shown in Equation (5),
whereby EIit represents electricity imported from other provinces or from other foreign
countries to province i during period t.

ELit = ECit − EIit (5)

The carbon emissions change decomposition from electricity generation in a year can
be presented as follows:

∆C = Ct − C0 = ∆CCI + ∆CS + ∆CEXP + ∆CIMP + ∆CEI + ∆CG + ∆CP (6)

where ∆CCI, ∆CS, ∆CEXP, ∆CIMP, ∆CEI , ∆CG, and ∆CP represent the impacts of changes
in CIit, Sit, EXPit, IMPit, EIit, Git, and Pit based on the carbon emission changes from year
t to year 0 (base year), respectively. The carbon emission intensity effect (∆CCI) indicates
the change in carbon emissions caused by the change in carbon emission intensity. The
structure effect (∆CS) represents the change in carbon emissions caused by the change in
electricity generation structure. The electricity export effect (∆CEXP) indicates the change
in carbon emissions caused by the change in electricity export among provinces or areas
abroad. The electricity import effect (∆CIMP) represents the change in carbon emissions
caused by the change in electricity import among provinces or areas abroad. The electricity
consumption intensity effect (∆CEI) indicates the change in carbon emissions caused by the
change in electricity consumption intensity. The economic activity effect (∆CG) represents
the change in carbon emissions caused by the change in per capita gross national product.
The population effect (∆CP) indicates the change in carbon emissions caused by the change
in total population.

∆CCI =
n

∑
i=1

Cit − Ci0
In(Cit/Ci0)

In
(

CIit
CIi0

)
(7)
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∆CS =
n

∑
i=1

Cit − Ci0
In(Cit/Ci0)

In
(

Sit
Si0

)
(8)

∆CEXP =
n

∑
i=1

Cit − Ci0
In(Cit/Ci0)

In
(

EXPit
EXPi0

)
(9)

∆CIMP =
n

∑
i=1

Cit − Ci0
In(Cit/Ci0)

In
(

IMPit
IMPi0

)
(10)

∆CEI =
n

∑
i=1

Cit − Ci0
In(Cit/Ci0)

In
(

EIit
EIi0

)
(11)

∆CG =
n

∑
i=1

Cit − Ci0
In(Cit/Ci0)

In
(

Git
Gi0

)
(12)

∆CP =
n

∑
i=1

Cit − Ci0
In(Cit/Ci0)

In
(

Pit
Pi0

)
(13)

2.3. Random Forest Clustering

Random forest (RF) clustering is a hard-partitioning algorithm for partitioning data
into several clusters, whereby each observation belongs to only one group [26,28,32]. This
clustering method combines the unsupervised RF algorithm and the partitioning around
medoids (PAM) algorithm [28]. The unsupervised RF algorithm is not sensitive to skewed
covariate distributions, it does not require the user to specify threshold values and can auto-
matically dichotomize the variable expressions in a principled, data-driven way [32]. PAM
is a more robust algorithm for clustering data compared with the commonly used K-means
algorithm. The main difference between the k-means algorithm and the PAM algorithm
is that a data point within the cluster defines the medoid in PAM algorithm, whereas the
cluster center represents the average of all the data points in K-means algorithm [28]. The
processes of RF clustering conducted in the presented study are presented below:

(i) The unsupervised RF algorithm was used to generate a proximity matrix which
gave an estimate of the distance between observations based on the frequency of
observations leading to the same leaf node.

(ii) The clustering in the second step of PAM analysis was performed by assigning each
observation to the nearest medoid in order to find k representative objects that mini-
mize the sum of the dissimilarities of the observations to their closest representative
object.

(iii) Silhouette index (SI) was used to optimize the model to determine the relevant number
of clusters [28]. The SI value is a measure of how similar an object is to its own cluster
(cohesion) compared with other clusters (separation). The SI can be used to explore
the separation distance between the resulting clusters. A high SI value indicates
that the object is well-matched to its own cluster and poorly matched to neighboring
clusters. The SI is calculated using the mean intra-cluster distance (a) and the mean
nearest-cluster distance (b) for each sample. The SI is defined as follows:

S(i) = (b(i)− a(i))/max{a(i), b(i)} (14)

where, a(i) is the average dissimilarity of ith object to all other objects in the same cluster,
b(i) is the average dissimilarity of ith object with all objects in the closest cluster.

The carbon emissions intensity effect (∆CCI), electricity generation structure effect
(∆CS), electricity export effect (∆CEXP, electricity import effect (∆CIMP), electricity con-
sumption intensity effect (∆CEI), economic activity effect (∆CG), and population effect
(∆CP), as well as the changes in carbon emissions (∆C), are collectively chosen as the
clustering variables based on the LMDI model parameters of 31 provincial samples.
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2.4. Data Sources

The electricity-generation related carbon emissions considered in this study include
carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) emitted during fossil fuel
combustion. These greenhouse gases have different characteristics, therefore, their ability
to absorb infrared light is dissimilar implying that the impact on global warming is also
different [33]. Global warming potential (GWP) is defined as the cumulative radiative
forcing, both direct and indirect effects, over a specified time horizon resulting from the
emission of a unit mass of gas related to a reference gas (CO2) [34]. Therefore, the emissions
of three greenhouse gases were calculated in the current study and GWPs were used
to uniformly convert the emissions into carbon dioxide equivalents (CO2e). The IPCC
Fifth Assessment Report (AR5) [34,35] states that the 100-year global warming potential
values (GWP100 with climate–carbon feedbacks) of CO2, CH4, and N2O are 1, 34, and 298,
respectively. The total carbon emissions were calculated using Equation (15):

Cit =
n

∑
j=1

GWPj ×Mijt (15)

where Cit represents the total carbon emissions from electricity production in province i
during period t; GWPj indicates the global warming potential of the jth greenhouse gas;
Mijt represents the total emissions of the jth type of carbon emissions caused by electricity
generation in province i during period t (j = 1 for CO2, j = 2 for CH4, j = 3 for N2O).

The accounting method of carbon emissions developed by IPCC [35] is widely adopted
by international institutions and related studies. This method was used for calculation
of Mijt based on the fossil fuel combustion amount, average lower calorific value, carbon
content or emission factor per unit calorific value and carbon oxidation rate in the power
industry of each province. The specific calculation formula is presented below:

Mijt =
K
∑

k=1
ADikt × NCVk × CCk ×Ok × 44

12 , if j = 1

Mijt =
K
∑

k=1
ADikt × NCVk × EFjk, if j = 2, 3

(16)

where ADikt represents the consumption of fossil fuel k caused by electricity generation
in province i during period t; NCVk refers to the net caloric value of fossil fuel k, which is
the average lower calorific value produced per physical unit of fossil fuel combustion; CCk
(carbon content) indicates the CO2 emissions per net caloric value produced by fossil fuel k;
Ok represents the oxygenation efficiency of fossil fuel k, which refers to the oxidation ratio
during fossil fuel combustion; EFjk represents the emission factor of CH4 (j = 2) or N2O
(j = 3) during the combustion of fossil fuel k.

The best spatial resolution of this study is provincial level based on the data availability.
The system boundary covers 31 Chinese provinces, autonomous regions, or municipalities,
not including Taiwan, Hong Kong, and Macao. The Inner Mongolia power grid is regarded
as a whole belonging to NCG. The PG of Inner Mongolia is separated into east-Inner
Mongolia grid and west-Inner Mongolia grid, which belong to the Northeast China grid and
North China Grid, respectively. Data of thermal power generation, total power generation,
social electricity consumption, and inter-provincial and inter-regional power transmission
of each province from 2005 to 2019 were derived from a statistical data compilation of power
Industry [8]. Notably, electricity imports and exports from abroad were also considered.
The energy consumption data of thermal power generation were obtained from China
Energy Statistical Yearbook [36], and the carbon emission factors of different fossil fuels
(calorific value, carbon content per unit calorific value, oxidation rate level) were mainly
derived from findings reported by Shan et al. [37,38]. In addition, the energy data consumed
by thermal power generation in Tibet were derived from previous relevant research [39].
GDP and population data were obtained from China Statistical Yearbook [40]. The double
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proportion reduction method was used in the current study to convert the GDP data into
constant prices in 2005 to eliminate the effect of price changes.

3. Results
3.1. Evolution of Inter-Provincial Electricity Trading

The national annual power generation from 2005 to 2019 increased from 2497.47 billion
kWh to 7326.94 billion kWh, with an average annual growth rate of 30.87% (Figure 2). The
power generation capacity of local power stations in most provinces met the local electricity
demand before 2005. However, significant disparities were observed between the primary
energy resource endowment of power generation and economic development level in all
provinces. Furthermore, the regional distribution of electricity production and consumption
was markedly uneven. The growing electricity demand in some developed regions in the
past 15 years was mainly dependent on inter-provincial and inter-regional electricity
trading owing to the continuous improvement of the interconnection level of inter-regional
and inter-provincial power grids. In addition, annual trans-regional power transmission
increased from 80.38 billion kWh (accounting for 3.22% of the national generation in
2005) to 540.43 billion kWh (accounting for 7.38% of the national power generation in
2019), with an average annual growth rate of 14.58%. Moreover, the electricity transmitted
across provinces increased from 276.27 billion kWh (accounting for 11.06% of the national
power generation in 2005) to 1444.08 billion kWh (accounting for 19.71% of the national
power generation in 2019), with an average annual growth rate of 12.89%. Inter-provincial
and inter-regional electricity trading extensively promote the optimal allocation of energy
resources, and play an important role in ensuring power supply, promoting development of
clean energy, maintaining power grid security and efficient utilization of energy resources.
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Temporal and spatial changes in China’s inter-provincial electricity trading flows from
2005 to 2019 are presented in Figure 3. The findings showed that the basic flow direction of
China’s inter-provincial power transmission is from the energy-rich provinces in the central
and western regions to the economically developed coastal provinces in the east and south
(Figure 3). Notably, the total amount of electricity trading increased yearly owing to the
enrichment of inter-regional and inter-provincial power transmission networks. In addition
to the abbreviations of PGs in the figure, ABR denotes PGs bought or sold electricity from
abroad, which only accounted for a small proportion of the total inter-provincial and inter-
regional transmission electricity. The results showed that only Heilongjiang, Liaoning, and
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Yunnan provinces bought electricity from abroad, whereas Inner Mongolia, Jilin, Liaoning,
Guangdong, Guangxi, and Yunnan provinces sold electricity to foreign countries.
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China’s inter-regional and inter-provincial power transmission networks were rapidly
promoted in 2000 as the “West to East power transmission project” and the “Three Gorges
power transmission and transformation project” entered the peak period of construction
and the construction of UHV transmission lines began. Analysis of trans-regional power
transmission data showed that Shanxi transmitted 11.60 billion kWh to Jiangsu, Inner
Mongolia transmitted more than 5 billion kWh to Liaoning and Heilongjiang, and Hubei
transmitted 6.74 billion kWh, 20.34 billion kWh, 3.086 billion kWh, and 18.301 billion
kWh to Shanghai, Jiangsu, Chongqing, and Guangdong, respectively, in 2005. In addition,
though the results did not show large amounts of cross-regional power transmission
between the seven regional power grids, the inter-provincial power transmission within
SNGs was significant. Analysis of NCG data showed that Shanxi and Inner Mongolia were
the main transmission provinces, supplying more than 30 billion kWh of electricity. NEG
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results indicated that Jilin transmitted 18.58 billion kWh to Liaoning and Heilongjiang
transmitted 10.98 billion kWh to Jilin. ECG data showed that Jiangsu and Anhui were the
main transmission provinces. The findings indicated that Jiangsu’s transmission volume
to Shanghai and Zhejiang exceeded 11 billion kWh, and Anhui’s transmission volume
to Zhejiang was 5.84 billion kWh. Analysis of CCG data showed high frequency of the
power exchange between Hubei and Hunan, and the electricity trading was more than
5 billion kWh. NWG data showed that Shaanxi and Gansu were the main transmission
provinces, with Shaanxi transmitting 4.09 billion kWh to Gansu, and Gansu transmitting
2.57 billion kWh and 3.28 billion kWh to Qinghai and Ningxia, respectively. Analysis of
SCG data showed that Sichuan transmitted 9.70 billion kWh to Chongqing and Chongqing
transmitted 1.40 billion kWh to Sichuan. CSG data indicated that Guizhou and Yunnan
were the main transmission provinces, transmitting 9.14 billion kWh and 6.30 billion kWh
to Guangdong, respectively.

Inter-provincial power transmission network did not significantly change between
2005 and 2010. However, the total amount of inter-provincial power transmission increased
to 0.59 trillion kWh in 2010, indicating a 114.73% increase. Analysis of trans-regional
transmission showed that the transmission volume from Shanxi to Jiangsu and Hubei
increased to 16.55 billion kWh and 7.24 billion kWh, the transmission volume from Inner
Mongolia to Liaoning and Heilongjiang increased to 19.64 billion kWh and 13.46 billion
kWh, respectively. Moreover, the transmission volume from Hubei to Shanghai and Jiangsu
increased to 20.70 billion kWh and 13.90 billion kWh, respectively. Notably, the increase or
decrease in other trans-regional transmission volumes were negligible. In addition, there
was no large amount of cross-regional power transmission between regions. However,
the inter-provincial power exchanges within SNGs were more frequent in 2010 and the
transmission volume surged compared with that observed in 2005. More than 10 billion
kWh of inter-provincial power transmission was observed in the seven SNGs. For example,
in NCG, the electricity transmitted from Shanxi to Beijing was more than 16 billion kWh,
that from Hebei was more than 32.40 billion kWh, and that from Inner Mongolia to Beijing,
Tianjin, Hebei, and Shandong was 22.29 billion kWh, 13.49 billion kWh, 23.96 billion
kWh, and 11.45 billion kWh, respectively. The national interconnection was achieved
in 2011 except for Taiwan, forming the power allocation pattern of “West to East power
transmission” and “North to South power transmission” which was attributed to the
commissioning of the Qinghai-Tibet DC interconnection project.

The inter-provincial and inter-regional power transmission channels were markedly
enriched and the transmission capacity was significantly improved attributed to develop-
ment of the Southeast Shanxi–Nanyang–Jingmen 1000 kV UHV AC transmission line (under
operation from December 2011), Jinping-southern Jiangsu ±800 kV UHV DC transmission
line (which began operation from December 2012), Huainan–northern Zhejiang–Shanghai
1000 kV UHV AC transmission line (under operation from September 2013), south Hami–
Zhengzhou ±800 kV UHV DC transmission project (which began operation from January
2014) and the completion of a number of UHV transmission lines, such as Xiluodu–West
Zhejiang ±800 kV UHV DC transmission project (under operation from July 2014) and
North Zhejiang–Fuzhou 1000 kV UHV AC transmission project (under operation from
December 2014). The trans-regional power transmission increased to 331.11 billion kwh by
2015, with an increase of 96.11% compared with that reported in 2010. Furthermore, the
trans-provincial transmission volume increased to 948.21 billion kwh, with an increase of
61.29% relative to the volume reported in 2010.

Twenty-eight cross-regional transmission channels were under operation nationwide
from 2019, and the transmission capacity was 146.15 million kW. Nine inter-provincial UHV
transmission lines were under operation in NCG, ECG, and CSG, with transmission capacity
of 5080 kW. Construction of UHV AC/DC transmission channel promoted increase in cross-
regional power transmission capacity and achieved optimal allocation of energy resources
in a wider range. The top three provinces with highest power output were Inner Mongolia
(208.18 billion kWh), Yunnan (166.38 billion kWh), and Sichuan (138.31 billion kWh),
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accounting for 14.42%, 11.52%, and 9.58% of the total inter-provincial electricity trading,
respectively. Other major power exporting provinces included Shanxi (126.52 billion kWh),
Ningxia (91.24 billion kWh), and Hubei (83.96 billion kWh).

3.2. Carbon Emissions from Electricity Generation

China’s carbon emissions caused by power generation soared from 1.93 billion tons to
4.25 billion tons from 2005 to 2019, with an average annual growth rate of 5.83% (Figure 4).
Although the calculated values over the years are slightly lower than those reported by
Liao et al. (2019) [17,22], they are still within the error range. The main reason for this
difference is that the latest carbon emission coefficient used in the present study is slightly
lower compared with that used in IPCC accounting method. The change trend of carbon
emissions was highly consistent with changes in thermal power generation, exhibiting
three development stages namely: (i) Slow growth stage (from 2005 to 2009): in this stage
the growth trend of carbon emission was relatively moderate, the total carbon emissions in
2009 only increased by 659.62 million tons compared with that in 2005; (ii) Rapid growth
stage (2010–2013): in this stage the total carbon emissions reached 3.60 billion tons in 2013,
with an increase of 1.02 billion tons compared with that reported in 2009; (iii) Slow growth
stage (2014–2019): in this stage the carbon emissions range declined between 2014 and
2015, and showed slow growth again after 2016, with an average annual growth rate of
127.46 million tons.
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The findings showed that carbon emissions caused by electricity generation at the
provincial level displayed an overall pattern of “high in the east and low in the west, high in
the north and low in the south”, which was consistent with the geospatial pattern of energy
consumption in China’s power industry (Figure 5). Formation of this pattern was modu-
lated by several factors, such as energy resource endowment of each province, industrial
structure and economic development level, and scale and structure of energy production
and consumption. Inner Mongolia, Shandong, and Jiangsu were the top carbon emitters
from electricity production between 2005 and 2019, whereas Tibet, Qinghai, and Hainan
were the bottom three lowest carbon emitters. Notably, the three provinces with the highest
carbon emissions in 2005 were Shandong (185.89 million tons), Jiangsu (178.60 million tons),
and Guangdong (148.10 million tons), whereas Tibet, Qinghai, and Hainan only produced
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0.07 million tons, 6.39 million tons, and 5.50 million tons, respectively. The top three
provinces in carbon emission in 2019 were Inner Mongolia (482.81 million tons), Shandong
(391.99 million tons), and Jiangsu (344.70 million tons), whereas Tibet, Qinghai, and Hainan
only recorded 0.09 million tons, 8.23 million tons, and 15.41 million tons, respectively.
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3.3. Electricity Trading and Drivers to Carbon Emissions

In the current research, the study period was divided into 2005–2010, 2010–2015, and
2015–2019 to explore the driving factors of carbon emissions change, especially the impact of
electricity trading on carbon emissions. The decomposition results at the national level are
presented in Figure 6. Carbon emission intensity effect, structure effect, import effect, and
consumption intensity effect reduced carbon emissions by 175.35 million tons (−16.24%),
21.81 million tons (−2.02%), 89.81 million tons (−8.32%), and 90.20 million tons (−8.36%),
respectively, during the 2005–2010 period. Increase in electricity export activities, economic
activity, and increase in population increased carbon emission by 58.74 million tons (5.44%),
1291.07 million tons (119.60%), and 106.82 million tons (9.90%), respectively. The findings
show that economic activities were the main driving factor for continuous increase in
carbon emissions, whereas the emission reduction effect of inter-provincial electricity
import was relatively significant. The emission reduction rate related to import effect
from 2010 to 2015 was 162.29 million tons (−33.49%), whereas increase in electricity export
increased the carbon emission by 51.35 million tons (10.60%). These findings indicate that
significantly high low-carbon emission thermal power generation and renewable energy
generation power were added to the inter-provincial and inter-regional power trading
network. Although the proportion decreased between 2015 and 2019, electricity import
modulated carbon emission reduction to 184.18 million tons (−24.01%), which markedly
exceeded the carbon emission increase caused by population effect (91.70 million tons).
On the other hand, export effect increased carbon emission level by 157.34 million tons
(20.51%). Notably, the export effect and the import effect in these three periods showed
asymmetry, and emission reduction associated with import was significantly higher relative
to the emission increase related to export, which reflects the actual situation of continuous
optimization of China’s electricity production structure.
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Changes and driving factors of carbon emissions in each province in the 2005–2010,
2010–2015, and 2015–2019 periods are presented in Figures 7–9, respectively. The results
showed significant differences in carbon emissions change among PGs. Economic activities
had the highest effect on increase in carbon emissions in each PG, whereas carbon emission
intensity effect, structure effect and consumption intensity effect were correlated with
reduction in carbon emissions in each PG at varying degrees. Beijing was the only province
whereby carbon emissions decreased in all three periods, by 0.51, 1.20, and 0.31 million
tons, respectively, owing to electricity imports from other provinces and use of efficient
clean power generation technologies. In addition, Sichuan and Yunnan showed significant
reductions in carbon emissions owing to large-scale hydropower development and use.
Notably, carbon emissions in Yunnan decreased by 34.89 million tons from 2010 to 2015,
whereas carbon emissions in Sichuan decreased by 2.97 million tons from 2005 to 2010,
6.79 million tons from 2010 to 2015, and 9.25 million tons from 2015 to 2019. Guangdong
was among the top three in terms of carbon emissions in 2005, but its increase in carbon
emissions was not significant due to use of new energy technologies such as nuclear power
and power distribution in provinces such as Yunnan. Inner Mongolia, Shanxi, Shaanxi, and
Xinjiang relied on rich coal resources for production of thermal power on a large scale in
order to meet the high demand of power transmission. Shandong and Jiangsu were the
top two provinces in installed thermal power capacity, in order to meet the economic and
social development needs, with installed thermal power capacity at 111.35 million kW and
100.79 million kW, respectively, in 2019. These six provinces made major contributions to
increase in carbon emissions.

Increase in electricity import promoted carbon emissions reduction in PGs at varying
degrees. Analysis of emissions reductions showed that Hebei and Guangdong provinces
had the highest benefit from electricity imports in 2005–2010 and 2010–2015. Electricity
import in Hebei increased from 12.62 billion kWh to 57.50 billion kWh between 2005 and
2010, resulting in reduction in carbon emissions by 23.38 million tons. Guangdong’s
electricity imports increased from 42.17 billion kWh to 106.86 billion kWh, contributing to
a reduction of 22.75 million tons of carbon emissions.



Energies 2022, 15, 3601 15 of 20Energies 2022, 15, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure 7. Provincial changes in carbon emissions and driving forces during 2005–2010. 

Increase in electricity import promoted carbon emissions reduction in PGs at varying 
degrees. Analysis of emissions reductions showed that Hebei and Guangdong provinces 
had the highest benefit from electricity imports in 2005–2010 and 2010–2015. Electricity 
import in Hebei increased from 12.62 billion kWh to 57.50 billion kWh between 2005 and 
2010, resulting in reduction in carbon emissions by 23.38 million tons. Guangdong’s elec-
tricity imports increased from 42.17 billion kWh to 106.86 billion kWh, contributing to a 
reduction of 22.75 million tons of carbon emissions.  

 
Figure 8. Provincial changes in carbon emissions and driving forces during 2010–2015. 

Figure 7. Provincial changes in carbon emissions and driving forces during 2005–2010.

Energies 2022, 15, x FOR PEER REVIEW 16 of 22 
 

 

 
Figure 7. Provincial changes in carbon emissions and driving forces during 2005–2010. 

Increase in electricity import promoted carbon emissions reduction in PGs at varying 
degrees. Analysis of emissions reductions showed that Hebei and Guangdong provinces 
had the highest benefit from electricity imports in 2005–2010 and 2010–2015. Electricity 
import in Hebei increased from 12.62 billion kWh to 57.50 billion kWh between 2005 and 
2010, resulting in reduction in carbon emissions by 23.38 million tons. Guangdong’s elec-
tricity imports increased from 42.17 billion kWh to 106.86 billion kWh, contributing to a 
reduction of 22.75 million tons of carbon emissions.  

 
Figure 8. Provincial changes in carbon emissions and driving forces during 2010–2015. Figure 8. Provincial changes in carbon emissions and driving forces during 2010–2015.



Energies 2022, 15, 3601 16 of 20

Energies 2022, 15, x FOR PEER REVIEW 17 of 22 
 

 

Hebei’s electricity imports surged to 142,21 billion kWh from 2010 to 2015, resulting 
in a reduction of 72.66 million tons in carbon emissions; Guangdong’s electricity imports 
increased to 169.95 billion kWh, causing a reduction of 16.13 million tons in carbon emis-
sions. Notably, Hebei’s electricity import decreased to 138.9 billion kWh from 2015 to 
2019, but carbon emission increased by 37.46 million tons. Hebei, Inner Mongolia, Jiangsu, 
Shaanxi, and Guangdong achieved significant reduction in carbon emissions by reducing 
power export at different periods. The effects of electricity import and export were signif-
icantly higher compared with the effect of population growth in some PGs, implying that 
electricity trading markedly modulates carbon emissions growth/reduction in these re-
gions. 

 
Figure 9. Provincial changes in carbon emissions and driving forces during 2015–2019. 

3.4. Provincial Clusters and Emission Reduction Strategies 
The change in carbon emissions caused by electricity generation from 2015 to 2019 

and the seven driving factors decomposed by the LMDI model were taken as cluster var-
iables, and the 31 provinces were divided into five clusters based on the random forest 
clustering algorithm. This analysis was conducted to explore more targeted policy impli-
cations for carbon emissions reduction. The clustering factors and clustering results are 
presented in Table 2, whereby the mean values of the clustering factors are provided. The 
characteristics of PGs in each cluster can be interpreted more clearly and relevant policy 
implications can be obtained from these results.  

Table 2. Clustering factors and results of random forest clustering during 2015–2019 period. 

Clusters PGs ΔC  Δ CIC  Δ SC  Δ EXPC  Δ IMPC  Δ EIC  Δ GC  Δ PC  

1 

BJ −0.31 −1.49 −0.28 4.17 −5.93 −0.86 4.21 −0.13 
TJ 4.06 −0.09 −1.36 14.48 −13.46 −3.84 7.87 0.47 
SH −0.54 −0.67 −1.03 6.57 −12.20 −9.19 15.64 0.33 
GS 8.96 −0.03 −9.63 22.78 −13.99 −4.21 12.93 1.11 
QH −2.12 −0.83 −5.29 2.59 0.63 −1.73 2.21 0.31 
SC 0.51 −5.12 −3.04 −2.79 −0.93 −0.95 12.43 0.91 

Figure 9. Provincial changes in carbon emissions and driving forces during 2015–2019.

Hebei’s electricity imports surged to 142,21 billion kWh from 2010 to 2015, resulting in
a reduction of 72.66 million tons in carbon emissions; Guangdong’s electricity imports in-
creased to 169.95 billion kWh, causing a reduction of 16.13 million tons in carbon emissions.
Notably, Hebei’s electricity import decreased to 138.9 billion kWh from 2015 to 2019, but
carbon emission increased by 37.46 million tons. Hebei, Inner Mongolia, Jiangsu, Shaanxi,
and Guangdong achieved significant reduction in carbon emissions by reducing power
export at different periods. The effects of electricity import and export were significantly
higher compared with the effect of population growth in some PGs, implying that electricity
trading markedly modulates carbon emissions growth/reduction in these regions.

3.4. Provincial Clusters and Emission Reduction Strategies

The change in carbon emissions caused by electricity generation from 2015 to 2019 and
the seven driving factors decomposed by the LMDI model were taken as cluster variables,
and the 31 provinces were divided into five clusters based on the random forest clustering
algorithm. This analysis was conducted to explore more targeted policy implications for
carbon emissions reduction. The clustering factors and clustering results are presented in
Table 2, whereby the mean values of the clustering factors are provided. The characteristics
of PGs in each cluster can be interpreted more clearly and relevant policy implications can
be obtained from these results.

Cluster 1 includes Beijing, Tianjin, Shanghai, Gansu, Qinghai, Sichuan, Tibet, Hainan,
and Yunnan. The increase in carbon emissions in the nine provinces in cluster 1 was less
than 9 million tons between 2015 and 2019. Notably, some provinces (Beijing, Shanghai,
Qinghai, and Hainan) achieved a decrease in carbon emissions, had a moderate growth
rate of carbon emissions, and exhibited the lowest average change in carbon emission. The
carbon emissions intensity and consumption intensity of thermal power generation in these
PGs declined since the 13th Five-Year Plan, and the electricity generation structure has been
significantly optimized. The emission reduction effect of electricity imports can offset the
increase in carbon emission caused by population effect. Electricity exports from Sichuan
and Yunnan provinces accounted for 21.10% of the country’s total electricity flow in 2019.
Increase in electricity exports did not significantly increase carbon emissions in the two
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provinces owing to abundant hydropower resources. Beijing, Tianjin, and Shanghai require
continuous import of low-carbon electricity to support their own economic development
and consumer demand. Notably, the power generation structure of Hainan province has
high potential to be tapped.

Table 2. Clustering factors and results of random forest clustering during 2015–2019 period.

Clusters PGs ∆C ∆CCI ∆CS ∆CEXP ∆CIMP ∆CEI ∆CG ∆CP

1

BJ −0.31 −1.49 −0.28 4.17 −5.93 −0.86 4.21 −0.13
TJ 4.06 −0.09 −1.36 14.48 −13.46 −3.84 7.87 0.47
SH −0.54 −0.67 −1.03 6.57 −12.20 −9.19 15.64 0.33
GS 8.96 −0.03 −9.63 22.78 −13.99 −4.21 12.93 1.11
QH −2.12 −0.83 −5.29 2.59 0.63 −1.73 2.21 0.31
SC 0.51 −5.12 −3.04 −2.79 −0.93 −0.95 12.43 0.91
TIB 0.07 0.00 0.03 0.01 0.00 0.01 0.01 0.00
HN −0.80 0.77 −6.31 −0.06 0.61 0.19 3.42 0.58
YN 6.28 1.54 −5.40 2.37 0.09 −3.55 10.43 0.81

Cluster 1’s mean 1.79 −0.66 −3.59 5.57 −5.02 −2.68 7.68 0.49

2

HEB 75.34 44.50 −26.90 −29.12 37.46 −15.89 59.64 5.66
SX 56.56 10.86 −16.17 16.11 −12.44 7.68 46.65 3.88
IM 132.65 13.71 −16.87 24.79 −38.57 63.59 81.26 4.74
SD 36.56 20.57 −34.24 14.33 −36.91 −22.26 86.70 8.36
JS 38.40 22.25 −27.53 2.81 −25.05 −20.82 82.94 3.81

NX 41.04 9.51 −8.68 45.69 −27.80 −6.40 24.52 4.21
XJ 68.72 9.57 −16.74 19.01 −0.43 3.69 40.10 13.52

GD 29.31 2.46 −28.16 13.01 −9.59 −8.64 46.86 13.38
Cluster 2’s mean 59.82 16.68 −21.91 13.33 −14.17 0.12 58.58 7.19

3
LN 10.52 3.60 −22.55 3.45 −1.11 5.31 22.81 −0.98
JL 10.53 −1.75 −6.55 4.55 1.91 −0.45 14.38 −1.57

HLJ 10.01 2.27 −7.47 2.79 1.80 −3.79 15.67 −1.26
Cluster 3’s mean 10.36 1.37 −12.19 3.60 0.87 0.36 17.62 −1.27

4

ZJ 10.08 −8.54 −8.57 5.75 −21.93 −0.15 35.08 8.44
AH 45.26 −5.32 −7.76 11.50 −12.28 4.26 48.67 6.20
FJ 22.59 −0.27 −7.21 4.96 0.05 −4.85 26.60 3.30

HN −11.23 −14.92 −15.15 −2.06 −9.72 −27.06 54.39 3.30
SAX 23.74 −29.20 −7.56 4.62 3.80 19.12 30.45 2.52

Cluster 4’s mean 18.09 −11.65 −9.25 4.95 −8.02 −1.74 39.04 4.75

5

JX 23.41 −1.98 −0.68 0.03 0.82 1.12 22.52 1.58
HB 28.68 −4.87 12.25 −7.67 2.87 −1.24 26.17 1.17
HN 17.63 1.79 2.01 −1.01 −1.59 −3.20 18.35 1.28
CQ 8.16 0.03 1.40 1.47 −5.77 −1.10 10.78 1.37
GX 44.41 7.18 16.87 −17.20 15.22 6.06 14.17 2.10
GZ 28.56 5.36 9.29 −10.55 0.25 −8.21 30.10 2.32

Cluster 5’s mean 25.14 1.25 6.86 −5.82 1.97 −1.10 20.35 1.64

Cluster 2 comprises Hebei, Shanxi, Inner Mongolia, Shandong, Jiangsu, Ningxia,
Xinjiang, and Guangdong. The eight provinces had the highest carbon emission in 2019,
with an average carbon emission increase of 59.82 million tons. The increase in carbon
emissions for Inner Mongolia was 132.65 million tons in 2019. Although the electricity
generation structure was continuously optimized, the intensity of coal-fired power genera-
tion increased at varying degrees. Hebei’s emission intensity effect caused an increase of
44.50 million tons of carbon emissions, whereas the emission intensity effect of Shandong
and Jiangsu increased carbon emissions by more than 20 million tons. Electricity import ef-
fect effectively alleviated the increase in carbon emissions caused by increase in population,
with an average carbon emission reduction of 14.17 million tons. Electricity exports had
the most significant effect on carbon emission, with an average carbon emission increase of
13.32 million tons. The development and layout of renewable energy in electricity exporting
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provinces such as Inner Mongolia, Shanxi, Ningxia, and Xinjiang should be modulated by
local power regulators.

Cluster 3 comprised Liaoning, Jilin, and Heilongjiang provinces. Increase in carbon
emission in these three provinces was more than 10 million tons. These three provinces
are old industrial bases in Northeast China, and are characterized by the slowdown of
economic growth, population loss, and decline in power consumption intensity. The
electricity generation structure in the three provinces was optimized over time, resulting in
an average carbon emissions reduction of 12.19 million tons. Notably, reduction in carbon
emissions reduction and emission increase effects were not significant. The economy of the
three northeastern provinces is currently recovering owing to policies such as revitalizing
the old industrial base in Northeast China. Policymakers in the power industry should
explore strategies to provide sustainable low-carbon power supply.

Cluster 4 comprises Zhejiang, Anhui, Fujian, Henan, and Shaanxi. These four provinces
had the fastest decline in carbon emissions intensity of thermal power generation, resulting
in an average reduction in carbon emission of 11.65 million tons. Reduction in carbon
emissions intensity of thermal power generation in Shaanxi led to reduction in carbon
emissions by 29.20 million tons, which relatively alleviated increase in carbon emissions
caused by increase in economic activities (30.45 million tons). The effects of economic
activities, population increase, and emissions were significantly higher compared with
those of the three eastern provinces. The electricity importing and exporting volume of
the provinces were small, with the exception of Zhejiang, which had a large power import
volume. The other provinces only maintained the self-sufficiency of electricity supply and
demand.

Cluster 5 comprises Jiangxi, Hubei, Hunan, Chongqing, Guangxi, and Guizhou
provinces. The electricity generation structure of these provinces except Jiangxi whas
not been optimized, leading to increase in average carbon emissions by 6.86 million tons.
Moreover, Jiangxi, Hubei, Guangxi, and Guizhou showed an increase in carbon emis-
sions due to reduction in electricity imports, whereas carbon emissions in Hubei, Hunan,
Guangxi, and Guizhou decreased due to reduction in electricity exports. These provinces
should pay more attention to the optimization of their own electricity generation structure
and development of renewable energy power, so as to promote energy conservation and
reduction in carbon emissions.

4. Conclusions

In the present study, comprehensive inter-provincial electricity transmission data from
2005 to 2019 were generated using the electricity generation–consumption downscaling
model and the electricity balance equation. In addition, the IPCC accounting method was
used to determine the levels of carbon emissions associated with electricity generation in
31 PGs. Furthermore, seven driving factors, including electricity imports and exports, were
decomposed using the LMDI model. Moreover, the 31 PGs were divided into five clusters
according to the characteristics of these driving factors using random forest clustering algo-
rithm to further explore the effects of electricity trading on reduction in carbon emissions
and policy implications.

The main findings of the present study are: (i) Electricity imports and exports signifi-
cantly modulate the levels of carbon emission in PGs, ultimately affecting realization of
carbon peak and carbon neutrality of the whole country. The effects of electricity import
and export were significantly higher that the effect of population growth in some PGs,
compared with traditional drivers (electricity consumption intensity, economic activity, and
population growth), indicating that electricity trading was a significant driver of carbon
emissions’ growth or reduction in the region. (ii) The findings showed that emission re-
ductions would only occur at the national level when the carbon intensity of the exporting
PGs was lower compared with that of the importing PGs, as well as when the electricity
trading was generated from renewable sources. Therefore, to the country should promote
utilization of clean energy and green electricity from the trading grid to minimize carbon
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emission. (iii) Strategies to determine consumption-based emissions should be promoted
in order to achieve sustainable development and regional equity. PGs should increase
electricity import to reduce local carbon emissions from electricity production. The findings
showed that carbon emissions are markedly high in electricity-exporting PGs. Policymakers
should extensively evaluate inter-provincial and inter-regional electricity trading to ensure
that power transmission is effectively regulated and sustainable from a national point of
view.
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