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Abstract: The development of emerging technologies has enhanced the demand response (DR)
capability of conventional loads. To study the effect of DR on the reduction in carbon emissions in an
integrated energy system (IES), a two-stage low-carbon economic dispatch model based on the carbon
emission flow (CEF) theory was proposed in this study. In the first stage, the energy supply cost was
taken as the objective function for economic dispatch, and the actual carbon emissions of each energy
hub (EH) were calculated based on the CEF theory. In the second stage, a low-carbon DR optimization
was performed with the objective function of the load-side carbon trading cost. Then, based on the
modified IEEE 39-bus power system/Belgian 20-node natural gas system, MATLAB/Gurobi was
used for the simulation analysis in three scenarios. The results showed that the proposed model
could effectively promote the system to reduce the load peak-to-valley difference, enhance the ability
to consume wind power, and reduce the carbon emissions and carbon trading cost. Furthermore, as
the wind power penetration rate increased from 20% to 80%, the carbon reduction effect basically
remained stable. Therefore, with the growth of renewable energy, the proposed model can still
effectively reduce carbon emissions.

Keywords: carbon emission flow; demand response; integrated energy system; ladder-type carbon
price; low-carbon economic dispatch; Shapley value

1. Introduction

Emissions of greenhouse gases such as carbon dioxide produced by the development
of human society have exceeded the capacity of the Earth, causing the greenhouse effect
to become increasingly apparent [1,2]. Energy systems are a major source of carbon
emissions [3]. Under the Sustainable Development Goals (SDGs), energy systems are in
urgent need of low-carbon development [4–6]. Integrated energy systems (IESs) have
a prominent low-carbon emission potential, attracting a large number of domestic and
foreign scholars to conduct relevant research [7,8]. The research on low-carbon IESs has
become a hotspot in the international energy field [3,9].

So, how can we effectively mitigate the carbon emissions in IESs? The recent re-
search [10] systematically combs through carbon emission mitigation strategies from the
aspects of policies, sector specific technologies and initiatives, and general societal initia-
tives. Specifically for integrated energy systems, carbon reduction strategies can be roughly
divided into two categories: system internal strategies and policy incentive strategies. The
internal strategies include developing renewable energy power generation technologies
to replace fossil fuel power generation technology, developing energy storage technology
to promote renewable energy consumption, optimizing operation strategies to improve
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energy utilization, developing carbon capture and utilization storage technology, and so
on [10,11]. Policy incentive strategies include the use of a carbon tax, carbon trading,
time-of-use energy pricing, and other policies to stimulate the energy supply side and
consumption side to change toward a direction that is conducive to mitigating carbon
emissions [10,12].

Research focusing on the system internal strategies of IESs to reduce carbon emissions
have been widely conducted. The study by [13] proposed a day-ahead energy trading
strategy for a regional integrated energy system (RIES) that considered energy cascade
utilization to improve the energy utilization efficiency. In [14], the concept of a sharing
economy was introduced into the energy interaction process of an IES and proposed
a distributed electrical–gas–thermal energy sharing mechanism to improve the energy
efficiency and promote the optimal resource allocation. The use of power-to-ammonia in
high-renewable multi-energy systems is superior to that of regular batteries and power-to-
gas storage for system operational economy and renewable energy accommodation [15].

In terms of policy incentive strategies, some studies have focused on the carbon
reduction effects of a carbon tax and carbon trading policies on the energy supply side. A
carbon tax was introduced into the objective function of the economic dispatch model to
improve the system economy and low-carbon performance in [16]. In [17], an economic
dispatch model for RIESs was proposed using the ladder carbon prices. The reward
and punishment ladder-type carbon trading mechanism was used to calculate the carbon
trading cost of an IES considering the carbon capture technology in [9].

On the other hand, some studies have mainly focused on the policy impact on the
energy consumption side. Stimulating demand response (DR) through policies is an
effective way to increase the renewable energy consumption and reduce the system carbon
emissions [18]. The study in [19] used the time-of-use electricity and gas prices to drive
the integrated demand response to reduce the system carbon emissions. In [20], they
studied the effect of the time-of-use electricity pricing policy on smart home participation
in the power demand response. The authors in [21] studied the impact of the dynamic
electricity tariffs on the household’s electricity demand response. Demand response guided
by real-time electricity prices has also been studied [22,23]. These studies [19–23] were all
from the perspective of energy price policy to stimulate the demand response.

However, in the context of decarbonizing the energy system, the demand response
motivated by energy price policies is not straightforward enough. Energy demand is the
root cause of carbon emissions in the energy system. The responsibility of the energy
demand side for system carbon emissions cannot be ignored. Therefore, it is more direct
to guide the demand response through carbon price policies. At present, the demand
response under the incentive of user-side carbon trading has not been fully studied, and its
carbon reduction effectiveness and advantages remain to be discussed.

To study this problem, the first challenge is to calculate the actual carbon responsibility
on the user side. The carbon emission flow (CEF) theory first proposed in [24] solves this
problem well. The carbon emission flow theory considering power network losses has also
been studied [25]. Furthermore, CEF theory has also been adopted in IESs [3,26], which
can allocate the actual carbon emission responsibility from the energy supply side to the
demand side.

To sum up, the demand response carbon reduction strategy under the CEF-based
user-side carbon trading incentive is worth studying. To study the carbon reduction effect
of the strategy, a two-stage low-carbon economic dispatch model was proposed in this
paper. The main contributions of this paper are as follows:

1. This paper proposes a two-stage low-carbon economic dispatch model of the IES based
on the CEF theory. On the basis of considering the load-side carbon responsibility
and demand response, the source and load are coordinately optimized to realize the
low-carbon economic operation of the IES;
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2. Based on the Shapley value method, a method for the division of the carbon emission
responsibility grades of each energy hub is proposed, and a ladder-type carbon trading
mechanism is formulated;

3. Through the analysis of three scenarios, the effectiveness of the model proposed in
this paper is verified in the IESs with different renewable energy penetration rates,
and the mechanism of the demand response is elaborated. Furthermore, the proposed
method is proven to have superiority over the other two related existing methods in
carbon reduction.

2. Load-Side Carbon Responsibility Allocation Method Based on Carbon Emission
Flow Theory and Shapley Value Method

The structure of an electric-gas IES is shown in Figure 1. The solid blue lines represent
the power flow from the power source to the load through the power grid. The solid green
lines indicate that natural gas flows from the gas source to the gas load through the natural
gas network. Electricity and natural gas loads form energy hubs [27]. The blue and green
dotted lines in Figure 1 represent the carbon emission flows of electricity and natural gas,
respectively. To clarify the carbon emission responsibility that each EH should undertake
in the process of using power and natural gas, calculations and analyses can be carried
out based on the CEF theory [26]. Subsequently, based on the Shapley value method, the
carbon emission responsibility for each EH can be divided into several grades. As a result,
a ladder-type carbon-trading mechanism can be formed.
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2.1. CEF in Power System Considering Grid Losses

The power system grid loss rate can reach 7–9% [28], and therefore, the carbon emis-
sions caused by grid losses cannot be ignored. Therefore, the carbon emission responsibility
caused by grid losses must be attributed to the load side by the CEF considering the grid
losses. According to the method introduced in [29], the power flux of bus i is defined as

PBi = ∑
j∈i+

Pji + PGi (1)

where Pji is the active power at the end of branch j− i, and the positive direction is from
j to i; i+ represents the set of start buses of the branches where the power flows injected
into bus i are located; PGi is the generator output at bus i. Equation (2) can be derived from
Equation (1):

PB = (Egross −Agross)−1PG (2)
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where PB is an n-dimensional column vector representing the power fluxes of buses for a
power grid with n buses; Egross is an n-order identity matrix; Agross is an n× n coefficient
matrix, each element of which is defined as

Agross
ij =

{
Pgross

ji /PBj j ∈ i+

0 else
(3)

where Pgross
ij is the active power at the start of branch j− i, which is defined as Pgross

ij =

Pji + Ploss
ij ; Ploss

ij is the grid loss on branch j− i. Correspondingly, it can be obtained as:

Pgross
L = BgrossPB (4)

where Pgross
L is an n-dimensional column vector, which denotes the equivalent electrical load

value after allocating the grid losses to each load, Bgross is an n-order diagonal coefficient
matrix, each element of which is defined as

Bgross
ij =

{
PLi/PBj i = j

0 i 6= j
(5)

From Equations (2) and (5), it can be obtained:

Pgross
L = Bgross(Egross −Agross)−1PG = TgrossPG (6)

where Tgross is the distribution matrix from the source to the load, which can be calculated
from the direct current (DC) optimal power flow results considering the grid losses. The
element Tgross

ij represents the percentage of generator output at bus j supplied to the load at
bus i, and therefore the sum of elements in each column of Tgross is 1.

Because the carbon emission flow is a virtual flow attached to the active power flow,
analogous to Equation (2), it can be obtained as:

Rele,B = (Egross −Agross)−1RG (7)

where RG is an n-dimensional column vector representing the carbon flow rate of the
generators in tCO2/h. The calculation method for the elements is

RGi = eGiPGi (8)

where eGi is the carbon emission intensity of the generator at bus i, in tCO2/MWh.
Analogous to Equation (6), this is:

Rgross
ele,L = TgrossRG (9)

where Rgross
ele,L is an n-dimensional column vector that denotes the load-side carbon emission

responsibility after the source-side carbon emissions are attributed to the load side consid-
ering grid losses. On this basis, the bus carbon intensity egross

ele can be calculated, the unit of
which is tCO2/MWh. The calculation method for the elements is as follows:

egross
ele,i = Rgross

D,ele,i/PBi (10)

2.2. CEF in a Natural Gas System

The CEF of an isolated lossless gas system is completely determined by the mass flow.
Assuming that the carbon emission intensities of all gas sources are the same, the carbon
emission responsibility of the load side can only be calculated directly according to the
load value. However, as the carbon intensity of the power-to-gas (P2G) node changes, the
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carbon intensity of each gas node is no longer constant. Therefore, it is necessary to adopt
the CEF theory to calculate the carbon emission responsibility on the gas load side.

In this study, the steady-state modeling of a natural gas system neglecting pipe storage
and pipeline losses was adopted; thus, the CEF theory without considering the network
losses can be applied. Because the CEF without grid losses is a special case of the CEF in
Section 2.1, the following parts can be obtained.

The mass-flow flux FBi of node i is:

FBi = ∑
j∈i+

Fji + FSi (11)

where Fji is the gas mass flow rate of pipeline j− i, and the positive direction is from j
to i; i+ represents the set of start nodes of the pipelines where the gas flows injected into
node i is located; Fsi is the mass flow rate of the gas source at node i. By analogy, it can be
obtained as:

FB = (E−A)−1Fs (12)

where FB is an m-dimensional column vector representing the node mass flow flux for a gas
network with m nodes; E is an m-order identity matrix; A is an m×m coefficient matrix,
each element of which is defined as

Aij =

{
Fji/FBj j ∈ i+

0 else
(13)

where Fji is the gas mass flow rate of pipeline j− i; correspondingly, which can be obtained
as follows:

FL = B(E−A)−1Fs = TFs (14)

where FL is an m-dimensional column vector representing the gas load and B is an m-order
diagonal coefficient matrix. Each element is defined as follows:

Bij =

{
FDi/FBj i = j

0 i 6= j
(15)

where T is the distribution matrix of the gas network from the source to load. For the
carbon emission flow rate in the gas network,

Rgas,B = (E−A)−1Rs (16)

where Rs is an m-dimensional column vector in tCO2/h, representing the carbon flow rate
of the gas source. The calculation method of the elements is

Rsi = esiFsi (17)

where esi is the carbon emission intensity of the gas source at node i, in tCO2/MBtu.

Rgas,L = TRS (18)

where Rgas,L is an m-dimensional column vector, which represents the carbon emission
responsibility on the load side. Correspondingly, the node carbon intensity of the gas
network egas, in tCO2/MBtu, can be calculated as follows:

egas,i = Rgas,B,i/FBi (19)

2.3. Allocation of Carbon Emission Responsibility Based on the Shapley Value Method

The energy hubs in an IES form a natural cooperative game alliance. The total carbon
emissions of the IES are a joint responsibility for all EHs. Therefore, the carbon emission
responsibility allocation can be regarded as a classic cost allocation problem. Many methods
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can be used to solve the cost allocation problem. Among them, the Shapley value (SV)
method and generalized nucleolus (GN) method are the most widely used because of
their unique solutions and good properties. Compared to the GN method, the SV method
is superior in terms of equivalence (the mutual influence between any two members is
the same) [30]. Hence, this study adopted the SV method to allocate the carbon emission
responsibility among the EHs.

The SV method was proposed by Lloyd Shapley in 1953 and emphasizes the marginal
effect of each member for different alliances. According to the definition of the Shapley
value, the carbon emission responsibility shared by each EH should be the weighted
average of all of its marginal effects, which can be expressed as:

Xi = ∑
S⊆N\{i}

ns!(nN − ns − 1)!
nN!

[C(S ∪ {i})− C(S)] (20)

where nN represents the number of members in the entire alliance N; S represents any
sub-alliance without the member i; ns represents the number of members in the sub-alliance
S; ns!(nN − ns − 1)!/nN ! represents the probability of the occurrence of sub-alliance S; C(S)
represents the carbon emission responsibility of the sub-alliance S; S∪ {i} represents a new
alliance formed by incorporating the alliance member i into alliance S; C(S ∪ {i})− C(S)
represents the carbon emission responsibility marginal effects of member i on sub-alliance S.

For each member in an alliance with nN members, it has 2nN−1 marginal effects. Hence,
the minimum and maximum marginal effects of member i can be defined as Xi,min, Xi,max.

Xi,min = min{C(S ∪ {i})− C(S)} (21)

Xi,max = max{C(S ∪ {i})− C(S)} (22)

The Shapley value Xi is the weighted average of all marginal effects and therefore
Xi,min < Xi < Xi,max. The Shapley value of the member i is defined as Xi,mid.

Xi,mid = Xi (23)

3. A Two-Stage Low-Carbon Economic Dispatch Model Considering Demand
Response
3.1. The Two-Stage Model Overview

The two-stage low-carbon economic dispatch model considering the DR was employed
to illustrate the source–load interaction coordination. The detailed process of the two-stage
model is presented in Figure 2.
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This can be divided into four parts:

1. Preparatory work: Based on the method proposed in Section 2, the carbon emission
responsibility grades of each EH are calculated using the input data. Thus, a ladder-
type carbon trading mechanism is formed to calculate the load-side carbon trading
cost in the second stage;

2. The first stage: An economic dispatch optimization is performed with the objective
function of minimizing the energy supply cost. The flow data of the IES are obtained
by optimization. These are then passed to the CEF model to calculate the carbon
intensity of each load node;

3. The second stage: Based on the first stage, this stage is optimized with the objective
function of minimizing the carbon trading cost of the load side. The optimal demand
response values are obtained after the optimization;

4. Loop solution and output: The response values optimized by the second stage cause
load changes, and therefore, it is necessary to use the new load values to perform
the first-stage economic dispatch calculation. Finally, a two-stage loop calculation is
performed until the objective function values of the two stages tend to be stable.

The modeling of the IES and demand-side response in this study was based on the
following hypothesis:

• Without considering the impact of the reactive power flow on the system carbon
emissions, the DC power flow modeling was adopted for the power system;

• Without considering the pipeline inventory, the steady-state pipeline modeling was
adopted for the gas network;

• The demand-side response was based on the premise that the total energy demand for
a day remained unchanged;

• Without considering the power or gas load types, the load response ranges are set to
constrain the load response capability.

3.2. The First Stage: Economic Dispatch Model
3.2.1. Objective Function

The objective function is established as flows:

min
T

∑
t=0

(
NCFU

∑
CFU=1

cCFU PCFU,t +
Nwind

∑
wind=1

cwindPwind,t +
Ngas

∑
gas=1

cgasFgas,t

)
(24)

where cCFU represents the power generation cost coefficient of coal-fired units, which is
determined by the fuel cost, power generation efficiency, and so on; cwind is the power
generation cost coefficient of the wind turbine, which is determined by the operation cost,
maintenance cost, and so on; cgas represents the cost coefficient of natural gas; PCFU,t and
Pwind,t represents the outputs of the coal-fired units and wind turbines at time t, respectively;
Fgas,t denotes the output mass flow rate of the natural gas source at time t.

3.2.2. Constraints

(1) Power system model

To consider the speed and accuracy of the calculation, this study adopted the DC optimal
power flow model considering branch losses [31]. The system has the following constraints.

(a) Unit constraints:
PCFU,min ≤ PCFU,t ≤ PCFU,max (25)

PGFU,min ≤ PGFU,t ≤ PGFU,max (26)

Pwind,min ≤ Pwind,t ≤ Pwind,max (27)

PGFU,i = ηGFU FGFU,m (28)

RampCFU,min ≤ PCFU,t − PCFU,t−1 ≤ RampCFU,max (29)
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RampGFU,min ≤ PGFU,t − PGFU,t−1 ≤ RampGFU,max (30)

where PCFU,max and PCFU,min represent the upper and lower output limits of the coal-
fired units; PGFU,max and PGFU,min represent the upper and lower output limits of the
gas-fired units, respectively; Pwind,max and Pwind,min represent the upper and lower
output limits of the wind turbines; PCFU,t, PGFU,t, and Pwind,t are the actual outputs of
the coal-fired units, gas-fired units, and wind turbines at time t, respectively; ηGFU
is the power generation efficiency of the gas-fired units; FGFU,m is the mass flow
rate of natural gas consumed by the gas-fired unit, respectively; RampCFU,max and
RampCFU,min represent the upper and lower output limits of the coal-fired units;
RampGFU,max and RampGFU,min represent the upper and lower output limits of the
gas-fired units, respectively.

(b) Branch constraints:

Pij,t =
θij,t

xij
(31)

Ploss
ij,t = gijθ

2
ij,t (32)

Pij,min ≤ Pij ≤ Pij,max (33)

where Pij,t and Ploss
ij,t represent the power flow and branch losses of branch i − j at

time t, respectively; θij,t is the phase angle difference between the two ends of branch
i− j at time t; xij and gij are the reactance and conductance of branch i− j; Pij,max and
Pij,min are the upper and lower power transmission limits of branch i− j.

(c) Bus constraints

PCFU,i + PGFU,i + Pwind,i = ∑
j∈Ωi

Pij + ∑
j∈Ωi

1
2

Ploss,ij + PL,i + PP2G,i (34)

FP2G,m = ηP2GPP2G,i (35)

θij,min ≤ θij,t ≤ θij,max (36)

θre f ,t = 0 (37)

where PCFU,i, PGFU,i and Pwind,i represent the power injected into bus i from the coal-
fired units, gas-fired units, and wind turbines, respectively; PL,i represents the load
on bus i; Ωi represents the set of all buses around bus i; PP2G,i represents the power
consumed by the P2G equipment on bus i; ηP2G is the energy conversion efficiency of
P2G; FP2G,m represents the gas mass flow rate supplied by P2G to node m; θij,max and
θij,min represent the upper and lower phase difference limits of branch i− j; θre f ,t is
the phase angle of the slack bus at time t.

(2) Natural gas system model

The natural gas system adopts the steady-state modeling based on the Weymouth
function [32]. The constraints of the natural gas system are as follows.

(a) Natural gas source constraints:

Fmin
S,m ≤ FS,m ≤ Fmax

S,m (38)

where FS,m represents the mass flow rate of the gas source at node m; Fmax
S,m and Fmin

S,m
represent the upper and lower mass flow rate limits of the gas source at node m.

(b) Pipeline constraints:

Fmn|Fmn| = kmn

(
π2

m − π2
n

)
(39)

Fmin
mn ≤ Fmn,t ≤ Fmax

mn (40)
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where Fmn,t represents the gas mass flow rate of pipeline m− n at time t. kmn is a
constant that depends on the length, diameter, and absolute rugosity of the pipe
and the gas composition [32]; πm and πn denote the gas pressure at nodes m and n,
respectively; Fmax

mn and Fmin
mn are the upper and lower mass flow rate limits of pipeline

m− n.

(c) Node constraints:

FS,m + FP2G,m = ∑
n∈Ωm

Fmn + FL,m + FGFU,m (41)

πmin
m ≤ πm ≤ πmax

m (42)

where FL,m represents the gas load at node m; πmax
m and πmin

m represent the upper and
lower gas pressure limits of node m.

3.3. The Second Stage: Demand Response Model

In the second stage, the optimization focus is shifted from the energy supply side
to the energy demand side. The demand response is the behavior of the energy demand
side actively changing the demand under market incentives to coordinate with the energy
supply. To promote low-carbon energy consumption, a demand-response low-carbon
optimization model with a ladder-type carbon price is established in the second stage.
The ladder-type carbon price was adopted as the incentive signal, and the minimum
demand-side carbon trading cost was set as the goal to optimize the response value.

3.3.1. Objective Function

The objective function of the second stage is to minimize the load-side carbon trading cost.

min
T

∑
t=0

NEH

∑
i=1

CCT
i,t (43)

where CCT
i,t is the carbon trading cost of the EHi at time t; NEH represents the total number

of energy hubs; T represents the time period of an optimization, which is 24 h in this paper.

3.3.2. Constraints

(1) Carbon trading cost constraints:

If EHs equally share the carbon emission responsibility of the entire IES, it is bound to
be an unfair and unreasonable solution. To distribute the carbon emission responsibility
on the load side fairly, it is necessary to determine the emission responsibility according
to the load value. The carbon emission responsibility of each EH at time t should be in
a reasonable range, neither greater than the maximum value of the member’s marginal
effect nor less than the minimum value of the marginal effect at time t (i.e., the interval
[Xi,t,min, Xi,t,max]). Therefore, based on the Shapley value method, Xi,t,min, Xi,t,mid, and
Xi,t,max can be adopted as the carbon emission responsibility boundaries of each EHi.
According to Equations (20)–(23), Xi,t,min, Xi,t,mid, and Xi,t,max can be calculated. For every
hour, each EH has corresponding marginal effects, and therefore the Xi,t,min, Xi,t,mid, and
Xi,t,max of EHi have corresponding 24 different values in a day.

However, in practical engineering applications, it is impractical and difficult for each
EH to update the carbon emission responsibility boundaries hourly. Therefore, in this study,
the average values of the carbon emission responsibility boundaries of each EH for 24 h
were taken as the carbon emission responsibility boundaries for the whole day, as shown in
Equations (44)–(46).

Xi,minavg =
T

∑
t=1

Xi,t,min (44)
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Xi,midavg =
T

∑
t=1

Xi,t,mid (45)

Xi,maxavg =
T

∑
t=1

Xi,t,max (46)

where Xi,t,min, Xi,t,mid, and Xi,t,max represent the minimum, medium, and maximum carbon
emission responsibility marginal effects of EHi at time t, respectively; Xi,minavg, Xi,midavg,
Xi,maxavg represent the 24-h average values of Xi,t,min, Xi,t,mid, Xi,t,max, respectively.

Based on the above, the ladder-type carbon trading cost is formed as Equation (47).
Figure 3 shows the schematic diagram of the ladder-type carbon price model.

CCT
i,t =



λ1
(
Xi,minavg − Ei,t

)
0 ≤ Ei,t < Xi,minavg

λ2
(
Ei,t − Xi,minavg

)
Xi,minavg ≤ Ei,t < Xi,midavg

λ2

(
Xi,midavg − Xi,minavg

)
+λ3

(
Ei,t − Xi,midavg

)
Xi,midavg ≤ Ei,t < Xi,maxavg

λ2

(
Xi,midavg − Xi,minavg

)
+λ3

(
Xi,maxavg − Xi,midavg

)
+λ4

(
Ei,t − Xi,maxavg

)
Ei,t ≥ Xi,maxavg

(47)

where Ei,t is the carbon emission responsibility of the EHi at time t; λ1 − λ4 are the carbon
prices of the four grades.
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(2) Carbon emission constraints:

Based on the CEF theory, the actual carbon emissions of each EH can be calculated
according to the actual energy consumption on the demand side. The carbon emission
responsibility of EHi at time t consists of the carbon responsibility of the original energy
demand and the carbon responsibility of the response value.

Ei,t = Rgross
ele,L,i,t + egross

ele,i,tD
ele
i,t + Rgas,L,i,t + egas,i,tD

gas
i,t (48)

where Rgross
ele,L,i,t and Rgas,L,i,t denote the EHi carbon emission responsibility at time t; egross

ele,i,t
and egas,i,t denote the carbon intensity of the electricity bus and gas node in EHi at time t;
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Dele
i,t and Dgas

i,t represent the response values of the electric load and gas load of the EHi at
time t.

(3) Demand response constraints:

Demand response values are the state variables of the second-stage optimization model. In
this paper, the demand response was modeled according to its actual characteristics. The ranges
of the electric- and gas-demand response values are denoted as Equations (49) and (50). This
paper assumes that the total load remained constant after the response, that is, the sum of all
response values in time period T was zero, denoted as Equations (51) and (52). Equations (53)
and (54) represent the response change constraints of the electric and gas loads between
two adjacent moments, which characterize the flexibility of the demand response.

kmin
ele PL,i,t ≤ Dele

i,t ≤ kmax
ele PL,i,t (49)

kmin
gas FL,i,t ≤ Dgas

i,t ≤ kmax
gas FL,i,t (50)

T

∑
t=1

Dele
i,t = 0 (51)

T

∑
t=1

Dgas
i,t = 0 (52)

rampmin
ele,i ≤ Dele

i,t − Dele
i,t−1 ≤ rampmax

ele,i (53)

rampmin
gas,i ≤ Dgas

i,t − Dgas
i,t−1 ≤ rampmax

gas,i (54)

where Dele
i,t and Dgas

i,t represent the response values of the power load and gas load of the
EHi at time t, respectively; PL,i,t and FL,i,t represent the real-time power load and gas load
of the EHi at time t, respectively; kmax

ele and kmin
ele are the ratios of the upper and lower limits

of the power load response value; kmax
gas and kmin

gas are the ratios of the upper and lower limits
of the gas load response value; rampmax

ele,i and rampmin
ele,i represent the upper and lower limits

of the power load response change of EHi; rampmax
gas,i and rampmin

gas,i represent the upper and
lower limits of the gas load response change of EHi.

4. Case Study and Discussion

A modified IEEE 39-bus power system/Belgian 20-node natural gas system was
employed to demonstrate the effectiveness of the proposed model. All case studies were
implemented using MATLAB/Gurobi on a PC with an Intel Core i7-11th processor and
16 GB of RAM. The economic dispatch period was 24 h, and the time step was 1 h.

4.1. A. Modified IEEE 39-Bus Power System/Belgian 20-Node Natural Gas System
4.1.1. Basic Data of the System

The modified electric-gas IES is shown in Figure 4. The power system includes four
coal-fired units G1–G4, a wind turbine unit G5, and two gas-fired units G6–G7. The
parameters of the thermal power units are listed in Table 1 [33,34]. Typical forecast data of
wind turbine output were directly employed, as in other studies [27,35]. Wind turbine G5
had a cost coefficient of 15 $/MW and carbon emission intensity of 0.006 t CO2/MW. The
natural gas system contained five gas sources, whose parameters are listed in Table 2 [32].
The power grid and gas network were coupled by the P2G equipment with a capacity
of 50 MW. Five power/gas loads were paired to form five energy hubs: EHA–EHE. The
detailed data of the power load and gas load of each EH are listed in Table 3. The per-unit
values of the 24 h maximum wind power outputs, power demands, and gas demands are
shown in Figure 5. The base values of the wind power output, power load, and gas load
were 658.8 MW, 3197.6 MW, and 2334.2 MBtu/h, respectively. The relevant data of the
ladder-type carbon prices are shown in Table 4.
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Table 1. Parameters of the thermal power units.

Unit Type Capacity
/(MW)

Cost Coefficient
/($/MW)

Emission
Intensity

/(t CO2/MW)

G1 Coal-fired 1040 35 1.280
G2 Coal-fired 725 35 1.300
G3 Coal-fired 652 35 1.290
G4 Coal-fired 508 35 1.270
G6 Gas-fired 564 \ 0.564
G7 Gas-fired 865 \ 0.550

Table 2. Parameters of the natural gas sources.

Capacity
/(MBtu/h)

Cost Coefficient
/($/MBtu)

Emission
Intensity

/(t CO2/MBtu)

Capacity
/(MBtu/h)

Cost Coefficient
/($/MBtu)

S1 15,000 11.6 0.0566 1.300
S2 20,000 10.8 0.0566 1.290
S3 1000 12.0 0.0566 1.270
S4 250 10.2 0.0566 0.564
S5 250 10.0 0.0566 0.550

Table 3. Data of the energy hubs.

EH Power Load/(MW) Gas Load/(MBtu/h)

EHA 913.6 526.2
EHB 685.2 25.0
EHC 685.2 158.6
EHD 456.8 1290.9
EHE 456.8 333.5
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Table 4. Parameters of the ladder-type carbon price.

Piecewise Interval Carbon Price/($/t CO2)

0 ∼ Xi,minavg λ1 = −5
Xi,minavg ∼ Xi,midavg λ2 = 15
Xi,midavg ∼ Xi,maxavg λ3 = 30

Xi,maxavg ∼ ∞ λ4 = 60
0 ∼ Xi,minavg λ1 = −5

4.1.2. Formation of the Ladder-Type Carbon Trading Mechanism for the Five EHs

It can be observed from Figure 4 that there are five EHs, denoted as A–E for con-
venience. Thus, the entire alliance is N = {A, B, C, D, E}, and there are 31 non-empty
sub-alliances of N. Taking t = 1 as an example, the economic dispatch model of the IES is
solved under the conditions of different sub-alliances, and the results for the system carbon
emission responsibilities are shown in Table 5.

Table 5. The carbon emission responsibility of each sub-alliance.

Sub-Alliance
Carbon Emission

Responsibility
/(t CO2)

Sub-Alliance
Carbon Emission

Responsibility
/(t CO2)

{A} 574.70 \ \
{B} 375.29 {A, B} 1075.64
{C} 382.63 {A, C} 1087.93
{D} 48.77 {A, D} 1124.59
{E} 10.40 {A, E} 1089.93

{B, C} 1067.71 {A, B, C} 1480.67
{B, D} 929.60 {A, B, D} 1505.31
{B, E} 883.47 {A, B, E} 1476.86
{C, D} 939.98 {A, C, D} 1526.90
{C, E} 897.98 {A, C, E} 1489.16
{D, E} 574.60 {A, D, E} 1139.50

{B, C, D} 1120.59 {A, B, C, D} 1550.08
{B, C, E} 1082.62 {A, B, C, E} 1508.31
{B, D, E} 1120.91 {A, B, D, E} 1520.23
{C, D, E} 1130.49 {A, C, D, E} 1541.82

{B, C, D, E} 1520.13 {A, B, C, D, E} 2458.65
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Taking EHA as an example, it can be obtained from Equations (20)–(23):

XA,max = max{C(S ∪ {A})− C(S)} = C(A, B, D, E)− C(B, D, E) = 399.32 tCO2 (55)

XA,min = min{C(S ∪ {A})− C(S)} = C(A, D)− C(D) = 1075.82 tCO2 (56)

XA,mid = ∑
S

|S|!(5− |S| − 1)!
5!

[C(S ∩ {A})− C(S)] = 674.8 tCO2 (57)

where S is any sub-alliance containing A, and |S| is the number of members in the sub-
alliance S.

In analogy with Equations (55)–(57), the carbon emission responsibility boundaries
for the other 23 h can be obtained. Thus, the average value of the 24-h EHA carbon
responsibility boundaries is

XA,minavg = 694.80 tCO2 (58)

XA,midavg = 904.32 tCO2 (59)

XA,maxavg = 1105.66 tCO2 (60)

In summary, the ladder-type carbon trading cost of EHA at time t is:

CCT
A,t =


λ1(694.80− EA,t) 0 ≤ EA,t < 694.80
λ2(EA,t − 694.80) 694.80 ≤ EA,t < 904.32
209.52λ2 + λ3(EA,t − 904.32) 904.32 ≤ EA,t < 1105.66
209.52λ2 + 201.34λ3 + λ4(EA,t − 1105.66) EA,t ≥ 1105.66

(61)

On this basis, the 24-h carbon emission responsibility grades of the five EHs can
be divided after the allocation of the carbon responsibility of the load side based on the
Shapley value method. The results are shown in Figure 6. The carbon responsibility grades
from low to high are represented in green, yellow, orange, and red, respectively. The three
dashed horizontal lines represent the 24 h averages of the responsibility boundaries for
different color grades. Based on these three averages, a one-day ladder-type carbon price
can be formed for each EH, which will be used to calculate the carbon trading cost later.
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The calculation results of the carbon emission responsibility boundaries are closely
related to the load value and location. In particular, the Shapley value Xmid (i.e., the upper
boundary of the yellow grade) depends largely on the load value. Due to the low-carbon
intensity of natural gas, the carbon emissions of each EH are mainly determined by the
power load value. The power loads of EHB and EHC are equal, so it can be seen from
Figure 6 that their carbon emission responsibility grades were basically similar, as were
EHD and EHE. Due to the large power load of EHA, its carbon emission responsibility
boundaries were also obviously higher than those of the other four EHs. However, the
carbon emission responsibility boundaries of EHE were slightly lower than those of EHD.
This is because the location of EHE was closer to the wind turbine, and a higher proportion
of the power consumed came from wind power. From the above analysis, it can be seen that
the Shapley value method can reasonably and effectively determine the carbon emission
responsibility grades among the EHs.

4.2. Analysis of Scenarios with and without Wind Power
4.2.1. Scenario 1: Without Wind Power

In order to better study the impact of the two-stage model on the IES, the wind turbine
G5 on bus 36 in the power system was replaced by a 300 MW coal-fired unit with a carbon
emission intensity of 1.28 t CO2/MWh as the blank control group. Based on the Shapley
value method, the 24 h carbon emission responsibility boundaries of the five EHs in the IES
were calculated again, and the 24-h average values were used to divide the ladder-type
carbon price grades, as shown in Figure 7. Comparing Figures 6 and 7, it can be seen that
the 24 h trend of the Shapley value Xmid (i.e., the upper boundary of the yellow grade) for
the same EH in the two different scenarios was basically consistent and similar to the load
curve, since the load values did not change. However, in Scenario 1, the profitable grades
were significantly higher than those in the scenario with wind power, especially at night.
This is because the carbon intensity of wind power was much lower than those of thermal
power and natural gas. In Scenario 1, the EH consumes energy with a high carbon intensity,
causing it to emit more carbon with the same load. Therefore, in the calculation of the
Shapley value method, it is reasonable that the minimum carbon emission responsibility
boundary (i.e., the upper boundary of the green grade) can be adjusted according to the
actual carbon emissions of the EH.
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After applying the two-stage model considering the DR, the total power/gas demand,
energy supply cost, carbon trading cost, and the carbon emissions before and after the
optimization are shown in Figures 8 and 9, respectively. As shown in Figure 8, in an IES
without wind power, the model could effectively shave the peaks and fill valleys for the
system load. Figure 9 shows that the energy supply cost and carbon emissions remained
basically unchanged before and after the optimization because there was no low-carbon
and low-cost energy injection. However, the carbon trading cost was visibly reduced by
approximately 28.9%. This is because, after peak shaving and valley filling under the
condition of the constant total load, when optimizing the carbon trading cost, the daytime
load could jump from the relatively high-price carbon responsibility grade toward the
lower price grade, and the night load increased as much as possible within the original
price grade to achieve the lowest total carbon trading cost. From the above results, it can be
seen that the model proposed in this paper can effectively guide the load to shave peaks
and fill valleys, thus reducing the carbon trading cost.
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4.2.2. Scenario 2: With Wind Power

In Scenario 2, the IES structure diagram and carbon emission responsibility grades
are shown in Figures 4 and 6, respectively. Figure 10 shows that the two-stage model can
still effectively promote load shaving and valley filling in Scenario 2. In Figure 11, the
wind power consumption was greatly improved after the response at 1–8 h and 22–24 h.
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Wind power has the characteristics of low carbon and low cost. Under the action of the
two-stage model, the system load can respond in the direction of consuming as much
wind power as possible. Before the optimization, except for 8–22 h, there was abandoned
wind power for the rest of the time, and the wind power consumption rate throughout
the day was only 43.2%. After the optimization, the night load actively participated in the
response to consume excess wind power. Consequently, the wind-power consumption rate
reached 93.0%.
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Figure 12 presents the energy supply cost, carbon trading cost, and carbon emissions
before and after the optimization in Scenario 2. Compared with Figure 9, Figure 12 shows
that the system energy supply cost and carbon emissions were significantly reduced after
the optimization in the scenario including low-carbon and low-cost wind power. Specifi-
cally, the energy supply cost, carbon trading cost, and total carbon emissions were reduced
by 2.9%, 21.7%, and 6.2%, respectively. From the above results of Scenario 2, it can be
proven that the proposed model can not only effectively promote the load peak shaving
and valley filling and reduce the load-side carbon trading cost, but also greatly improve
the renewable energy consumption capacity of the IES, reducing the carbon emissions and
energy supply cost.
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4.2.3. Scenario 3: With Different Wind Penetration Rates

To investigate the effect of the two-stage model on the IES with different renewable en-
ergy penetration rates, the carbon emissions and percentages of carbon emission reduction
after the optimization were studied with the wind power penetration rate (installed wind
power capacity/system maximum system load) increasing from 20% to 80% in steps of 10%.
As shown in Figure 13, an increase in the penetration rate led to the gradual reduction in
the system carbon emissions, and the percentage of carbon reduction after the optimization
remained basically stable, with a slight increase from 6.2% to 6.8%. Therefore, with the
growth in renewable energy, the two-stage model considering the DR proposed in this
paper can still effectively reduce carbon emissions.
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4.3. Discussion of the DR Mechanism

From the above scenario analysis considering the load-side carbon trading cost as
the objective function, the system could achieve the load peak shaving and valley filling
through the DR, thereby reducing the system carbon emission cost. To further explore the
essential mechanism of the DR, the following discussion focused on two factors: carbon
emissions and ladder-type carbon prices, which determine the objective function of the
second stage.
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4.3.1. Influence Mechanism of the Ladder-Type Carbon Prices on the DR

The influence mechanism of the ladder-type carbon price on the DR is shown in
Figure 14. The direction of the DR is determined by the carbon price of the current load
carbon emission responsibility grade. More specifically, the daytime load at a relatively
high-price grade shifts the carbon emission responsibility toward a lower-price grade
through a negative response. The night load at a low-price grade responds positively
within the original carbon price grade as much as possible to maintain the total load
conserved throughout the day. Thus, the carbon price gap can guide the DR to reduce the
carbon trading cost on the load side.
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To demonstrate the promoting effect of the carbon price gap on the DR, two different
carbon pricing cases were compared in Scenario 2.

• Case 1: Constant carbon pricing;
• Case 2: Ladder-type carbon pricing.

Case 2 adopted the ladder-type carbon price model proposed in this paper and its
parameters are shown in Table 4. As the blank control group, Case 1 adopted a constant
carbon price of 7.5 $/t CO2. Thus, Case 1 and Case 2 were equal in the carbon trading
cost before the two-stage optimization. The results before and after the optimization of
the two cases are shown in Figures 15 and 16. In Figure 15, the demand response after
the optimization in Case 2 was more obvious than that in Case 1. In Figure 16, after the
optimization, the carbon trading cost and carbon emissions in Case 2 were lower than those
in Case 1. The carbon trading cost reduction percentages of Case 1 and Case 2 were 1.0%
and 21.7%, respectively. The carbon emission reduction percentages of Case 1 and Case 2
were 1.9% and 6.2%, respectively. These results confirm that the carbon price gap can better
guide the DR to reduce carbon emissions and the carbon trading cost.
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4.3.2. Influence Mechanism of Carbon Emissions on the DR

The load carbon emissions depend on the load carbon intensity and load value. There-
fore, the impact of carbon emissions on the DR can be further investigated by focusing on
the carbon intensity. The following discussion takes the power demand response in Sce-
nario 2 as an example. According to the principle of proportional sharing [29], the carbon
intensity of each bus is determined by the power component injected into the bus, and its
value is the weighted average of the carbon intensity of each power component. The power
composition of the five power loads in Scenario 2 is shown in Figure 17. The corresponding
results of the bus carbon intensities are indicated by the blue line in Figure 18.
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Figure 18 shows the relationship between the response value of each power load and
bus carbon intensity. It can be seen from Figure 18 that in the period when the carbon
intensity was relatively high, the load reduced the consumption of high-carbon power
through a negative response. During the period when the carbon intensity was relatively
low, the load increased the consumption of low-carbon power through a positive response
to meet the conservation of total power demand. The response value is affected by the
relative size of the carbon intensity, response range, response change ability, etc. Therefore,
the carbon trading cost on the load side can be reduced by directly reducing the carbon
emissions from energy consumption. Therefore, the carbon intensity difference caused by
the renewable energy connected to the system can promote the DR to reduce the carbon
trading cost on the load side.

4.4. Discussion of Three Carbon Reduction Methods

To study whether the proposed method had a superior carbon reduction in the IES,
three carbon reduction methods in the existing related research and this paper were com-
pared As shown in Table 6, Method 1, referenced from [9], is the low-carbon economic
dispatch considering the source-side carbon trading. Method 2, referenced from [19], is the
economic dispatch considering the DR driven by the time-of-use tariff. Method 3, which
was proposed in this paper, is the economic dispatch considering the DR driven by the
load-side carbon trading.

Table 6. Details of the three carbon reduction methods in the existing related research and this paper.

Method
Carbon Trading

DR Reference
Source-Side Load-Side

Method 1 4 [9]
Method 2 4 [19]
Method 3 4 4 This paper

The three methods were tested in the modified IEEE 39-bus power system/Belgian
20-node natural gas system of this paper, and the total carbon emissions and wind power
consumption rates of the system before and after adopting the three methods were obtained,
as shown in Figure 19. The carbon reduction effect of the proposed Method 3 was 281.8%
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and 203.7% of Method 1 and Method 2, respectively. The wind power consumption rate of
the proposed Method 3 was 178.3% and 135.3% of Method 1 and Method 2, respectively.
Therefore, the proposed method had significant superiority in promoting the wind power
consumption and reducing the system carbon emissions compared with Methods 1 and 2.
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5. Conclusions

In this paper, a two-stage low-carbon economic dispatch model of an electric-gas
integrated energy system considering the demand response was proposed. In the first stage,
the economic dispatch of the integrated energy system was carried out with the objective of
minimizing the energy supply cost, and the carbon emission responsibility of the load side
was obtained based on the carbon emission flow theory. In the second stage, the low-carbon
demand response optimization was carried out with the objective of minimizing the carbon
trading cost on the load side. Additionally, a reward and punishment ladder-type carbon
trading mechanism, which was used to calculate the carbon trading cost in the second stage,
was formulated for each energy hub based on the Shapley value method. Cases based on a
modified IEEE 39-bus power system/Belgian 20-node natural gas system were studied to
demonstrate the effectiveness of the proposed model. By analyzing the all-thermal-power
scenario, wind-included scenario, and scenario with varying wind power penetration rates,
four conclusions can be drawn.

1. The two-stage model proposed in this paper could effectively reduce the peak-to-
valley difference, enhance the ability of the system to consume wind power, and
reduce the system carbon emissions by 6.2% and the carbon trading cost by 21.7%.

2. As the wind power penetration rate of the system increased from 20% to 80%, the
carbon reduction effect of the model remained basically stable, with a slight increase
from 6.2% to 6.8%. Therefore, with the growth in renewable energy, the two-stage
model considering the demand response proposed in this paper can still effectively
reduce carbon emissions.

3. Based on the Shapley value method, the user-side ladder-type carbon trading mecha-
nism was thus formulated. The method proposed in this paper drives the demand
response through user-side carbon trading. By comparing the proposed method with
the other two related existing methods, the carbon emission reduction effect of the
proposed method was 281.8% and 203.7% of the other two methods, respectively.
Therefore, the proposed method was proven to have superiority over the other two
methods in carbon reduction.

However, there were some limitations in this paper. For example, in the demand
response, the loads can be further classified into important loads, shiftable loads, and
adjustable loads. Furthermore, the impact of the load-side energy storage and distributed
renewable energy was not considered. Based on this study, future research on the low-
carbon demand response can be conducted by considering factors such as load-side energy
storage, distributed renewable energy, and load types.
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