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Abstract: Several dynamic projects and fault diagnosis of mechanical structures require the knowl-
edge of the acting external forces. However, the measurement of such forces is often difficult or
even impossible; in such cases, an inverse problem must be solved. This paper proposes a force
identification method that uses the response surface methodology (RSM) based on central composite
design (CCD) in conjunction with a random forest regression algorithm. The procedure initially
required the finite element modal model of the forced structure. Harmonic analyses were then
performed with varied parameters of forces, and RSM generated a dataset containing the values of
amplitude, frequency, location of forces, and vibration acceleration at several points of the structure.
The dataset was used for training and testing a random forest regression model for the prediction
of any location, amplitude, and frequency of the force to be identified with information on only the
vibration acquisition at certain points of the structure. Numerical results showed excellent accuracy
in identifying the force applied to the structure.

Keywords: response surface methodology; force identification; finite element method; harmonic
analysis; random forest regression

1. Introduction

Several dynamic systems require information on the external dynamic forces that
act on such vibrating systems (e.g., identification of impacts on civil structures [1], wind
turbine blades [2,3], and transmission of forces in both transformer cores and electric
power reactors), especially for design or diagnostic purposes [4,5]. In many cases, however,
forces may not be measured directly, due to inaccessible excitation position or sensor
limitations [6,7]. Force identification techniques can be used to overcome this typical
inverse problem; they combine the responses of the structure measured at an accessible
localization with a dynamics system model to obtain an estimate of the external dynamic
loads [7,8].

According to Lu and Law [9], the problem is classified into essentially three classes, of
which a significant one comprises force locations assumed to be known and the identifica-
tion of only force histories. Another class contains unknown force history and location, and
the third refers to the identification of moving forces in structures. Maia et al. [10] classified
force identification methods based on response measures into three categories, namely
deterministic methods, stochastic methods, and methods based on machine learning.

Prediction models involving machine learning techniques have been used to solve
inverse problems; however, their training and testing require a consistent and adequate
database [11–13]. Despite the use of computational models, which reduce the need for
physical tests, difficulties in obtaining an extensive and consistent database may arise [13].
Design of experiment (DOE) techniques, such as factorial experiments, response surface
experiments (RSM), and Taguchi methods, among others, are an alternative in process
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optimization and database creation, since studies have shown RSM generally determines
the ideal conditions of a product in its manufacturing process, as well as the optimal
conditions of correlation between input and output variables in the process [14,15].

This paper introduces a method that identifies the characteristics of a harmonic force
determining its amplitude, frequency, and location in a structure and applying RSM
based on central composite design (CCD) in conjunction with a random forest regression
algorithm.

Random forests are based on the combination of predictors of decision trees so that
each tree depends on the values of an independently sampled vector with the same dis-
tribution across all trees in the forest [16]. The forest generalization error converges to a
limit as the number of trees in the forest increases. In this sense, the generalization error of
a forest of tree classifiers, for example, depends on the force of the individual trees in the
forest and the correlation between them. Therefore, when the parameter to be determined
is continuous in nature, a regression algorithm must be used in place of a classification
one [17–19].

A random forest regressor model was developed in this study for the prediction of
the excitation force as a function of the vibrations obtained at certain points of a structure,
called features.

The procedure consisted of an experimental modal analysis conducted on a steel
plate arbitrarily discretized at 49 points, where a force sensor was fixed at a specific
point. An accelerometer collected the vibration measurement at all points, including the
force attachment point. A finite element method (FEM) model was developed by Ansys
Mechanical Academic 21 software and a numerical modal analysis was performed and
validated through a comparison with experimental modal parameters conducted by MAC
and COMAC [20–23].

After validation, numerical harmonic analyses were performed and the method of
design of experiment (DOE) of the surface response with CCD was used through the
parameterization of both amplitude and frequency of the force and amplitude of the
responses obtained in nodes at the same coordinates as the points used in the experimental
stage. The generated response surface enabled the creation of a database with all possible
responses for each harmonic force application, which was then used for the training and
testing of a random forest machine learning algorithm.

The remainder of the article is organized as follows: Section 2 provides the theoretical
background of DOE, RSM, CCD, correlation between modal models, and RFR; Section 3
presents the methodology proposed, from the application of the experimental modal analy-
sis to the application of the RFR algorithm; Section 4 is devoted to results and discussions,
highlighting the tests for measurement point reductions and the errors obtained; finally,
Section 5 provides the conclusions.

2. Theoretical Background
2.1. Design of Experiments

The design of experiments (DOE) plans experiments, establishing a formal proposal
for their procedures. Experiments are conducted in a planned manner, according to which
factors (independent variables) are modified for the assessment of their impact on the
response (dependent variable) [24,25].

Haaland [26] presents three methodologies for an experimental procedure, namely uni-
variate analysis, matrix with all combinations, and CCD. Figure 1 shows their application
to an experiment with three independent variables.
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Figure 1. Methodologies for an experimental procedure: (a) Univariate analysis; (b) matrix with all 
combinations; and (c) CCD. 

Univariate analysis (Figure 1a), known as one-at-a-time, is the most widespread ex-
perimental procedure, according to which one of the variables is evaluated while the oth-
ers are fixed. Despite its wide use, it is an inefficient approach, since it does not enable the 
detection of effects by interactions between variables and restricts the results to a very 
limited region of the experimental space. On the other hand, the study of the matrix with 
the combination of all factors (Figure 1b) explores the experimental space in a comprehen-
sive way; however, it requires a large number of measurements. Furthermore, since tests 
are not repeated, the error inherent to experimental manipulations and measurements 
cannot be estimated. Finally, CCD (Figure 1c) enables the exploration of the experimental 
space in a comprehensive way and with a reduced number of measurements, when com-
pared to the previous method, and the estimation of the error, by repeating the test at least 
three times in the central experimental condition. Another advantage is the possibility of 
elaboration of an empirical mathematical model that, when statistically validated, can be 
translated into a response surface [25,26]. 

2.2. Response Surface Methodology 
Response surface methodology (RSM), introduced by Box in the 1950s, is an optimi-

zation technique based on factorial designs [25,27,28]. It is based on the construction of 
empirical mathematical models, generally employing linear or quadratic polynomial 
functions to describe a studied system [25,27,29,30], offering conditions for its exploration 
until its optimization. In general, RSM aims to relate and identify the relationship between 
controllable factors (independent variables) and responses (dependent variables) of such 
a system. The response surface consists of a graph that shows the behavior of a response 
as a function of factors taken in pairs, enabling an analysis of the factors that affect the 
system [25,31,32]. The mathematical function that describes the response surface is given 
by Equation (1), where 𝑥 , 𝑥 , … , 𝑥  represent the experimental factors, 𝑦 is the dependent 
variable (response), k is the number of independent variables studied, and ε is the random 
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The determination of the response surface requires the calculation of the mathemat-
ical relationship between the dependent variable and the independent variables [25]. The 
first model to be verified in the response adjustment must be the linear one, represented 
by the following first-order polynomial, in Equation (2), where 𝛽 , 𝛽 , 𝛽 , … , 𝛽  denote its 
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Figure 1. Methodologies for an experimental procedure: (a) Univariate analysis; (b) matrix with all
combinations; and (c) CCD.

Univariate analysis (Figure 1a), known as one-at-a-time, is the most widespread
experimental procedure, according to which one of the variables is evaluated while the
others are fixed. Despite its wide use, it is an inefficient approach, since it does not enable
the detection of effects by interactions between variables and restricts the results to a very
limited region of the experimental space. On the other hand, the study of the matrix with the
combination of all factors (Figure 1b) explores the experimental space in a comprehensive
way; however, it requires a large number of measurements. Furthermore, since tests are not
repeated, the error inherent to experimental manipulations and measurements cannot be
estimated. Finally, CCD (Figure 1c) enables the exploration of the experimental space in a
comprehensive way and with a reduced number of measurements, when compared to the
previous method, and the estimation of the error, by repeating the test at least three times
in the central experimental condition. Another advantage is the possibility of elaboration
of an empirical mathematical model that, when statistically validated, can be translated
into a response surface [25,26].

2.2. Response Surface Methodology

Response surface methodology (RSM), introduced by Box in the 1950s, is an opti-
mization technique based on factorial designs [25,27,28]. It is based on the construction
of empirical mathematical models, generally employing linear or quadratic polynomial
functions to describe a studied system [25,27,29,30], offering conditions for its exploration
until its optimization. In general, RSM aims to relate and identify the relationship between
controllable factors (independent variables) and responses (dependent variables) of such
a system. The response surface consists of a graph that shows the behavior of a response
as a function of factors taken in pairs, enabling an analysis of the factors that affect the
system [25,31,32]. The mathematical function that describes the response surface is given
by Equation (1), where x1, x2, . . . , xk represent the experimental factors, y is the dependent
variable (response), k is the number of independent variables studied, and ε is the random
error associated with the experimental determination:

y = f (x1, x2, . . . , xk) + ε (1)

The determination of the response surface requires the calculation of the mathematical
relationship between the dependent variable and the independent variables [25]. The first
model to be verified in the response adjustment must be the linear one, represented by
the following first-order polynomial, in Equation (2), where β0, β1, β2, . . . , βk denote its
coefficients:

y = β0 + β1x1 + β2x2 + . . . + βkxk + ε (2)

If the analysis of variance (ANOVA) reveals the linear model does not fit the experi-
mental responses due to the presence of a curvature in the response surface, the function
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to be approximated in the result set is a polynomial of higher order, such as a quadratic
model, represented by the polynomial Equation (3):

y = β0 +
k

∑
i=1

βixi +
k

∑
i=1

βiix2
i + ∑

i
∑

j
βijxixj + ε (3)

2.3. Central Composite Design

CCD is the most appropriate experimental design to fit the complete second-order
polynomial model to experimental data. Introduced by Box and Wilson in 1951, it is a
construction formed by three parts, namely (1) a factorial one, in which the independent
variables are studied in two levels (2k), low (xi = −1) and high (xi = +1), for all i = 1, . . . , k,
(2) 2k axial (or star) points, with all coordinates null but one, which corresponds to a value
α (where, α =

4√2k), or −α, and (3) the central point (x1 = . . . = xk = 0), which must be
replicated at least three times for pure error estimation purposes. Therefore, the design
assumes a circular shape when k = 2 (Figure 2a), a spherical one when k = 3 (Figure 2b),
and a hyperspherical one when k > 3 [25,33].
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2.4. Correlation between Modal Models

The computational methodology in finite elements requires experimental data to fit the
models and validate the solution. The main tool that provides such data is the experimental
modal analysis (EMA). It identifies the modal parameters of a real structure (natural
frequencies, vibration modes, and damping) from the structure’s vibration responses, when
subjected to external force. Regarding the proposed experiment, the method was applied in
the frequency domain to frequency response functions (FRF) obtained by the processing of
both excitation (force) and response (structure acceleration) signals acquired experimentally
by the single input single output (SISO) technique, according to which a power signal
(input) and a response signal (output) were collected simultaneously by the acquisition
module. A vibration exciter (shaker) was used for the force signal with a load cell applied
at point 49 on the plate (see Figures 4 and 5a), whereas the response signal location varied
at all points demarcated.

Data on the experimental modal analysis are always treated by specific algorithms
that extract the modal parameters. When many similar pieces or assemblies are evaluated,
the number of modes can be large enough to hamper the evaluation of the results. In
this case, the modal assurance criterion (MAC) is the main criterion used. It provides a
measurement of the consistency (degree of linearity) between estimates of a modal vector
and an additional confidence factor in the evaluation of modal vectors extracted from either
different excitation locations (reference), or different estimation algorithms of the modal
parameters.

On the other hand, when two methods are to be compared (e.g., a numerical modal
analysis and an experimental one) through the correlation between their vibration modes for
the validation and calibration of a numerical model, an appropriate approach corresponds
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to the comparison of experimental modal forms with numerical modal ones. In this sense,
the MAC becomes an indispensable tool for such a validation, and its coefficient is obtained
by Equation (4).

MAC(i,j) =

∣∣∣{φr
i
}T
{

φc
j

}∣∣∣2
(
{

φr
i
}T{

φr
i
}
)

({
φc

j

}T{
φc

j

}) (4)

where{
φr

i
}

is the modal vector of the ith mode reference model;{
φc

j

}
is the modal vector of the jth mode calculated model.

The coefficient correlates the pairs of modal vectors, and its value ranges between 0
and 1. A coefficient equal to 1 indicates the modal vectors are identical and have a good
correlation, whereas a 0 coefficient indicates they are orthogonal to each other, with no
correlation.

However, a spatial dependence of the correlation parameters is observed in relation to
the function of each degree of freedom (DF) individually called COMAC (coordinate modal
assurance criterion). Woo and Vacca [21] correlated the degrees of freedom contained in
two modal vectors, where one of them was the reference condition. COMAC indicates the
contribution of each degree of freedom to the MAC values. Both COMAC and MAC values
vary from 0 to 1, according to Equation (5).

COMAC(j) =

(
∑n

i=1
{

φr
i
}

j

{
φc

i
}

j

)2(
∑n

i=1
{

φr
i
}

j

{
φr

i
}

j

)(
∑n

i=1
{

φc
i
}

j

{
φc

i
}

j

) (5)

2.5. Random Forest Regressor

Random forests are a combination of decision tree classifiers such that each tree
depends on the values of an independently sampled vector with the same distribution for
all trees in the forest [17].

A random vector Θk is generated for the kth tree independently of the previous random
vectors Θ1, . . . , Θk−1, but with the same distribution. A tree is grown by a training set
and Θk, resulting in a classifier h(x, Θk), where x is an input vector. In a random selection
of division, Θ consists of a number of independent random integers between 1 and k,
and the nature and dimensionality of Θ depend on its use in building trees. After many
trees have been generated, the most popular class is voted. According to [17,19], such a
procedure is called a random forest. The accuracy of a random forest is primarily related to
its convergence. In this sense, given a set of classifiers h1(X), h2(X), . . . , hk(X) and with
the training set randomly presented from the distribution of the random vector Y, X, the
margin function is defined by Equation (6).

mg(X, Y) = avk I(hk(X) = Y)−maxj 6= Yavk I(hk(X) = j) (6)

where I(·) is the indicator function. The margin measures the extent to which the average
number of votes X, Y for the right class exceeds the average vote for any other class—the
larger the margin, the more confident the rating. The generalization error is given by
Equation (7) [12]:

PE∗ = PX, Y(mg (X, Y) < 0) (7)

where subscripts PX,Y indicate the probability is above space X, Y.
The strong law of large numbers [22] is applied for a large number of trees in random

forests and when the variables are independent, random, and identically distributed with
a finite mean and the existence of a fourth central moment, the following theorem is
established from the tree structure:
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Theorem 1. As the number of trees increases, for almost all sequences (Θ1, . . .), PE∗converges to:

PX, Y(PΘ(h(X, Θ) = Y)−maxj 6=YPΘ(h(X, Θ) = j) < 0) (8)

According to Leo Breiman [12], Equation (8) explains why random forests do not adjust
excessively as more trees are added, but produce a threshold value of the generalization
error. A random forest regressor is formed by growing trees, depending on a random
vector Θ such that the tree predictor h(X, Θ) assumes numerical values as opposed to class
labels. The output values are numeric, and the training set is extracted independently of
the vector distribution X, Y. The root-mean-square generalization error for any numerical
predictor h(X) is presented in Equation (9).

EX, Y

(
Y− h

(
X2
))

(9)

3. Methodology

Figure 3 displays a diagram of the methodology used for the identification of the
excitation force at the expense of vibration, which creates a regressor model via a random
forest from a dataset generated by the response surface. Each step will be detailed in
Sections 3.1–3.4.
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3.1. Experimental Modal Analysis

A plate of 420 mm × 360 mm dimensions and 3 mm thickness suspended by nylon
threads simulated a free-free condition, arbitrarily discretized at 49 points, as shown in
Figure 4a. The mesh created had a 10 mm offset from the edges of the sheet and each
point was spaced 66.2 mm and 56.7 mm from the other point horizontally and vertically,
respectively. Point 49 was chosen for the application of the excitation force (Figure 4a),
since it can excite a greater number of modes [2]. The accelerometer was fixed at each
intersection of the horizontal and vertical lines at locations 1 to 49, its fixation was changed
with each measurement, following the numerical sequence in Figure 5a. Figure 4b displays
the acquisition system with a signal analyzer, a computer, and an amplifier.
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The 49 points were established on the front of the plate, from left to right and from top
to bottom (see Figure 5a), for the vibration measurement. Point 49, located on the lower
right, was chosen for the fixation of the force sensor (load cell) and insertion of the excitation
force, since it excites a greater number of plate modes. The direction of both excitation
and responses was perpendicular to the plate surface. Figure 4a shows the position of the
vibration exciter (shaker) fixed to the plate at point 49 and the accelerometer fixed at point
1 for the vibration measurement.

Figure 4b displays the measurement system consisting of an accelerometer (PCP
353B16), a force sensor (B&K 8001), load cell type, a vibration exciter (B&K 4809), a signal
amplifier (B&K 2716), a signal analyzer (B&K 3160-B-042) with Pulse Labshop software,
and a notebook. The values of the natural frequencies were used for the validation of the
model described in Section 3.2.

3.2. Numerical Modal Analysis

The material properties used in the numerical model, namely 207 GPa for Young’s
modulus and 7800 kg/m3 for the specific mass—both properties of steel—were used for the
creation of the numerical model of the sheet. A numerical modal analysis was conducted
through the finite element method and the use of Ansys Mechanical Academics software.
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The material with the same specifications as the steel plate and boundary conditions for
the free-free model was used in the preprocessing stage, whereas in the processing step, a
plate element was employed and the block Lanczos method was adopted for the modal
extraction. The modal superposition model was used for the extraction of the modes;
the modal forms were expanded and used in the harmonic analyses described in the next
section. Figure 5a depicts the model geometry for the maintenance of the discretization used
experimentally in the sheet, and Figure 5b displays its structured mesh with 4060 elements
and 4129 nodes.

3.3. Numerical Harmonic Analysis

Harmonic analyses were performed in the numerical modal model and validated by
the experimental modal analysis. The z-direction component of the force perpendicular to
the model plane (see Figure 5), the force frequency, and the average value of the z-direction
component of the acceleration were parameterized. The value of the acceleration amplitude
was calculated for each force fixation point, in each of the 49 points of the model and RSM
was further applied. The force amplitude was varied with a 0.1 mN step, from 0.1 mN to
5 mN, and the force frequency was varied with a 5 Hz step, from 5 Hz to 250 Hz, for each
amplitude value.

3.4. Machine Learning Random Forest Regressor

The machine learning model adopted was a random forest regressor, which aims to
recognize a pattern in a data set to be used in the prediction of the excitation strength. A
regression model was used due to the continuous variables in the data. Initially, 80% of the
data were randomly separated for training the random forest regressor and the other 20%
were randomly reserved for its testing, according to the methodology presented in [17].

The database generated by the RSM used for training and validating the RFR model
had 122,500 lines and 53 columns, with 49 features (vibration responses) and 4 classes
(amplitude, frequency, position in the x coordinate, and position in the y coordinate of the
forces).

The degree of importance of the features in the prediction of the model was previously
analyzed by RFR to help reduce their number. The correlation between the remaining
features was then evaluated with the use of Spearman’s correlation [34]. The Spearman den-
drogram shows the features in the ordinate and the abscissa axis represents the Spearman
Index, which ranges from 0 to 1—the closer the index to 1, the lower the correlation between
the features and their groups, hence, the greater the correlation between the features, the
more redundant their information for the mode (in this case, one of them can be excluded
without harming the model’s accuracy).

The Python language code used for both data processing and RFR application is avail-
able at https://github.com/FabioSetubal/forceidentification (accessed on 22 April 2022).

4. Results and Discussions

The experimental modal analysis that validated the FEM model identified natural
frequencies of some free-free plate vibration modes. Figure 6 shows a typical point fre-
quency response function (FRF) of inertance measured at point 49 and characterized by its
antiresonances (decreasing peaks).

The two cursors mark the first two natural bending frequencies of the plate obtained
experimentally. Frequency values of 60.0 Hz and 81.0 Hz were used for the FEM calibration.
Two peaks referring to rigid body vibration modes can be observed close to zero hertz,
since the structure was tested in a free-free condition. Other natural frequencies of the plate
related to other vibration modes can be observed above 81.0 Hz.

https://github.com/FabioSetubal/forceidentification
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Figures 7 and 8 show the results of the numerical modal analysis for the first two
bending modes. They were obtained after adjustments in the model according to the
experimental modal results. Curvatures of the modal forms can be observed for each
natural frequency, and Figure 7 displays the first bending mode at the natural frequency of
59.4 Hz, which is close to the 60.0 Hz value obtained in the experimental modal analysis.
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Figure 8 depicts the second bending mode with a natural frequency of 80.2 Hz, which
is close to the 81.0 Hz natural frequency obtained experimentally.

Figures 9 and 10, respectively, show comparisons of natural frequencies and modal
forms conducted by MAC and COMAC for the first 10 modes. The choice of the number
of modes to be studied depends on the type of problem; in this study, only the first two
modes were analyzed.
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Figure 10. Graph with COMAC values used in the comparison of GDL of experimental and numerical
modes.

According to the MAC values, the diagonal modes are close to unity, indicating a good
correlation between them. Therefore, COMAC also shows a good correlation between the
degrees of freedom (GDL) of the modes, indicated by levels close to one (Figure 10).

Since the random forest model internally calculates a feature importance ranking in
its algorithm, the greater the error reduction in decision splits made according to a given
feature in each decision tree, the more important the variable. In this study, the features
analyzed were the acceleration responses at each of the 49 points, for each step and position
of the excitation force in the model. Figure 11 shows the graph of the percentage importance
of the features and their position in the model regarding the best prediction of force by the
RFR model.
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According to Figure 11, the feature at position 37 (F37), i.e., the first position from
top to bottom, contributes approximately 1% to the model prediction, and the feature at
point 30 (F30), i.e., first position from bottom to top, shows a 5% importance in the model
prediction, thus being the most important variable in the prediction.

Figure 12 displays the Spearman’s dendrogram for the 49 variables. All variables show
a small correlation, since their information begins to match when Spearman’s indices are
close to 60%, indicating neither significant redundancy of information, nor the exclusion of
the features from the analysis.

After the importance of the features were analyzed (Figure 11), possible redundancies
of information in the 49 features were investigated. According to Figure 12, the features
have low correlation and, therefore, do not provide redundant information in the model.
However, their number could be reduced with no significant loss in the performance
metrics of the model (see the degree of importance in Figure 11).

In the RFR methodology, each tree in the forest uses samples from the database
randomly, returning them (or not) to the database. The comparison of the prediction
metrics among the 49 initial measurement points and the comparison with reductions to 24
and 12 points in Table 1 show the efficiency of the model remained excellent, despite the
reduction of points, thus guaranteeing, in practice, a reduction in the measurement time,
due to both reduction and choice of the best location for future vibration measurements.
Moreover, in case of no replacement of samples, the mean absolute error (MAE) for the
49 measurement points maintained their values between 3% and 5% in comparison with
those after the reduction of measurement points to 24 and 12, keeping an accuracy above
99% in all three cases.
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Table 1. Comparison of prediction metrics among the initial 49 measurement points and their
reductions to 24 and 12 measurement points.

Time: 3 min 56 s—With
49 Measurement Points

Time: 1 min 38 s—Reduction to
24 Measurement Points

Time: 56.1 s—Reduction to
12 Measurement Points

MAE R2 MAE R2 MAE R2

Training 0.034146 0.999749 Training 0.039241 0.999733 Training 0.055990 0.999635
Test 0.085874 0.998355 Test 0.096125 0.998335 Test 0.145074 0.997431

OOB (Test) 0.092646 0.998172 OOB (Test) 0.106599 0.998049 OOB (Test) 0.151995 0.997316

Considering sample replacement, the random forest uses a parameter inherent to the
execution process of its algorithm, called the out-of-bag (OOB) cross-validation method
or method with replacement. Each decision tree in the forest uses a random sample from
the database and returns it to the database, obtaining a random and independent error
between one sample and another, until all samples have been used. Consequently, RFR
obtains an average error of all independent errors of each tree and displays it through the
OOB. Table 1 shows the MAE and accuracy (R2) values obtained for both training and test
data for each case of number of features with no sample replacement, as well as the MAE
and R2 of the respective value of OOB, used in the sample replacement process, applied in
the test step in the RFR model.
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5. Conclusions

This article presented the results from the application of a method that, based on
machine learning, used the response surface method and a random forest regression to
identify forces in a FEM model of structures.

The methodology was tested with the use of a database generated by computer
simulation and the application of FEM, RSM, and RFR, which was divided into two parts,
namely training and model testing. According to the results, the model was able to predict
the amplitude, frequency, and location of forces accurately and quickly, obtaining an
accuracy greater than 99%.

The analyses with variable parameters revealed the feature reduction method proved
efficient, reducing specific measurement points from 49 to 12, with a 99% accuracy. The
reduction process enabled the identification of the most important locations for vibration
measurements, thus reducing computational time.

The RFR application with no sample replacement to each tree provided smaller errors
and a better accuracy in comparison with its procedure with the replacement of the samples.
The replacement method procedure was demonstrated through the MAE and R2 values for
the OOB, which proved less efficient.

A limitation of the research refers to the need for a validated modal numerical model of
the structure so that numerical forces can be applied to train the predictor regression model.
On the other hand, ill-conditioning problems found in traditional inverse problem-solving
methods are avoided.

A support tool based on machine learning was implemented and can be directly
integrated to the areas of electrical, civil, and mechanical engineering, ensuring a consider-
able increase in the reliability of structural projects of electrical power equipment such as
transformers, railway projects, civilians, and mechanics.
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