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Abstract: Promoting the development of green technologies and replacing fossil fuel vehicles with
electric ones can abate the environmental anxieties and issues associated with energy supply security.
The increasing demand for electric vehicles requires an upgrade and expansion of the available
charging infrastructure to accommodate the fast public adoption of this type of transportation.
Ethiopia set a pro-electric cars policy and made them excise-free even before the first electric vehicle
charging stations were launched by Marathon Motors Engineering in 2021. This paper presents
the first ever technical, economic and environmental evaluation of electric vehicle charging stations
powered by hybrid intermittent generation systems in three cities in Ethiopia. This paper tests this
model using three different battery types: Lead-acid (LA), Flow-Zince-Bromine (ZnBr) and Lithium-
ion (LI), used individually. Using these three battery technologies, the proposed hybrid systems
are then compared in terms of system sizing, economy, technical performance and environmental
stability. The results show that the feasible configuration of Solar Photovoltaic (PV)/Diesel Generator
(DG)/ZnBr battery systems provide the lowest net present cost (NPC), with values of $2.97M, $2.72M
and $2.85M, and cost of energy (COE), with values $0.196, $0.18 and $0.188, in Addis Ababa, Jijiga
and Bahir Dar, respectively. Of all feasible systems, the Wind Turbine (WT)/PV/LI, PV/LI and
WT/PV/LI configurations have the highest values of NPC and COE in Addis Ababa, Jijiga and Bahir
Dar. Using this configuration, the results demonstrate that ZnBr battery is the most favorable choice
because the economic parameters, including total NPC and COE, are found to be lowest.

Keywords: electric vehicle charging; battery; solar PV; wind turbine; diesel generator; hybrid system;
net present cost

1. Introduction

Energy demand and consumption are expected to increase by 50% from 2018 to 2050
due increasing population and industrial growth around the globe [1]. Despite environ-
mental emissions reduction, countries have agreed to reach a solution and most of them
are beginning to shift their direction from fossil energy to alternative resources, forming
new opportunities with a focus on meeting growing energy demands by reducing energy
demand through improved energy efficiency [2], specifically, the implementation of electric
vehicles (EVs) is a likely option with the availability of a public charging infrastructure [3].

In global energy consumption, one of the biggest items supplied by conventional
energy resources is “Transportation”, with 24% usage [4]. Electric Vehicle (EV) Charging
Stations (EVCS) are increasingly coupling power and transportation networks as EV pene-
tration continues to increase [5]. Electric vehicle usage is expected to grow exponentially
due to wasted oil and environmental impact [6]. Sustainability issues also arise, such as;
supplying electricity from renewable energy sources in an effective and sustainable man-
ner; managing the electrical demand on the grid and; installing new charging stations [7].
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Electric vehicles can help to improve air quality and the rise of car-sharing services is
accelerating the adoption of electric vehicles over gasoline-powered vehicles [8].

Recently, electric vehicles have received more attention and the market for them has
increased significantly. EVs can be used as mobile storage devices to support the load
balancing in the power grid as a specialized electricity load [9]. Load flattening, voltage
and frequency regulation, peak load shaving, straightforward integration of renewable
energies and reactive power compensation are among the positive and negative effects
of EV development on the grid. In [10], the effects of vehicle-to-grid (V2G) and charging
procedure, along with their operation, control issues, and the advantages to both EV owners
and the power grid are looked into. Alongside the fast transition to electric versatility,
EVs are wanted to convey a more drawn out driving reach, more limited charging time
and higher security [11]. The highpower demand and its impact on the grid because of
fast-charging stations that can help to fully charge the EV’s battery within 15 min or less,
can be managed by renewable sources and storage systems [6].

To enhance renewable energy systems performance and management to align supply
and demand, energy storage has become a solution. An energy storage system (ESS) is
chosen to address the power oscillations, frequency and voltage instability problems caused
by the intermittent characteristics of Renewable Energy Sources (RESs). Currently, the
global energy storage demand is rapidly increasing and is predicted to reach 160 GWh
by 2030 [12]. A battery management system (BMS) can help by using different battery
technologies simultaneously. When considering lithium-ion, lead-acid, vanadium redox-
flow or a combination of storage technologies, the optimal approach is to combine redox-
flow batteries with RES [13]. To reduce the direct dependency on variable renewable energy
generation, the role of energy storage in hybrid system and the sum of energy covered by it
is improved; [14], analyzes the different combinations of renewable energies and storage
technologies for an off-grid power grid.

Several studies have been conducted on the implementation of charging infrastruc-
ture integrated with hybrid RES and ESS, as well as how to size these extra resources
optimally. Because uncontrolled EV charging cycles have a significant impact on the
electricity grid, hybrid charging stations are incorporating renewable energy sources and
battery storage [15]. Issues such as cost and economic indicators can be optimized using a
single-objective solution and reliability and environmental benefits can be solved using a
multi-objective optimization [16]. To remove the negative effects of electric car charging
by precisely calculating the renewable energy share derived from the battery’s stored
energy [17], a hybrid electric vehicle charging station solution is offered, along with a
small-scale photovoltaic system and battery energy storage. ESS is one of the challenges in
installing hybrid renewable energy systems [18].

In [19], an intelligent grouping technique is offered that considers the coupling rela-
tionship between EV trip data, battery state and other variables, and produces a charg-
ing/discharging priority model based on the charging process contribution index. [20]
proposes a novel fast charging strategy to charge lithium-ion batteries safely, which includes
a voltage spectrum-based charging current profile that is optimized using a physics-based
battery model and a genetic algorithm to address the shortcomings of long charging times
and charging-related degradations.

A battery’s characteristics and lifespan is determined by the depth of discharge (DOD)
as well as the repetitions of the charging/discharging cycle [21]. Battery heat generation
challenges the safety and performance of electric vehicles when power is rapidly increased
under dynamic working circumstances [22]. Because of their high energy density, extended
lifespan and great stability, lithium-ion batteries have been widely employed to power
electric vehicles (EVs) [8]. The limitations of Li-ion batteries in EVs are due to safety
concerns due to the inevitable heat buildup throughout varied operations [23]. In [24], by
using a revolutionary placement planning strategy for fast charging stations, operators,
drivers, vehicles, traffic conditions and the power grid may be optimized.
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By developing a hybrid thermal control system incorporating heat pipe arrays, air
cooling and irregular water scattering for a Li-ion battery pack [25], it was discovered that
the hybrid system’s adjustable cooling capacity enables a good cooling effect with minimal
energy consumption to remove heat generated under various operating conditions of EVs.
A separate study [26], based on the prediction of residential demands, charging loads and
renewable production at the edge calculating nodes, the control center in the distribution
network at cloud-side calculates a power supply plan for each charging station proposed
an orderly charging scheduling approach for EVs based on cloud-side relationship and
deep learning method to mitigate the impact of disorderly charging behaviors of large-scale
EVs on the distribution networks.

Combining several types of technology has a relatively better chance of solving reliabil-
ity concerns and lowering cost challenges in hybrid renewable energy systems [27]. Energy
storage systems for micro grid applications can be configured in two ways: centralized and
distributed [28]. The reliability of a hybrid system improves when additional renewable
energy systems are connected to DG, and the configuration has an impact on the cost of
the system’s generated energy [29]. One study [30] proposed to use a load control method
to reduce the operating complexity of big EV charging stations grouped as undersized
charger clusters and their charging profiles. A techno-economic investigation of Li-ion and
lead-acid batteries in conjunction with a PV grid-Connected system was carried out [31].

In the field of automobile technology, battery-powered electric vehicles are begin-
ning to play a significant role in achieving the highest possible energy storage efficiency,
structural qualities, cost pricing, safet, and usage life [32]. With the selection of the ap-
propriate energy storage technology, a better energy management strategy and optimal
sizing, it is possible to reduce the system’s initial cost, difficulties in disposal and frequent
replacement [33].

To make the transition away from traditional energy sources, renewable energy
sources are the answer to creating economic incentives and increasing the use of consumer-
interactive technology [34]. Globally, approximately 2.1 million electric vehicles were sold
in 2019, bringing the total number of electric vehicles on the road to 7.2 million, accounting
for 2.6% of all vehicles sold and this is expected to expand in the future decades. While car
technology faced an additional challenging year in 2021, owing to the global semiconductor
scarcity, electric car sales additionally doubled in the previous year, hitting 6.6 million
units, up from hardly 3 million in 2020 [35]. The infrastructure for electric vehicles is
likewise rising at a rapid pace and investment in the system is increasing. Ethiopia plans to
make 30% of its domestic automobiles electric by 2030 as part of its climate-resilient green
economy strategy of becoming a middle-income country [36].

Ethiopia has the capacity to generate over 60,000 MW of electricity from hydro, solar,
wind and geothermal sources. Hydropower accounts for 89 percent of total electricity
generation, with a total capacity of 4284 MW [37]. Distinct energy-related concerns in
Ethiopia were investigated in a variety of studies with various goals [38]. No studies have
been conducted to evaluate electric vehicle charging stations that use hybrid energy sources.
Previous research has looked at the adoption of clean renewable energy in rural Ethiopia
and identified obstacles that limit its expansion [39–44]. In another study [37], in three
different regions of Ethiopia, the feasibility of integrating PV/wind power systems with the
existing unreliable grid or diesel generator systems for providing critical loads to industrial
parks is investigated, as well as how to provide a reliable supply with cost-effective and
environmentally friendly resources [45].

The given techno-economical case study of the integration of EV charging with a
hybrid solar PV, WT, DG system with different battery technologies is, to the best of the
authors’ knowledge, the first of its kind. The feasibility and techno-economic analysis of
electric vehicle charging and hybrid PV/WT/DG systems with various battery technolo-
gies are presented in this study. The remainders of the paper are organized as follows:
Section 2 outlines the methodology of the proposed system, Section 3 covers the results
and discussion and Section 4 draws conclusions.
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2. Materials and Methods

In this section, the mathematical design of the implemented EV load and components of
the hybrid energy system is described. The optimization process is then explained, followed
by a discussion of the proposed strategy for attaching data to the optimization tool.

2.1. Study Area, Meteorological Resources Data and Load Profiles

In this study, three cities, Addis Ababa (8◦58.8′ N, 38◦45.5′ E), Jijiga (9◦21.4′ N, 42◦47.7′ E)
and Bahir Dar (11◦34.5′ N, 37◦21.7′ E) were chosen to analyze PV/Wind/DG/Battery
hybrid design with different battery chemistry for electric vehicle charging as shown in
Table 1, in which average solar irradiation, clearness index, and wind speed and yearly
load demand and peak load are provided. Figure 1 depicts the geographical arrangement,
overview and coordinates of the locations. Because there are relatively few cars in cities, it
is easy to get to the charging station, and this region has been picked as one of the charging
station installation sites.

Table 1. Geographical, climatic, and load details of the selected areas.

City From Addis
Ababa

Average Solar
Irradiation

(kWh/m2/day)

Average
Clearness

Index

Average Wind
Speed
(m/s)

Annual Load
Demand

(kWh)

Peak Load
(kW)

Addis Ababa Center 5.81 0.6 3.7 3216 172

Jijiga East 6.12 0.622 4.81 3216 172

Bahir Dar North-West 6.0 0.62 3.78 3216 172
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Despite the fact that the sizing study was completed for a specific location, the conclu-
sions and technique may be applied elsewhere in the world by modifying the solar and
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wind energy statistics. In Ethiopia, electric car adoption is only just getting started, with
only one charging station. A national road map for sizing, regulation and other issues is
needed. As a result, the three cities in Ethiopia with the highest number of cars and the
highest wind and solar energy potential have been chosen to demonstrate the sizing of EV
charging station applications. Figures 1 and 2 show the solar energy potential of the cities,
whereas Figure 3 depicts the wind energy potential of the cities.
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2.2. Conditions of Electric Vehicles and Charging Stations

The global market for electric vehicles is expected to rise in the future decades, as
shown in Figure 4 [35]. As a champion and promoter of a green economy, Ethiopia is
encouraging pro-green investments with subsidies In November 2017 it inaugurated the
“Light to All” National Electrification Program to provide electricity access to all by 2025.
The first electric vehicle was launched by Marathon Motors Engineering on July 2020 and
is assembled locally. Ethiopia has set pro-electric cars policies and made them excise-free
even before the launch of the first EV or there being any charging stations.
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Figure 4. Electric vehicle sales and market share worldwide, 2010–2021.

The charging station installation site should be conveniently accessible in the outskirts
or outside of the city to maximize the use of wind and solar energy, and face south to handle
maximum solar power. The site’s solar and wind energy potential should be practical.
Design aspects of the charging station, wind speed and solar irradiation of the installation
location, description of the system components, energy production formulations of the
selected system and optimization of the hybrid energy system, are all factors to consider
when sizing a charging station for a WT/PV/DG hybrid EV charging station. Aspects of
constructing a charging station include taking into account and checking criteria such as
the number of vehicles that can be charged, the duration of the charge, the type of outlets
and battery capacity, the potential of energy sources and the station’s size [47].

In Ethiopia, the first electric vehicle business company, Marathon Motors Engineering,
launched the Hyundai Kona SUV model and an electric car charging station. The launch
is in line with the company’s policy of creating a pollution-free environment through its
slogan “Leading the way to Zero Emission”. It is to be recalled that the first model of its
electric car series, Hyundai Ioniq, was launched in July 2020. The owner of Marathon
Engineering, Major Haile G/Selassie said, “The event is symbolic that will herald Ethiopia’s
leap into the heights of economic prosperity”.

The most important element here is the number of electric vehicles that charge in
the station every hour. Because the charging capacity and socket type differ from car to
car, each vehicle must be described separately. The Kona SUV, for example, is Ethiopia’s
only electric vehicle type, with a battery capacity of 42 kWh, a range of 300 km and a
CO2 emission of 0 g/km. The number of EVs that arrive at a charging station, as well
as the batteries’ capacity and their state of charge, determine EV demand. Thus, the first
assumption is that the cars will be fully charged and a maximum of four cars will arrive in
the early morning, at midday and after working hours, and the minimum arrival is two
cars per hour at the charging station, as shown Figure 5. This means that the charging
station must produce between 84 kWh and 172 kWh of energy per hour.
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2.3. Solar PV Power Generation

The solar PV power output (PPV), can be found as:

PPV = GPV fPV

(
IT

IT,STC

)
[1 + αP(TC − TC,STC)] (1)

where IT is incident solar radiation on the PV array in kW/m2, GPV stands for PV nominal
capacity in kW, fPV denotes derating factor of PV, IT,STC represents the solar incident
radiation at standard temperature conditions (STC) which is considered as 1 kW/m2, TC is
the cell temperature of the PV in ◦C, αP is the temperature coefficient of power (%/◦C) and
TC,STC is PV cell temperature at STC (25 ◦C) [48].

The hourly output power of the PV panels, PPV , can be estimated by:

PPV = Gi·A·η (2)

where Gi is the global solar irradiance at the tilted surface, A is the installed area and η is,
among other things, the efficiency of the PV cell system [6].

In this investigation, a generic PV system with a rated capacity of 1 kW was used. The
PV with DC voltage output that was chosen has a derating factor of 80% and a lifetime
of 25 years. Capital, replacement, and operation and maintenance (O&M) expenditures
for the WT are estimated to be $2500/kW, $2500/kW and $10/year, respectively. Because
concentric is less expensive than a generic flat plate, the flat plate was chosen for this study.
The solar GHI resource is used to assess the output of flat-panel PV arrays [49].

2.4. Battery

Primarily, the status and safety of a battery’s operation and integration are monitored
and maintaining by State of Charge (SoC) and Depth of Discharge (DoD). The State of
Charge (SoC) is a measurement of how much energy is stored in a completely charged and
empty battery. The SoC can be calculated by using the following formula:

SoC = SoC(t0)− 1
/

Q
(∫ 0

t0

i(t)dt
)

(3)

The depth of discharge (DoD) of a battery is measured as a fraction of the capacity
that has been discharged in comparison to the total capacity of a fully charged battery.
The voltage source, internal resistance and current are all important aspects to consider
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when examining the charge and discharge characteristics of batteries. Depth of discharge is
defined as the amount of load current i(t) divided by the maximum battery capacity (Q)
over a period of time:

DoD(%) = 100
[

1
Q

∫ 1

0
i(t)dt

]
(4)

SoC is opposite to DoD and can be interrelated as: “DoD = 1 − SoC”. The voltage at
zero load and the battery’s terminal voltage can be articulated as follows:

E = E0 − K
Q

Q− it
+ Ae−Bit (5)

Vbatt = E− IR (6)

where, A = Exponential voltage (V), B = Exponential capacity (Ah)−1, I = Battery current (A),
it = Extracted capacity (Ah), t = Discharge time (h), E = No load voltage (V), E0 = constant
voltage (V), K = Polarization constant voltage (V), Q = Maximum battery capacity (Ah),
Vbatt = Terminal voltage (V), R = Internal resistance (Ohm) [31].

The maximum amount of power consumption of a battery system is given by Equation
(7) and the maximum battery discharge power can be calculated using Equation (8) [50].

Pb(t) =
kQs(t)e−k + Q(t)kc

(
1− e−k∆t

)
1− e−k∆t + c

(
k∆t− 1 + e−k∆t

) (7)

Pb(t) =
−kcQmax + kQs(t)e−k + Q(t)kc

(
1− e−k∆t

)
1− e−k∆t + c

(
k∆t− 1 + e−k∆t

) (8)

whereby Qs(t) denotes the available energy at the starting of the time step and above lowest
state of charge level (BOCmin = 20% for lead acid battery), Q(t) is the total energy at the
beginning of the time step, Qmax is the total capacity of the storage, the storage capacity ratio
is represented by c, k is the storage rate constant and ∆t is the time taken in the time step.

There are various potential energy storage systems in the power sector, each having
its own operational, performance, cycling and durability properties. (1) Lithium-ion
batteries (Li-ion) have several desired features, such as high efficiencies, a long cycle life,
high energy and high-power density, and are among the most extensively utilized energy
storage technologies. (2) Lead-acid batteries are suitable for uninterruptible power supplies,
power quality and spinning reserve applications because they have high dependability
during their lifetime, robust surge capabilities and medium-to-high efficiency. (3) Zinc-
bromine (ZnBr) flow batteries have a high energy density, a long discharge time and good
reversibility [51].

In this paper, to govern the hybrid systems that are the most practicable, Hoppecke 24
OPzS 3000-Vented lead-acid (LA), EnerStore 50 Agile Flow-Zince-Bromine (ZnBr) flow, and
Tesla Powerwall 2.0-Lithium-ion (LI) batteries have been chosen, and which accept surplus
energy during charging and deliver energy when renewable energy sources are unable
to meet load needs. Table 2 shows the relevant data of nominal voltage (V), maximum
capacity (Ah), nominal capacity (kWh), maximum charge current (A), maximum discharge
current (A), capital cost ($), replacement cost ($), operating and maintenance cost ($/years)
and lifetime (years) of the LA, ZnBr flow and LI batteries.
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Table 2. Specification data of Batteries.

Parameter Specification

Battery Name EnerStore 50 Agile Flow Tesla Powerpack2 Hoppecke 24 OPzS 3000

Battery Type ZNBR Flow LI Vented LA

Nominal voltage (V) 100 220 2V

Maximum capacity (Ah) 500 60 3570

Nominal capacity (kWh) 50 13.2 7.15

Maximum charge current (A) 150 31.8 610

Maximum discharge current (A) 300 31.8 610

Capital cost ($) 760 6480 700

Replacement cost ($) 700 5980 645

O&M cost ($/year) 0 0 160

Lifetime (years) 30 10 20

Sizes 0–5000, 500 intervals 0–5000, 500 intervals 0–800, 50 intervals

2.5. Wind Turbine

Wind turbines (WT) produce electrical energy from mechanical energy generated by
the wind and are dependent on wind speed. Equation (9) can be used to express the power
output of a wind turbine under normal pressure and temperature [50].

PWT(t) =


0, v(t) ≤ vcut−in or v(t) ≥ vcut−out

Pr

(
v(t)3−v3

cut−in
v3

r−v3
cut−in

)
, vcut−in < v(t) < vr

Pr, vr ≤ v(t) < vcut−out

(9)

where Pr, vr, vcut−in and vcut−out represent the rated power, nominal velocity, cut-in and
cut-out velocity of the wind turbine.

Furthermore, wind velocity is affected by height and wind velocity at a specific level.
Because the probability distribution of wind power production fluctuates with actual
output, a model of power output probability distribution will be established by fitting to
the Weibull distribution.

f (V) =
r
c

(
V
c

)2
exp
[
−
(

V
c

)r]
(10)

where r and c are Weibull parameters, which were designed using the maximum likelihood
approximation method for each group in step two. f is the Weibull probability density
function (PDF) and V is wind speed in m/s.

Due to wind speed variations from location to location, it can be measured based on
height using Equation (10):

V = V0

(
HWT
H0

)a
(11)

where V, V0 and α are the wind speed at an essential height HWT , the wind speed at
reference height H0 and the friction coefficient, respectively. The friction coefficient depends
on the terrain over which the wind blows [52], an approximated value of α is 1/7.

The following formula can be used to compute the mechanical power received from
the WT:

Pwind =
1
2

ρAv3Cp(λ, θ) (12)

In Equation (12), ρ is the air density and A is area of the blades. Moreover, the speed
of wind is shown by v and Cp is the power coefficient relating to the rotor efficiency as a
function of tip speed ration (TSR) shown by λ and pitch angle shown by θ [53].
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In this study, the Northern Power NPS100C-21 WT, with a rated capacity of 100 kW,
developed by Northern Power Systems, featuring power regulation with variable speed,
stall control and a lifetime of 20 years, has been adapted as shown in Table 3. The WT and
AC voltage output that was chosen has a rotor diameter of 20.7 m and a hub height of 37 m.
Capital, replacement and operation and maintenance (O&M) expenses for the WT were
estimated to be $275,000/kW, $225,000/kW and $100/year, respectively [23].

Table 3. Specification data of wind turbine.

Parameter Specification

Model Northern Power NPS100C-21 WT

Rotor diameter (m) 20.7

Hub height (m) 37

Number of blades 3

Power regulation Variable speed, stall control

Lifetime (years) 20

Cut-in wind speed (m/s) 3

Cut-off wind speed (m/s) 25

Rated wind speed (m/s) 15

Extreme wind speed (m/s) 59.5

Capital cost ($) 275,000

Replacement cost ($) 225,000

O&M cost ($/year) 100

2.6. Converter

A bi-directional converter has been considered to preserve energy flow between the
DC to AC (inverter) and AC to DC (rectifier) components. Equation (13) is used to calculate
the converter’s power rating. The inverter efficiency has been expected to be 96 percent,
with a 15-year lifetime. The rectifier has a capacity of 100%, and its efficiency is estimated
to be 90%. The converter’s original capital, replacement and O&M expenses are considered
to be $550/kW, $500/kW and $20/kW/year, respectively.

Pconv = Ppeak/ηconv (13)

where Ppeak is peak load at consumption and ηconv is the converter efficiency.

2.7. Hybrid Energy System Design with Electric Vehicle Charging Station

The proposed hybrid energy system with electric vehicle charging load was then
utilized to explore the impact of different battery technology characteristics on the feasibility
and techno-economic analysis of the hybrid energy source’s design. Wind turbines (WT),
photovoltaics (PV), diesel generators (DG) and batteries are all part of a typical hybrid
system and are illustrated in Figure 6.

In this system, the DC bus is connected to the PV module and battery, while the
DG, wind turbine and load demand are connected to the AC bus. The energy flows from
DC to AC bus for meeting the demand load or vice-versa to charge the battery through a
bi-directional converter. The excess energy from the renewables (PV/Wind) after sustaining
the electricity demand and charging the battery is dumped. A diesel generator (DG) was
used as a base case energy source system to compare the results.
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3. Results and Discussion

The optimization findings are given and discussed in this section. As a result, using
HOMER-Pro software, three battery technologies are introduced to assess the feasibility
and techno-economic analysis of a hybrid system based on electric vehicle charging load
in three different Ethiopian cities. Each location’s suggested system is identified based on
cost-effectiveness and environmental parameters. COE, NPC, PV capacity, wind power,
diesel generator contribution, battery capacity, bi-directional converter capacity, excess
energy production and RE penetration are all included while evaluating the outcomes. The
following sections summarize the findings of the analysis for various places.

Monthly average solar radiation values, monthly average wind speed values and
wind speed frequency values of the installation sites were employed in the hybrid energy
optimizations with HOMER. The values of the photovoltaic panels, wind turbines, diesel
generator, inverter, battery and load are used to construct a system diagram.

3.1. Optimized System Architecture

The feasible configuration of the hybrid system that shows the optimal results among
all the sets of systems, fulfils all technical requirements and also has not only minimum
NPC (net present cost), but also COE (cost of energy) of the system, was calculated using
HOMER software.

After the optimization process began, combinations of 15,563, 19,535 and 14,311 were
found in Addis Ababa, Jijiga and Bahir Dar, respectively. The results revealed the solar
energy system installed capacity, the number of wind turbines, the initial investment cost,
the operational cost, the total cost of the charging station for all combinations and the cost
of electricity production. The system with the lowest cost was found among these obtained
combinations, which is the PV/DG/ZnBr system, as calculated by the HOMER software.

As stated in Table 4, the optimal hybrid energy configuration is the PV/DG/ZnBr
scheme in the three cities. This system includes PV modules with outputs of 829 kW, 815 kW
and 803 kW; diesel generators with outputs of 190 kW each; battery storage with outputs
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of 162 kWh, 170 kWh and 166 kWh; a bi-directional converter with outputs of 173 kW,
178 kW and 174 kW, in Addis Ababa, Jijiga and Bahir Dar, respectively. The greatest energy
distribution from the DC/AC to the AC/DC bus determines the capacity of a bi-directional
converter. The better solution for all cities is combined dispatch (CD), which determines
the most cost-effective load following (LF) or cycle following (CC) in each timestep.

Table 4. Optimal values of the PV/DG/ZnBr system.

PV (kW) DG (kW) ZnBr
(Strings)

Converter
(kW) COE ($) NPC ($) O&M

($/Year)
Initial

Capital ($)

Addis Ababa 829 190 162 173 0.196 2.97 46,249 2.37 M

Jijiga 815 190 170 178 0.18 2.72 M 29,413 2.34 M

Bahir Dar 803 190 166 174 0.188 2.85 M 41,891 2.31 M

In Figure 7, the entire NPC cost of the ideal configuration system is shown in three
cities, with Jijga having the lowest NPC cost and Bahir Dar having a slightly higher NPC
cost than Jijga, whereas, Addis Ababa has the highest NPC cost. The cost summary of
components is shown in Figure 8 for the same optimized system.
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Considering battery technology, the optimal configuration is PV/DG/ZnBr with
NPC $2.97M and COE $0.196, PV/Lead-Acid/DG with NPC $4,687,826.00 and COE
$0.3089, PV/LI/DG with NPC $4,813,330.00 and COE $0.3172 in Addis Ababa. In Ji-
jga it is PV/DG/ZnBr with NPC $2.72 M and COE $0.18, PV/Lead-Acid/DG with NPC
$4, 460, 253.00 and COE $0.2939, PV/LI/DG with NPC $4,569,231.00 and COE $0.3011. In
Bahir Dar it is PV/DG/ZnBr with NPC $2.85 M and COE $0.188, PV/Lead-Acid/DG with
NPC $4,547,210.00 and COE $0.2997, PV/LI/DG with NPC $4,646,631.00 and COE $0.30.62,
as shown in Figure 8.
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3.2. Comparative Evaluation of Base Case and Optimal Hybrid Systems

In this study, the sole diesel generator (DG) system is used as a baseline for evaluating en-
vironmental variables. All the lowest values of NPC compared to base case and the last highest
NPC from all the feasible systems in the three cities are shown in Figure 9a–c respectively.

In the three cities, compared to the base case (DG) system, the PV/DG/ZnBr system
provides the lowest NPC with values $2.97 M, $2.72 M and $2.85 M and COE with val-
ues $0.196, $0.18 and $0.188, while the WT/PV/LI, PV/LI, WT/PV/LI system has the
maximum NPC and COE of all feasible systems in Addis Ababa, Jijiga and Bahir Dar
respectively, as shown Figure 9a–c.

The result in Table 5 shows the present and annual worth, return on investment and
internal rate of return in percent, simple and discounted payback in years, while the first
rank from the feasible system, PV/DG/ZnBr is compared to base case (DG) system in
Addis Ababa, Jijiga and Bahir Dar.

Table 5. Comparison of first rank of feasible system with base case (DG).

Metric Value

Addi Ababa Jijiga Bahirdar

Present worth ($) $3,032,025.00 $3,276,232.00 $3,152,061.00

Annual worth ($/year) $234,540.00 $253,431.00 $243,826.00

Return on investment (%) 13.90 14.90 14.60

Internal rate of return (%) 17.50 18.50 18.30

Simple payback (year) 5.62 5.36 5.42

Discounted payback (year) 6.91 6.53 6.62
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Figure 9. Feasible configurations in three cities, (a) Addis Ababa, (b) Jijga and (c) Bahir Dar.

Furthermore, in Addis Ababa, Jijga and Bahir Dar, the renewable fraction, which is the
percentage of energy provided to the load that comes from renewable power sources, was
92.8%, 96.6% and 93.7%, respectively. The monthly average electrical energy production of
the PV/DG/ZnBr systems in Addis Ababa is illustrated in Figure 10. As shown from the
figure, the electrical energy production of the solar PV is lower in Jun, July and August,
which is rainy season in Ethiopia, whereas in season the diesel consumption of the generator
is maximum, as shown in Figure 11.
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Figure 10. Monthly Average Electric Production.

Additionally, Figure 12 shows the behavior of the best hybrid system in three cities
over three days. PV systems fulfill energy demand and charge the battery bank during the
day in all three graphs, starting to charge about 7:00 a.m. and stopping to discharge around
4:30 p.m. During the night, the battery bank assists the system in meeting energy demands.
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Figure 12. The best systems are those that match the energy demand, PV power output and
charge/discharge of the battery bank.

The environmental analysis part of the model involves the calculation of the avoided costs
for CO2, PM and NOx. The obtained results of CO2 emissions at Addis Ababa, Bahir Dar and
Jijiga are 63,747, 55,489 and 29,726 kg/year with base case 885,349 kg/year, respectively.

The modelling of the hybrid system and its sensitivity analysis was done using
HOMER software. The results represent different combinations of components in hy-
brid systems, which are PV, WT, DG and battery. However, sensitivity variables must be
taken into account in order to produce a rational hybrid renewable energy system solu-
tion. The solar radiation, wind speed and different chemistry of battery are the sensitivity
variables considered for the optimal design of the system. It is used to find the optimal
configuration among all the possible results that can be simulated to reach the least possible
cost of energy.

4. Conclusions

This paper focuses on the feasibility and techno-economic analysis of electric vehi-
cle charging of PV/wind/diesel/battery hybrid energy systems with different battery
technology, which is the first in Ethiopia, and includes PV and Wind power sources, dif-
ferent technology battery storage, diesel generator and grid connection. The proposed
methodology is discussed through the creation of a technical and economic tool for local
stakeholders, authorizing them to identify the initial requirements and feasibility condi-
tions for PV/wind/diesel/battery hybrid energy system EV charging stations that lead to
this hybrid system benefitting growth: the required space, the generated investment cost
and an assessment of the infrastructure’s environmental and technological character.

X In this study, we have analyzed the technical feasibility and economy of the WT/PV/DG/
battery hybrid system with three different batteries for electric vehicle charging
stations in three different Ethiopia cities. The main results are summarized below:

X In Addis Ababa, the optimal result is an initial capital of $2,371,108.83, an operat-
ing cost of $46,248.70/year, a total NPC of $2,968,990.00 and a levelized COE of
$0.1957/kWh under a combined dispatch (CC) strategy. The configuration corre-
sponds to the PV/DG/ZnBr system, which contains an 829 kW PV, 190 kW DG,
162 ZnBr batteries and a 173 kW converter.
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X In Jijiga, the optimal hybrid energy system is an initial capital of $2,344,549.17, an
operating cost of $29,412.77/year, a net NPC of $2,724,783 and COE of $0.1796/kWh
with a CC strategy. The configuration corresponds to the PV/DG/ZnBr layout, which
contains an 815 kW PV, 190 kW DG, 170 ZnBr batteries and a 178 kW converter.

X In Bahir Dar, the optimal hybrid energy system is an initial capital of $2,307,413.03, an
operating cost of $41,890.54/year, a total NPC of $2,848,954.00 and a levelized COE of
$0.1877/kWh with a CC strategy. The configuration corresponds to the PV/DG/ZnBr
system, which contains an 803 kW PV, 190 kW DG, 166 ZnBr batteries and a 174 kW
converter.

X The PV/DG/ZnBr system delivers the lowest NPC and COE associated to the DG
system, whereas the WT/PV/LI, PV/LI, WT/PV/LI system has the highest NPC
and COE of all feasible combination systems in Addis Ababa, Jijiga and Bahir Dar
respectively.

X Based on the battery technology, PV/DG/ZnBr with NPC $2.97M and COE $0.196,
PV/Lead-Acid/DG with NPC $4,687,826.00 and COE $0.3089, PV/LI/DG with NPC
$4,813,330.00 and COE $0.3172 in Addis Ababa, PV/DG/ZnBr with NPC $2.72M and
COE $0.18, PV/Lead-Acid/DG with NPC $4,460,253.00 and COE $0.2939, PV/LI/DG
with NPC $4,569,231.00 and COE $0.3011 in Jijga, PV/DG/ZnBr with NPC $2.85 M and
COE $0.188, PV/Lead-Acid/DG with NPC $4,547,210.00 and COE $0.2997, PV/LI/DG
with NPC $4,646,631.00 and COE $0.3062 in Bahir Dar, are the lowest values.

Although this paper analyzed techno-economic feasibility, there are still shortcomings.
Therefore, in future work, we will consider other stochastic optimizing algorithms methods
to advance the accuracy of the consequences of the study.
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