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Abstract: The work presents the power-sharing in a standalone low voltage AC microgrid consisting
of three parallel grid supporting inverters using a virtual impedance-based droop system. Typically,
isolated microgrids suffer unique challenges regarding voltage, current, frequency regulation, power
flow control, and power-sharing due to the absence of a stiff AC grid source. This work investigated
the power flow and sharing technical challenges using three inverter-based distributed energy sources,
three static loads, and one dynamic load. These distributed energy sources are interconnected with
the loads using low voltage line impedance within the microgrid to implement the uneven power
distribution. Furthermore, a distributed grid supporting control utilizing virtual impedance is
proposed in this work to improve power-sharing. The microgrid model is developed with the
MATLAB Simulink environment and validated using the Opal RT OP4510 simulator. The proposed
technique ensured improved power-sharing and mitigated the effect of voltage drops introduced
through a virtual impedance using combined positive and negative virtual.

Keywords: droop control; microgrid; distributed energy resources; virtual impedance

1. Introduction

A rise in the utilization of small-scale energy generating units is predicted to boost
global energy capacity and successfully integrate renewables into the electricity grid system.
These are distributed at different locations in the power grid, referred to as distributed
energy resources (DER) [1]. Using renewable energy sources increases the demand for
power electronic interfaces in distributed generating units [2]. The electricity grid faces ad-
ditional issues due to renewable’s intermittent nature. These units can be linked in parallel
to boost a grid’s power capacity. This poses additional energy supply and stability [3]. The
conventional power system is characterized by unidirectional power flows, with massive
synchronous generators serving as the primary generation source. In addition, the move
toward greater renewable power has resulted in additional elements such as grid-based
energy storage devices. Customers are referred to as prosumers because they both use and
create energy, resulting in bidirectional power flow [4]. Traditional control strategies based
on massive, synchronous generators are not necessarily relevant in the future power grid
due to the current development in distributed generation [5]. New control approaches must
be designed to handle the new problems while also considering the benefits of emerging
technology and generating units with power electronic interfaces.

Microgrid provides a veritable platform to address the issues of integrating renew-
ables by providing a mini version of a power system that includes distributed generation
and energy storage. A microgrid is a system with well-defined electrical borders, local
control systems, and flexible loads [6]. Microgrids are beneficial for integrating distributed
generation, ensuring reliable power supply, and addressing difficulties such as bidirectional
power flows, prosumers, and intermittent production [7]. Microgrids can be electrically
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linked to the main grid or run independently. The latter method of operation, known
as “island mode”, necessitates some kind of energy storage and local control mechanism.
Controlling power flow, voltage, and frequency is critical in the island mode of operation.
Each generation unit possesses a local control system in charge of the microgrid’s voltage
and frequency levels. This mode of operation can help ensure power delivery in an unin-
tentional disconnect from the main grid [8]. In addition, microgrids safeguard electricity in
unconnected remote regions [9]. The main grid recognizes the microgrid as a single entity
and stabilizes its voltage level when grid-connected; therefore, its control requirement is to
deliver power to the main grids [10].

A centralized or decentralized control strategy operates a microgrid’s local control
system. The control systems at the DER units follow directions from the microgrid’s central
controller in a centralized fashion [11]. The central controller can control the different
units concerning each other using this method. The microgrid’s power flow regulation
and safe operation are simplified as compared to a decentralized method [12]. However,
the centralized model has its drawbacks, such as the significant expenses associated with
the necessity for communication [13]. Because the centralized controller is intended for a
specific microgrid, it becomes more difficult to expand the microgrid with more units or in
the event of a DG failure [14]. Because the microgrid is reliant on the centralized controller, a
breakdown in the control or communication can bring the entire microgrid to a halt. Unlike
the centralized method, a decentralized microgrid features more intelligent controllers
installed at the DG units [1]. Because the control is done locally, extra complications are
associated with the interaction between the DER units, including power flow concerns [9].
This control strategy is more efficient for DER failure or microgrid expansions since it uses
local metrics. Because of these benefits, the decentralized control technique is of great
interest. This technique allows for more generic research because the controllers are not
dependent on a specific microgrid system. Even while decentralized controllers are less
reliant on communication, it is essential to note that they are not entirely devoid of it. The
communication is linked to the upper levels of control, which work at a slower sample rate.
As a result, the implications of communication failures will be less severe than in the case
of a centralized controller.

Using the specified droop control algorithms for a decentralized control method is
straightforward when using local voltage and frequency data. However, when it comes
to power-sharing, the issues posed by output impedance variances are inherent. For
example, the conventional and inverse droops have characteristics based on either an
entirely inductive or resistive output impedance. On the other hand, the output impedance
of a real microgrid is made up of both resistance and reactance. As a result, active and
reactive power are coupled, dependent on voltage and frequency levels [15]. Various
challenges occur when traditional droop control is utilized in systems with resistive or
output impedances since the control approach is predicated on exclusively inductive
output impedances. As mentioned in [16], traditional droop control can offer stable and
useful performance in a system with mostly resistive output impedances. However, when
using conventional droop control with mostly resistive output impedances, the stability
margins are reduced, and the issues associated with reactive power sharing typically
rise [17]. Furthermore, stability concerns might emerge if the control settings are not
correctly chosen, especially with local loads and substantial output impedances [18]. The
active power has only a minimal impact on the stability issues; however, the reactive droop
coefficient and the output resistance are crucial. According to [19], using conventional
droop control in a predominantly resistive microgrid results in poor grid-connected power
control transient behavior. The problems are significantly more significant in island mode,
resulting in worse reactive power-sharing and more stability issues.

Stability issues arise when the opposite droop control is applied to a primarily in-
ductive output impedance. Because of these stability issues and the importance of correct
active power dispatch, opposite droop management is rarely utilized in microgrids with
primarily inductive output impedances. In addition to the accurate active power-sharing,
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the traditional droop control’s similar behavior and compatibility with synchronous gen-
erators are frequently preferred [References]. Furthermore, the typical droop control can
provide virtual inertia to the system by carefully selecting the droop coefficients [20]. In
some circumstances, however, the direct voltage control of the opposite droop control is
preferred due to the more stable functioning with mostly resistive output impedances [21].
Even though the droop control methods provide unstable responses with specific out-
put impedances, virtual impedances are an excellent way to change the inverters’ output
impedance. It can generate steady, high-performance responses practically regardless of
the inverters’ real output impedance [16].

The virtual impedances have been utilized in converter control for harmonic voltage
correction and increased stability and power-sharing applications [22]. The values of vir-
tual impedances were researched by [23] to maximize the microgrid’s performance. The
virtual impedances can assist in keeping the voltage under particular limits, share reactive
power effectively, dampen the system, and decouple active and reactive power. A virtual
impedance, in general, mimics the behavior of a genuine impedance while avoiding losses.
The size of the impedance and the relationship between the resistive and reactive compo-
nents must be considered in selecting virtual impedances. Ref. [24] provides a detailed
analysis of the benefits and drawbacks of using virtual impedance with droop control.
The virtual impedances can be utilized to compensate for physical output impedance mis-
matches between inverters. The fundamental purpose of virtual impedance is to change the
impedance angle of the corresponding output impedance. Positive inductive- or negative
resistive virtual impedances can be introduced to low-voltage grids to provide inductive
equivalent output impedance for inverters using standard droop control. Furthermore, this
may help to increase the stability margins. Power-sharing is greatly improved with existing
virtual impedance solutions. The voltage losses associated with these systems, on the other
hand, can be rather substantial [25].

Thus, this paper proposes a virtual impedance solution that can decrease voltage drops
with a design that divides one virtual impedance into two components. These components
consist of the virtual voltage drop across the virtual resistance and impedance like a typical
physical impedance with the cross-decoupling components from the direct and quadrature
components of the output current. This addresses the output impedance matching. Thus,
the voltage loss through the virtual impedances is mitigated. The virtual impedances
are implemented alongside the traditional droop control. The decoupling of active and
reactive power is more substantial with this method than with inductive virtual impedances
alone. Furthermore, voltage dips across virtual impedances are minimized. The work
presents the power-sharing in a standalone low voltage AC microgrid consisting of three
parallel grid supporting inverters using a virtual impedance-based droop system. This
work investigated the power flow and sharing technical challenges using three inverter-
based DERs, three static loads, and one dynamic load. These DERs are interconnected
with the loads using low voltage line impedance within the microgrid to implement the
uneven power distribution. The microgrid model is developed with the MATLAB Simulink
environment and validated using the Opal RT OP4510 simulator. The proposed technique
ensured improved power-sharing and mitigated the effect of voltage drops introduced
through a virtual impedance.

2. System Control

Droop control uses conventional or inverse droop control, using the relationship be-
tween the voltage and frequency in the grid and the power produced by the inverters
without the requirement for communication between inverters [26]. The frequency and
voltage levels indicate power generations in a microgrid, and the droop utilizes this infor-
mation in modifying the power delivered by the inverters using active and reactive power
setpoints. This technique makes grid expansion provisions to accommodate more DERs
and dispersed loads. The provision for disconnection of DERs and loads is also allowed. In
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addition, droop control does not need high-speed communication; thus, it considerably
saves costs with exemplary dependability [27].

2.1. Droop Control

Typical low-voltage microgrids and networks have resistive line impedances; however,
point of common coupling (PCC) transformers and LC or LCL filters contribute to their
inductive behavior. Thus, the output impedance might become primarily inductive in
the event of insignificant line impedances. The traditional droop control regulates power-
sharing with inductive output impedances. Equations (1) and (2) for both active and
reactive powers, in line with two other crucial assumptions, serve as the foundation for the
development of this method [23]:

P =
V2

1
Z

[cos θ]− V1V2

Z
[cos(θ + δ)] (1)

Q =
V2

1
Z

[sin θ]− V1V2

Z
[sin(θ + δ)] (2)

The output impedance is assumed to be entirely inductive; the impedance Z is equiva-
lent to only reactance, X. Thus, the impedance angle θ equals 90. The assumption that the
power angle is minimal is based on an insignificant phase difference between the voltage
at the inverter’s output and the voltage at the loads’ connection point. Thus, the power
angle and the voltage drop across output impedance are given by Equations (3) and (4) [28].
Therefore, the active power relies on the power angle directly relating to the frequency.
Similarly, the voltage drop, V1 − V2, is proportional to the reactive power. These are
represented as Equations (5) and (6), indicating that conventional droop is dependent on a
rated voltage E* and frequency ω* [19].

δ ≈ PX
V1V2

(3)

V1 − V2 ≈ QX
V1

(4)

P∗ − P =
1

kP
[ω − ω∗] (5)

Q∗ − Q =
1

kQ
[E − E∗] (6)

where P, Q, E, and ω, are the observed values of the active power, reactive power voltage,
and frequency, respectively. kP and kQ are the active and reactive droop coefficients,
respectively, governing the relationship between frequency and active power and voltage
and reactive power. The active power provided into the line is regulated by frequency
fluctuations, while voltage deviations control the reactive power supply [29]. The droop
coefficients determine the deviations; kP is the maximum allowable frequency deviation
ratio owing to a change in active power due to a load change, while kQ is the ratio of
the maximum permissible voltage change related to a load change in reactive power.
The maximum deviations permitted in the grid are frequently used to determine the
ratios [24]. kP and kQ impact inverter power-sharing, with more significant values resulting
in improved power-sharing. Nevertheless, the coefficients have limitations beyond which
further increment results in system instability [19]. Droop coefficient selection within the
stability constraints is a trade-off between power-sharing performance and voltage and
frequency aberrations. In a microgrid, the droop coefficients of two DERs must be the same
to share the same amount of power.

The conventional technique is an efficient strategy to regulate frequency and voltage
relative to the generated power when output impedances are purely inductive. Active
power is distributed evenly among inverters; however, this technique has several limitations
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regarding reactive power distribution. Unequal reactive power supply from inverters is
frequently caused by a discrepancy in output voltage or output impedances, occurring with
distribution lines of differing lengths [11]. Thus, reactive circulation currents are created as
a result, while purely inductive distribution lines result in an unstable response [30].

P =
3
2
(
vdid + vqiq

)
(7)

Q =
3
2
(
vqid − vdiq

)
(8)

The measured values of active power P and reactive power Q are calculated from
the direct-axis component of the voltage and current, vd and id, and the quadrature-axis
component of the voltage and current, vq and iq, using Equations (7) and (8). Only vd is
connected to the droop characteristic, as this is equivalent to E, while vq is constrained
to zero. Low-pass filters (LPF) filter P and Q to alleviate the impact of high-frequency
components in the droop and ensure a suitable bandwidth difference between the inner
loops and the droop [9]. However, this causes the droop controller to run slowly, reducing
the power-sharing performance. The droop controller’s output frequency ω is integrated,
resulting in a continually changing angle, ωt employed in Clark’s transformation to align
voltage vectors at the output of the inverters in the synchronous reference frame.

The droop characteristic based on the assumption of entirely resistive output impedances
is invalid, considering resistive components dominate output impedances in low-voltage
microgrids [11]. The reactive power determines the power angle and frequency, whereas
the active power determines the voltage drop [31]. Like in traditional droop control, the
droop coefficients are selected based on active and reactive power changes and maximum
voltage and frequency deviations associated with these changes. The reverse droop control
outperforms the traditional droop control for direct voltage control and harmonic power-
sharing. The system is more damped, and phase mistakes have less impact on active
power-sharing. Conventional droop control is more widely utilized due to improved active
power-sharing [11].

2.2. Complex Virtual Impedance Technique

The virtual impedance is presented as a control technique in conjunction with droop
control for power control and power-sharing. Similarly, virtual impedances are utilized
in converter control for applications such as harmonic voltage correction and increased
stability and power-sharing [22]. Because of its numerous applications, the value of this
impedance must be determined according to its intended function. The values of virtual
impedances are researched in [23] in order to maximize the microgrid’s performance.
The virtual impedances aid the regulation of the voltage under particular limits, share
reactive power effectively, dampen the system, and decouple active and reactive power. A
virtual impedance, in general, mimics the behavior of a normal impedance while avoiding
losses [22]. In the existing (typical) technique, the virtual impedance is selected to make
the ‘equivalent’ output impedance rather than resistance and reactance. This achieves
improved active and reactive power decoupling and accurate power-sharing.

Equation (9) represents the general architecture for virtual impedance loops with the
grid alternating current Iabc and the virtual impedance, Zo; both affect the inner loop con-
trol’s voltage reference V* and constitute virtual impedance voltage drop ∆Vo. Thus, ∆Vo
is subtracted from a droop control voltage drop V** to determine the voltage reference of
the inner loop. This adjusts the equivalent output impedance’s magnitude and impedance
angle. As given in Equation (9), using virtual impedances has the drawback of lowering the
voltage reference; thus, this must be considered when determining the impedance value.
Equation (9) is implemented in the synchronous reference frame for the d and q axis in the
inner loop, as shown in Equation (10)

V∗ = V∗∗ − ∆Vo = V∗∗ − Zo Iabc (9)
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V∗
d = V∗∗

d − Roid − Xoiq
V∗

q = V∗∗
q − Roiq − Xoid

(10)

With droop control algorithms, virtual impedances are utilized to optimize active and
reactive power-sharing by compensating for physical output impedance mismatches be-
tween inverters. This strategy is successful in active and reactive power-sharing, provided
the participating parallel inverters have the same equivalent output impedance. Therefore,
the virtual impedance is chosen to ensure that the equivalent output (physical and virtual)
impedance for all inverters in the system is equal. The fundamental purpose of virtual
impedance is to change the impedance angle of the corresponding output impedance. In ad-
dition, t negative resistance and positive reactance constitute inductive virtual impedances,
as shown in Equation (9), thereby increasing the stability margins [32].

A similar method may be used for the opposite droop control approach, but the virtual
impedance has a substantial resistive value. When virtual impedances are employed to
make corresponding output impedances more inductive or resistive, the virtual impedances’
size is usually chosen to dominate the physical output impedances [33]. This guarantees
that the active and reactive power are appropriately decoupled. The relative difference
between the equivalent output impedance is lowered when the physical output impedances
of the inverters are uneven, which benefits power-sharing [34]. The resistive virtual
impedances contribute to more excellent system damping and better power-sharing.

Power-sharing is greatly improved with existing virtual impedance solutions. The
voltage losses associated with these systems, on the other hand, can be rather substan-
tial [35]. Thus, this work proposes virtual impedance solutions that decrease voltage drops.
The virtual impedance design divides one virtual impedance into three components to
ensure output impedance matching, as shown in Equation (11). The resistive-inductive
virtual impedances, with the virtual voltage drop expressed for synchronous reference
frame implementation, is shown in Equation (12). The vdpd and vdpq drop in voltage is due
to the virtual impedance

vdp−abc = Riabc + L
diabc

dt
(11)

vdpd = Rid − ωLiq + L did
dt

vdpq = Riq − ωLid + L diq
dt

(12)

To make the equivalent output impedance of all parallel equal, this arrangement
ensures that virtual impedance is applied to the inverter with the lower physical output
impedance when there is a sudden increase in load. The total voltage loss through the
virtual impedances is greatly minimized with the application of virtual impedances in
all parallel inverters. A negative virtual impedance is introduced to the inverter with the
higher physical output impedance, and a positive virtual impedance is added to the inverter
with the lower physical output impedance to match the output impedances. Thus, different
levels of voltage drops are observed across each inverter. Similarly, the location of load
increase is varied within the microgrid at points A, B, and C to observe the power-sharing
and voltage across each inverter’s virtual impedances.

Low pass filters (LPFs) are employed to create a voltage level that is less impacted
by high-frequency oscillations due to the derivative term in these virtual impedance
loops. Because derivative terms and high-frequency current components can generate
considerable voltage deviations, the filters help maintain the voltage dips induced by virtual
impedance within tolerable ranges. Figure 1 shows inverter control with virtual impedance
and conventional droop. Figure 2 depicts the virtual impedance implementation utilized in
this study, including the low-pass filters. LPFs have the problem of causing a phase shift,
thereby modifying the behavior of the virtual impedance. LPFs also add an extra-temporal
delay to the system, resulting in a significantly slower dynamic response. Therefore, the
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cut-off frequency ωc of the low-pass filters employed in the virtual impedance is equal to
the frequency of the system’s third harmonic oscillations, as given in Equation (13).

vdpd = Rid − ωLiq + ωc
s+ωc

sLid
vdpq = Riq − ωLid +

ωc
s+ωc

sLiq
(13)
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i∗d = id −
(

ωC f

)
vq +

(
kpv +

kiv
s

)[
v∗d − vd − vdp−d

]
i∗q = iq +

(
ωC f

)
vd +

(
kpv +

kiv
s

)[
v∗q − vq − vdp−q

] (14)

ud = vd −
(

ωL f

)
iq +

(
kpi +

kii
s

)[
i∗d − id

]
uq = vq +

(
ωL f

)
id +

(
kpi +

kii
s

)[
i∗q − iq

] (15)
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where kIV and kPV are the integral gain and proportional gain of the voltage PI control,
respectively. Where kii and kpi indicate integral and proportional gains, respectively, from
the current control loop. The vd and vq elements of the voltage direct-quadrature axes imply
feed-forward quantities. Feed-forward and cross decoupled quantities are used to perform
independent controls of the current dq axis.

This control loop regulates the active and reactive power to ensure power transfer
from DC to the inverter’s AC side. The voltage vd is constant, and the active power is
regulated by adjusting the current id. Similarly, the reactive power is regulated through
the current iq control. The grid-supporting systems’ inner loop controls the filter inductor
current, following current references and removing cross-coupled terms caused by the
reference frame transformation. The entire system reference is the standard frame where
each constituent generating unit’s dynamics are transformed using the angular frequency
ω. Subsequently, the decoupling of the active and reactive power is done through Park
transformation (abc − dq).

3. Results

The isolated microgrid consists of three inverter-based distributed energy sources,
which are given in Figure 3. The microgrid model consists of three loads connected while
the fourth load is connected at a time of t = 1.5 s to investigate the power-sharing using a
typical virtual impedance given in Equation (10) and the proposed virtual impedance given
in Equation (12). These virtual impedance models are utilized alongside the conventional
droop technique.

Energies 2022, 15, x FOR PEER REVIEW 9 of 17 
 

 

 

Figure 3. Investigated Decentralized Islanded Microgrid. 

The virtual impedance is presented as a control technique in conjunction with droop 

control for power control and power-sharing. Similarly, virtual impedances are utilized 

in converter control for applications such as harmonic voltage correction and increased 

stability and power-sharing. The virtual impedances keep the voltage under limits, share 

reactive power effectively, dampen the system, and decouple active and reactive power. 

The presented virtual impedance mimicked the behavior of a typical impedance while 

avoiding losses. The voltage drop across typical virtual impedance and proposed imped-

ance is given in Figures 4–7 for both the d-axis and the d-axis voltage drop across the 

impedances. The increased voltage drop at the output of DER 3 is due to the proximity 

and operation of the switch that connects the load increase. 

 

Figure 4. vdpd drop in voltage due to typical virtual impedance. 

Figure 3. Investigated Decentralized Islanded Microgrid.

The virtual impedance is presented as a control technique in conjunction with droop
control for power control and power-sharing. Similarly, virtual impedances are utilized
in converter control for applications such as harmonic voltage correction and increased
stability and power-sharing. The virtual impedances keep the voltage under limits, share
reactive power effectively, dampen the system, and decouple active and reactive power. The
presented virtual impedance mimicked the behavior of a typical impedance while avoiding
losses. The voltage drop across typical virtual impedance and proposed impedance is given
in Figures 4–7 for both the d-axis and the d-axis voltage drop across the impedances. The
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increased voltage drop at the output of DER 3 is due to the proximity and operation of the
switch that connects the load increase.

Energies 2022, 15, x FOR PEER REVIEW 9 of 17 
 

 

 

Figure 3. Investigated Decentralized Islanded Microgrid. 

The virtual impedance is presented as a control technique in conjunction with droop 

control for power control and power-sharing. Similarly, virtual impedances are utilized 

in converter control for applications such as harmonic voltage correction and increased 

stability and power-sharing. The virtual impedances keep the voltage under limits, share 

reactive power effectively, dampen the system, and decouple active and reactive power. 

The presented virtual impedance mimicked the behavior of a typical impedance while 

avoiding losses. The voltage drop across typical virtual impedance and proposed imped-

ance is given in Figures 4–7 for both the d-axis and the d-axis voltage drop across the 

impedances. The increased voltage drop at the output of DER 3 is due to the proximity 

and operation of the switch that connects the load increase. 

 

Figure 4. vdpd drop in voltage due to typical virtual impedance. Figure 4. vdpd drop in voltage due to typical virtual impedance.

Energies 2022, 15, x FOR PEER REVIEW 10 of 17 
 

 

 

Figure 5. vdpd drop in voltage due to proposed virtual impedance. 

 

Figure 6. vdpq drop in voltage due to typical virtual impedance. 

 

Figure 7. vdpq drop in voltage due to proposed virtual impedance. 

The isolated microgrid system provided in this work utilized virtual impedance and 

conventional droop to investigate power-sharing problems in microgrids. The virtual im-

pedance affected both affect the d and q voltage reference. The voltage reference from the 

droop control is subtracted from a voltage drop generated by the virtual impedance to 

give the reference to the inner control loops. Ordinarily, the typical virtual impedance 

adjusts the equivalent output impedance’s magnitude and impedance angle, thus, lower-

ing the voltage reference and the output AC voltage. However, the proposed method can 

regulate the output voltage with an insignificant drop in droop voltage and AC output 

voltage in Figure 8 and Figure 9, respectively. The corresponding AC output voltages ob-

served for the three DERs are given in Figure 10. 

Figure 5. vdpd drop in voltage due to proposed virtual impedance.

Energies 2022, 15, x FOR PEER REVIEW 10 of 17 
 

 

 

Figure 5. vdpd drop in voltage due to proposed virtual impedance. 

 

Figure 6. vdpq drop in voltage due to typical virtual impedance. 

 

Figure 7. vdpq drop in voltage due to proposed virtual impedance. 

The isolated microgrid system provided in this work utilized virtual impedance and 

conventional droop to investigate power-sharing problems in microgrids. The virtual im-

pedance affected both affect the d and q voltage reference. The voltage reference from the 

droop control is subtracted from a voltage drop generated by the virtual impedance to 

give the reference to the inner control loops. Ordinarily, the typical virtual impedance 

adjusts the equivalent output impedance’s magnitude and impedance angle, thus, lower-

ing the voltage reference and the output AC voltage. However, the proposed method can 

regulate the output voltage with an insignificant drop in droop voltage and AC output 

voltage in Figure 8 and Figure 9, respectively. The corresponding AC output voltages ob-

served for the three DERs are given in Figure 10. 

Figure 6. vdpq drop in voltage due to typical virtual impedance.

The isolated microgrid system provided in this work utilized virtual impedance and
conventional droop to investigate power-sharing problems in microgrids. The virtual
impedance affected both affect the d and q voltage reference. The voltage reference from
the droop control is subtracted from a voltage drop generated by the virtual impedance
to give the reference to the inner control loops. Ordinarily, the typical virtual impedance
adjusts the equivalent output impedance’s magnitude and impedance angle, thus, lowering
the voltage reference and the output AC voltage. However, the proposed method can
regulate the output voltage with an insignificant drop in droop voltage and AC output
voltage in Figures 8 and 9, respectively. The corresponding AC output voltages observed
for the three DERs are given in Figure 10.
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Figure 9. Output voltage reference of the droop controller with proposed virtual impedance.

This virtual impedance proposed mitigated the voltage’s negative impacts by intro-
ducing combined positive and negative virtual impedances. The voltage reference from
the droop controller is given in Figures 8 and 9, and the voltage drop owing to the virtual
impedance is insignificant in output voltage in Figure 10 for the proposed virtual impedance.
The virtual impedances compensated the physical output impedance mismatches between
inverters, ensuring active and reactive power-sharing, as given in Figures 11 and 12.
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Figure 11. Active power output of the droop controller with typical virtual impedance.

Figure 13 indicates that an unequal reactive power supply from inverters is frequently
caused by a discrepancy in output voltage or output impedances, occurring with distribu-
tion lines of differing lengths. Thus, reactive circulation currents are created, while purely
inductive distribution lines result in an unstable response. The proposed virtual impedance
reduces circulating currents, even with both resistive and inductive components in the
distribution lines. Thus, the drawback of conventional droop is overcome by the proposed
virtual impedance with the relatively improved reactive power-sharing in Figure 14. The
single-phase current outputs of all the three DERs are given in Figure 15.
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Figure 14. Reactive power output of the droop controller with proposed virtual impedance.

Power-sharing is greatly improved with the proposed virtual impedance solutions
with decreased voltage drops. Furthermore, the voltage loss through the virtual impedances
is minimized with virtual impedances introduced into the droop of each inverter. As indi-
cated, the virtual impedance voltage output was introduced to the outer loop, which consid-
erably minimized the voltage drop caused by the usage of conventional virtual impedances.

Typical virtual impedances create a substantial voltage loss due to their size, while the
proposed approach mitigates this voltage drop. An exceptional and precise synchronization
scheme is used for parallel operation with other inverters, as shown in Figures 16 and 17.
The output impedances of each inverter determine their respective power-sharing when
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operated in parallel. The system operates steadily in island mode with operating conditions
within the specified technical limit. The microgrid stipulates and regulates the supply
voltage and frequency to the AC loads.
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4. Conclusions

Using a design that separates one virtual impedance into two components, this study
provides a virtual impedance solution that can reduce voltage drops. The virtual voltage
drop across the virtual resistance and impedance, similar to a typical physical impedance,
with the cross decoupling components from the direct and quadrature components of the
output current, makes up these components. As a result, the output impedance matching
and the voltage loss due to virtual impedances are reduced. The virtual impedances are
used in conjunction with conventional droop control. This approach decouples active and
reactive power more effectively than inductive virtual impedances alone. Voltage dips
across virtual impedances are also kept to a minimum. The paper shows how a virtual
impedance-based droop system may be used to share power in a standalone low voltage
AC microgrid with three parallel grid supporting inverters. These DERs are coupled with
the loads inside the microgrid utilizing low voltage line impedance to execute the unequal
power distribution. The suggested method increased power-sharing and reduced the
impact of voltage drops generated by a virtual impedance. The proposed technique is
recommended for loads drawing in currents in abrupt short pulses, such as non-linear
loads, for future work. These pulses distort the current waveforms, generating harmonics
that can lead to power problems affecting the microgrid and the other local loads.
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