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Abstract: Knowledge of the number and distribution of oil palm trees during the crop cycle is vital for
sustainable management and predicting yields. The accuracy of the conventional image processing
method is limited for the hand-crafted feature extraction method and the overfitting problem occurs
due to the insufficient dataset. We propose a modification of the Faster Region-based Convolutional
Neural Network (FRCNN) for palm tree detection to reduce the overfitting problem and improve the
detection accuracy. The enhanced FRCNN (EFRCNN) leads to improved performance for detecting
objects (in the same image) when they are of multiple sizes by using a feature concatenation method.
Transfer learning based on a ResNet50 model is used to extract the features of the input image.
High-resolution images of oil palm trees from a drone are used to form the data set, containing
mature, young, and mixed oil palm tree regions. We train and test the EFRCNN, the FRCNN, a CNN
used recently for oil palm image detection, and two standard methods, namely, the support vector
machine (SVM) and template matching (TM). The results reveal an overall accuracy of ≥96.8% for the
EFRCNN on the three test sets. The accuracy is higher than the CNN and FRCNN and substantially
higher than SVM and TM. For large-scale plantations, the accuracy improvement is significant. This
research provides a method for automatically counting the oil palm trees in large-scale plantations.

Keywords: sustainable; oil palm tree; resource assessment; deep learning; Faster Region-Based
Convolutional Neural Network; feature map concatenation

1. Introduction

The oil palm tree originated from West Africanis and was brought by the British to
Malaysia in the early 1870s [1]. In modern times, the oil palm tree is a commodity crop in
some tropical regions such as Indonesia and Malaysia [2]. With 5.85 million hectares of
oil palm tree plantation, Malaysia has become the world’s major producer and exporter
of palm oil (the most widely used vegetable oil in the world), taking up more than 60%
of the agricultural land [3]. This makes the oil palm industry one of the most important
contributors to Malaysia’s GDP (Gross Domestic Product).

Precision farming is a farming management system that uses modern technologies
in the crop production process to help understand and efficiently manage farms [4]. It
involves: measuring and analyzing variability in yield, solid quality, pests, and weeds;
decision-making; differential actions; and the assessment of outcomes. Implementation of
precision farming by the plantation company ensures optimum productivity, quality, and
economic return, and also helps to mitigate environmental impacts. Traditional methods
of acquisition for images of oil palm tree plantations use remote sensing. The satellite
image can be obtained either from high spatial resolution data associated with an airborne
imaging spectrometer or from a high spatial resolution satellite, such as the QuickBird [5].
Recently, with the development of small multispectral and hyperspectral imaging sensors,
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drone images are becoming increasingly popular for the acquisition of high-resolution and
spectral measurements [6].

The task of measuring and analyzing variability, which involves some form of spatio-
temporal mapping, is perhaps the most important aspect of precision farming [7]. Spatial
and plotting map data need to be retrieved quickly and translated into knowledge that can
help to improve production. This can involve manual counting, the use of crop models,
machine learning, and data mining tools. In the standard method, the trees in an oil palm
tree plantation are counted manually from the acquired image. A Geographic Information
System (GIS) software is used, which is tedious and inefficient for large-scale plantations.

More recently, machine learning has been proven to be an effective and flexible tool
in machine vision agriculture systems for analyzing images and decision-making [8]. The
machine learning method usually extracts features from the image first, and then classifies
the extracted features to classify the various objects in the image [9]. However, the feature
extraction approach is usually hand-crafted and the features are designed manually by
human experts a priori to extract a set of chosen characteristics. Manandhar et al. used
shape features by extracting the polar shape matrix from a remote sensing image of an oil
palm tree plantation; a local maximum detection algorithm was used to detect the objects
in eight different oil palm tree images [10]. Malek et al. used the popular scale-invariant
feature transform (SIFT) and a classifier to detect palm trees from unmanned aerial vehicle
images [11]. Therefore, the features can be difficult to design and are specific to a particular
data set.

An alternative is learned features, a machine learning approach that is used to automat-
ically discover the features for classification using the raw data. In particular, deep learning
algorithms can extract and discriminate between high-level features from images and have
established themselves as the preferred learning approach for such applications [12]. In
recent years, deep learning-based image classification algorithms have successfully been
used in oil palm tree detection from aerial imagery [13–15]. However, most of the current
deep learning methods focus on remote sensing imagery and the methods do not cover
the case in which multiple-sized oil palm trees are present in the images. Li et al. used a
two-stage method, in which they first trained a Convolutional Neural Network (CNN), and
then used the sliding window method to obtain the final detection result. This two-stage
method usually requires a large training dataset and the sliding window method also
makes it time-consuming [13]. Mubin et al. trained two CNNs to detect images with young
and mature oil palm trees. A real oil palm tree plantation, on the other hand, contains
trees of multiple sizes, and thus, a model that can detect multiple sizes would be hugely
beneficial [15].

The Region-based CNN (R-CNN) uses a selective search (SS) to propose a large
number of regions of interest (ROI), which are fed into a CNN to extract feature vectors for
classification. The fast R-CNN instead takes the image and region proposals as inputs in a
CNN architecture with a single forward propagation, combining the CNN, ROI pooling and
classification in one complete architecture. This method is still time-consuming because
it needs to perform a SS. The faster R-CNN (FRCNN) overcomes these deficiencies by
using a feature extraction network (pretrained CNN), followed by a network to generate
object proposals (Regional Proposal Network (RPN)), and finally, a classification layer [16].
In this manner, the SS is eliminated. The faster R-CNN has been used successfully for
vehicle detection, banana tree detection, and building detection from remote sensing
images [17–19].

In order to develop an automatic oil palm tree detection approach that can detect and
count multiple size oil palm trees, we introduce an enhanced FRCNN (EFRCNN) that uses
feature concatenation and transfer learning from a Residual Network (ResNet) [20]. It mod-
ifies the basic FRCNN by using a feature concatenation method which integrates low-level
and high-level features from a pretrained ResNet50 to increase the accuracy of detection.
High-level detail obtained from the final convolution block is ideal for detecting large
objects, whereas low-level information obtained from the preceding convolution blocks is
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ideal for detecting small objects. Combining the different levels through concatenation can
improve detection if objects of different sizes are present in the image. To test the method,
we generate high-resolution RGB images of a plantation using a multirotor drone. The
results are compared with an SVM (with separate feature extraction), template matching
(TM), and the recent methods of Mubin et al. [15] and Liu. et al. [21], the latter of which
is the original FRCNN. The EFRCNN is far superior to the SVM and TM, while exhibit-
ing small but noticeable improvements compared to the CNN method, which suggests
significant advantages for large plantations.

2. Materials and Methods
2.1. Dataset

For the deep learning method, it is important to have sufficient data to avoid overfitting
and ensure good generalization for detection and classification. Currently, there is no
existing public dataset for oil palm tree plantations. Due to decreasing prices, coupled with
technological developments, drones have become more popular and widely used in modern
agriculture for machine vision applications. Multirotor drones are the most common types
of drones used by professionals for applications such as aerial photography [22].

Therefore, in this study, a multirotor drone was used to collect the data from an
oil palm tree plantation. The drone used was a LiAir 220, which is an UAV-mounted
system developed by GreenValley International (Figure 1). The LiAir 220 is equipped
with a 40-channel Pandar40 laser sensor (Hesai, Shanghai) with a 220 m range. The range
accuracy is 2 cm, the scan rate is 700,000 pts/s, and the camera used is a Sony a6000 with
24 megapixels. The drone was flown above the plantation and captured high-resolution
RGB images of each block. The images were then spliced to form an integral picture of the
whole plantation.
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Figure 1. The LiAir 220 drone used for high-resolution image capture of an oil palm tree planation.

Figure 2 shows the oil palm tree plantation image cropped from the collected high-
resolution data. Since the dataset plays a vital role in training and the high-resolution
image cannot be processed in one pass due to computational limitations, in this study,
it was divided into multiple sub-images. A total of 360 sub-images with a resolution of
500 × 600 pixels were created. In turn, these images were divided into a training dataset
with 260 images and a test dataset with 100 images. To ensure that the dataset contains
sufficient information, an image processing method was used for augmentation.

Figure 3 shows three samples from the training dataset. The left-hand column shows
the original sub-images and right-hand column shows the corresponding enhanced images.
One hundred sixty of the images were randomly selected and enhanced by improving
the brightness and contrast. It can be seen that the object is easier to identify from the
enhanced images. Both the original and enhanced images were used as training data. After
the data augmentation, the training dataset therefore contained 420 images. Subsequently,
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the images in the training dataset were labelled using LabelImg (Available opensource on
GitHub: https://tzutalin.github.io/labelImg/ (accessed on 5 January 2020)). There are
only two classes in this study, namely, oil palm tree and background.
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2.2. Faster RCNN and Enhanced Faster RCNN

The first step of the Faster RCNN approach passes the entire image through a pre-
trained CNN that returns feature maps for the image. The conventional CNN has multiple
layers with a large number of weights. Numerical experiments have revealed that network
depth is of crucial importance for improving performance [23]. Experiments on the Im-

https://tzutalin.github.io/labelImg/
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ageNet dataset all use very deep models with at least sixteen layers. A large number of
visual recognition tasks also leverage these very deep models [24]. However, as the depth
of the network increases, the number of network weights also increases, which necessitates
a larger training dataset. Training a model from scratch can be very computationally inten-
sive. For classification tasks, a high-level (low-level) feature is suitable for targets of large
(small) size [25]. If the image contains both small- and large-sized objects, employing a
high-level feature layer is not optimal, especially in this study in which the image contains
mature and very young palm trees (i.e., multiple sizes).

Based on the above considerations, in this work, a deep CNN network is employed
for the accurate detection. A 50-layer Residual Network (ResNet50) is used, together with
feature concatenation and transfer learning to improve the performance of the Faster RCNN.
The ResNet50 adds skip/residual connections in stacked residual blocks, which leads to
quick convergence and therefore, faster training by avoiding the vanishing gradient issue.
This was motivated by the observation that with an increase in network depth, accuracy
becomes saturated before degrading rapidly [26]. He et al. hypothesized that it should
be easier for the network to learn perturbations from an identity mapping than to learn
the mapping itself [20]. This led to a residual formulation across a number of so-called
residual blocks of at least two layers: y = F(x, {wi}) + x, in which x and y are the input to
and output from the block, {wi} is the set of weights across the block (Figure 4 illustrates
a block with two layers). F(x, {wi}) represents the action of the layers in the block and
is the residual mapping to be learned by the block, i.e., F(x, {wi}) = y− x. The addition
is elementwise, provided F(x, {wi}) and x are in the same space, otherwise the input is
linearly projected onto the space in which F(x, {wi}) resides.
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Feature concatenation is used to integrate the low-level and high-level features to
increase the accuracy of detection. Moreover, transfer learning is employed to reduce the
training cost of a new network by using a pretrained ResNet50. This leads to an enhanced
Faster RCNN (which we call EFRCNN), as illustrated in Figure 5. The input is the cropped
oil palm tree image and the output is the class probability and the location of the object.

The ResNet50 is pretrained on the openly available ImageNet data set. The pretrained
ResNet only retains the weights of Conv1 and all the residual blocks (Conv2, Conv3, Conv4,
and Conv5), discarding weights from the other layers. The extracted feature map is fed
into the RPN to obtain the proposal boxes. Subsequently, the ROI pooling layer utilizes
the transferred feature maps at different levels (conv3_3, conv4_3, and conv5_3) and the
proposal boxes to extract the feature map for the proposal boxes. The results are then
concatenated and fed into a full connected (FC) layer and then the layers are classified and
refined to yield the final detection result and calculate the loss. Finally, the backpropagation
(BP) algorithm is used to adjust the weights for the RPN, FC layers, classification layer, and
refine the bounding box layer.
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The RPN is a fully convolutional network that takes an image of any size as the
input, while outputting a set of object proposals (rectangular), attached to each of which
is an objectness score. The RPN and Fast R-CNN component share a common set of
convolutional layers; region proposals are generated by sliding a small network over the
feature map that is output by the final convolutional layer that is shared between the
networks [16]. The input to this small network is a spatial window of the input feature
map, which is mapped to a feature in a lower-dimensional space [27]. This reduced size
feature is input to two fully connected convolutional layers, namely, the box regression
layer (regL) and the softmax classification layer (clsL).

At each location of the sliding window, multiple region proposals are predicted, with
a defined maximum of k proposals (parameterized with respect to reference boxes, referred
to as anchors). The regression layer therefore returns 4k outputs and the classification layer
returns 2k outputs, representing the probabilities of each of the two classes. The anchors
are centered at the sliding window and associated to each are three scales and three aspect
ratios (in the default scheme), which yields a total of k = 9 anchors for each sliding position.

The loss function for training the EFRCNN contains two parts (Equation (1)), including
the classification loss Lcls (binary cross-entropy) and the region loss Lreg :

L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i ) + µ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ) (1)

in which {·} denotes a set. The training objective for the EFRCNN is to minimize the
loss. In Equation (1), i is the index of the bounding box; pi is the foreground softmax
probability and p∗i is the probability for the ground truth box; ti is a vector of parameterized
coordinates of the predicted bounding box and t∗i are the coordinates of the ground truth
box. The two terms are normalized and a parameter µ is used to balance the contribution
of each term. The classification term is normalized by the number of classes Ncls = 2, while
the region loss is normalized by the number of region proposals. A value of Nreg = 300
was used in this study. In the results presented in the next section, a value of µ = 2
was adopted.
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Parameterizations of the four coordinates in the bounding box regression layer are as
follows [28]:

tx =
(x− xa)

wa
ty =

(y− ya)

ha
(2)

tw = log
w
wa

th = log
h
ha

(3)

t∗x =
(x∗ − xa)

wa
t∗y =

(y∗ − ya)

ha
(4)

t∗w = log
w∗

wa
t∗h = log

h∗

ha
(5)

In which x, y, w, and h denote the center coordinates, width, and height of the
bounding box, respectively. The subscript a and superscript * denote the prediction and
ground truth values, respectively.

Training is performed with backpropagation (BP) using a stochastic gradient descent
(SGD) for efficiency [29]. Let f (x) be the loss function and fi(x) be the loss function
corresponding to each of the n training samples. Then,

∇ f (x) =
1
n

n

∑
i=1
∇ fi(x) (6)

SGD reduces computational cost at each iteration of BP from O(n) to O(1) by uni-
formly sampling an index i ∈ {1, . . . , n} and computing the gradient alone ∇ fi(x) to
update x according to the update rule,

x ← x− η∇ fi(x) (7)

in which η is the learning rate. Normally, momentum is added to reduce oscillatory
behavior and promote faster convergence:

x ← x− αui−1 − η∇ fi(x) (8)

in which α is a constant and ui−1 is the update at the previous iteration. SGD can also be
performed with mini batches, meaning a subset I ⊆ {1, . . . , n} is chosen randomly and the
update is based on in which |I| is the cardinality of I.

1
|I|∑i∈I

∇ fi(x) (9)

Convolutional layers are initialized using a pretrained network, as mentioned earlier.
Weights in the other layers are initialized by sampling from a zero-mean Gaussian distribu-
tion with a standard deviation of 0.01. The learning rate was set at 0.001 and a momentum
of 0.9 was used alongside a weight decay of 0.0005.

Algorithm 1 shows the pseudocode for EFRCNN. The number of epochs can be
adjusted. The iteration in j indicates the number of the training batch in each epoch and the
total number is determined by the number of training images and the batch size. Different
batch sizes were attempted and larger batch sizes gave superior performance. In the results
presented below, a batch size of 420 was used.

During training, the weights for the ResNet are fixed since it is trained on Ima-
geNet. The training images are input to the pretrained ResNet to provide the feature
maps f mp3_3, f mp4_3, and f mp4 = 5_3. Then, f mp5_3 is fed into the RPN network
for training to obtain the proposal box, pbox, and the weights for the RPN network are
updated accordingly. The maps f mp3_3, f mp4_3, f mp5_3, and pbox are fed into the ROI
network to extract the feature maps and the proposal box, respectively. The maps and
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bounding box are then concatenated to obtain the final feature map named pbox_ f map,
which will be input to the fully connected layers.

Algorithm 1. Enhanced Faster RCNN (EFRCNN)

Input: (epoch, iterations, image)
Output: trained EFRCNN
1: procedure EFRCNN(epoch,image)
2: for i = 1 to epoch do
3: for j = 1 to iterations do
4: fmp3_3, fmp4_3, fmp5_3 = pretrained_ResNet(training image)
5: pbox = transfer_learning(fmp5_3)
6: update weights_RPN
7: pbox_fmap= transfer_learning(fmp3_3, fmp4_3, fmp5_3, pbox)
8: transfer_learning of classification and bounding box regression layers)
9: update weights_FC, weights_regL, weights_clsL
10: calculate loss function Loss
11: update weights using BP algorithm
12: end for
13: if Loss<criterion
14: save weights of EFRCNN w
15: end for
16: return w
17: end procedure

The softmax classifier and bounding box regression layers are used to conduct the
final classification and regression. After training on all of the images, the loss function is
used to compute the loss in the classification and box location and subsequently, the BP
algorithm is used to update the weights of the FC layer, the softmax classifier, and the
bounding box regression layer. The weights of the EFRCNN will be saved if the loss meets
the criterion. The training process runs until it reaches the max epoch or the loss fails to
further improve, at which point the weights are saved. The trained model is tested on the
test dataset.

3. Results and Discussion

The proposed EFRCNN was evaluated on the test dataset and another three high-
resolution images. For the test dataset, the EFRCNN model was first trained on the training
dataset and then used to detect each image in the test set. For the high-resolution image,
the detection process is illustrated in Figure 6. Firstly, the image is divided into sub-images,
with some being the same size as the training image and others being smaller than the
training image. The trained EFRCNN is then used to detect the trees in the sub-image.
Finally, the detection results for all the sub-images are combined to yield the final result.
The EFRCNN required approximately 1200 epochs for training.
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In order to evaluate the performance of the proposed EFRCNN approach, the results
are compared to the LeNet CNN method used by Mubin et al. [15], the traditional support
vector machine (SVM) with a linear kernel and the template match (TM) method [30,31],
and the original FRCNN method [21]. The CNN LeNet contains four convolutional layers
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with kernel size 5 × 5, max-pooling layers with a pool size of 2 × 2 and dropout layers
with a rate of 0.5. The ReLU activation function is used. For training, the Adaptive Moment
Estimation (Adam) method was used. The mini batch size is 20 during the training. The
training image has a size of 80 × 80 pixels, which contains two categories called oil palm
tree and background. The training dataset includes 1930 positive samples with an oil palm
tree in the image and 2062 negative samples.

For the SVM, part of the original image is cropped into small sub-images of 80 × 80 pixels
because a single mature palm tree occupies at most 80 × 80 pixels. The cropped images
are classified as either oil palm tree or background. A total of 3883 samples were cropped,
including 1890 positive samples with an oil palm tree in the image and 1993 negative
samples with background. These samples formed the training dataset. Figure 7 shows the
training samples of oil palm trees and backgrround.
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For the TM method, the 1890 positive samples were used as the template dataset, along
with a sliding window of 40 × 40 pixels. The CV_TM_SQDIFF_NORMED from OpenCV
(https://opencv.org/ (accessed on 6 March 2019)) was used as the matching approach,
which calculates the sum of the difference between the intensities in the sliding window
and the template data at each pixel, and normalizes by the product of the sum of squares
of the intensities in the window and template. After performing TM, the proposals were
filtered using non-maximum suppression (NMS) to obtain the final detection result [32].

In this study, we use precision, recall, and overall accuracy (OA) to evaluate the
performance of the different methods:

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

OA =
Precision + Recall

2
(12)

in which TP denotes the number of oil palm trees that were correctly detected, FP is the
number incorrectly detected, and FN is the number not detected.

Table 1 gives the detection accuracies of the EFRCNN, CNN, SVM, TM, and FRCNN
on the test dataset. The oil palm trees in the testing dataset are manually counted and there
are 2640 oil palm trees in total. In this study, the manually counted results are considered
as the ground truth. The proposed model detected 2650 oil palm trees. Of these, 2582 were
correctly detected, while 68 were false positives, and 58 palm trees were not detected.

https://opencv.org/
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Table 1. Accuracy comparison on the testing dataset.

Method TP FP FN Precision Recall Overall Accuracy

SVM 1990 350 650 85.0% 75.6% 80.3%
TM 1852 386 788 82.8% 70.2% 76.5%

CNN 2548 86 92 96.7% 96.5% 96.6%
FRCNN 2554 76 86 97.1% 96.7% 96.9%

EFRCNN 2582 68 58 97.4% 97.8% 97.6%

The precision, recall, and overall accuracy using the EFRCNN on the test dataset
were 97.4%, 97.8%, and 97.6%, respectively, which shows the proposed model achieves a
very high accuracy. The comparison in Table 1 shows that the proposed EFRCNN model
outperforms SVM and TM by a wide margin in terms of both precision and recall; the
overall accuracy is more than 17 percentage points higher than the next best method. The
overall accuracy for CNN at 96.6% is also high, but 1.0% less than EFRCNN. The overall
accuracy for FRCNN is at 96.9%, but 0.7% less than EFRCNN.

Table 2 shows the detection accuracy comparison on the region with mature oil palm
trees in Figure 8a. It can be seen that the EFRCNN achieves the highest precision and
it outperforms the other methods with an overall accuracy at 96.9%, while the overall
accuracy for the traditional SVM and TM methods are less than 83%. Table 3 shows the
accuracy comparison on the region with young oil palm trees in Figure 8b, where the overall
accuracy for the proposed model is more than 96%, while the traditional methods are less
than 75% in overall accuracy. The performance of these methods in terms of precision and
recall is particularly poor. The performance of the CNN and FRCNN also remains high in
all of the performance measures, although they are slightly lower than that of EFRCNN.

Table 2. Accuracy comparison on mature palm tree region.

Method TP FP FN Precision Recall Overall Accuracy

SVM 464 50 154 90.3% 75.1% 82.7%
TM 446 84 172 84.2% 72.2% 78.2%

CNN 589 24 29 96.1% 95.3% 95.7%
FRCNN 590 20 28 96.7% 95.5% 96.1%

EFRCNN 595 15 23 97.5% 96.3% 96.9%

Table 3. Accuracy comparison on young palm tree region.

Method TP FP FN Precision Recall Overall Accuracy

SVM 396 58 237 87.2% 62.6% 74.9%
TM 426 92 207 82.2% 67.3% 74.8%

CNN 598 25 35 96.0% 94.5% 95.3%
FRCNN 604 23 29 96.3% 95.4% 95.9%

EFRCNN 611 18 22 97.1% 96.5% 96.8%

The methods were also evaluated on three regions with different sizes of oil palm
trees: mature palm trees, young palm trees, and mixed-age palm trees. The images have a
size of 3600 × 2000 pixels, cropped from the original high-resolution drone image. For the
EFRCNN, the high-resolution image is split into sub-images with a resolution of 500 × 600,
which is the same size as the training data. The trained EFRCNN model was used to detect
oil palm trees in each image.

Table 4 shows the accuracy comparison on the mixed oil palm trees image shown
in Figure 8c. These numbers are consistent with the preceding results, in that EFRCNN,
FRCNN, and CNN are far superior to the SVM and TM, with the EFRCNN exhibiting a
slightly better performance over FRCNN and CNN.
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The detection results in Table 4 shows that the overall accuracy for the proposed
EFRCNN in the mixed palm tree image is slightly higher than those for the mature and
young palm tree images. The sizes and distributions of the oil palm trees are different in
the three test images. As seen in Figure 8a containing mature oil palm trees, some trees
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are overlapping with other vegetation. In Figure 8b showing young palm trees, in some
regions, the trees are distributed sparsely. The detection results show that even under these
challenging conditions, our proposed method and the CNN and FRCNN perform extremely
well, although the EFRCNN has a 1.5% and 0.9% higher overall accuracy, respectively.

Table 4. Accuracy comparison on mixed palm tree region.

Method TP FP FN Precision Recall Overall Accuracy

SVM 568 85 298 87.0% 65.6% 76.3%
TM 594 126 272 82.5% 68.6% 75.6%

CNN 836 43 30 95.1% 96.5% 95.8%
FRCNN 823 22 43 97.4% 95.0% 96.2%

EFRCNN 833 16 33 98.1% 96.2% 97.2%

Figure 9 shows the detection results for several kinds of palm tree images. The red
box indicates that the oil palm tree is detected correctly with a confidence score. The
blue box indicates that the palm tree is incorrectly detected, which shows that the other
vegetation is detected as an oil palm tree. The yellow box indicates that the palm tree is not
detected. The detection results show that all the mature palm trees and young palm trees
were correctly detected. The mature palm trees’ confidence score is more than 0.99, while
the young palm trees’ confidence score is more than 0.59. One young oil palm tree was not
detected in the mixed palm tree images and other vegetation was detected as oil palm trees
in Figure 9d. The detection results of the samples show that most of the oil palm trees can
be correctly detected.
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4. Conclusions

The oil palm industry is important for the development of agriculture in Malaysia.
Precision farming can effectively improve the efficiency of the crop product. This study
proposes a deep learning method based on an Enhanced Faster RCNN model for automati-
cally detecting and counting oil palm trees from drone images. The original Faster RCNN
is improved by using a high-level and low-level feature concatenation approach so that
objects of different sizes can be better detected. The performance improvement compared
to the classical SVM and template matching methods is substantial. The latter two methods
are shown to be inadequate for the present application. The accuracy compared to the
CNN and FRCNN is small but nontrivial (on the order of 25 more trees correctly counted in
this study). For large-scale plantations, the proposed method would automatically assess
the number of trees and it would present a significant advantage for sustainable oil palm
resource assessment.
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