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Abstract: A novel hybrid model is proposed to improve the accuracy of ultra-short-term wind speed
prediction by combining the improved complete ensemble empirical mode decomposition with
adaptive noise (ICEEMDAN), the sample entropy (SE), optimized recurrent broad learning system
(ORBLS), and broadened temporal convolutional network (BTCN). First, ICEEMDAN is introduced
to smooth the nonlinear part of the wind speed data by decomposing the raw wind speed data into a
series of sequences. Second, SE is applied to quantitatively assess the complexity of each sequence.
All sequences are divided into simple sequence set and complex sequence set based on the values
of SE. Third, based on the typical broad learning system (BLS), we propose ORBLS with cyclically
connected enhancement nodes, which can better capture the dynamic characteristics of the wind. The
improved particle swarm optimization (PSO) is used to optimize the hyper-parameters of ORBLS.
Fourth, we propose BTCN by adding a dilated causal convolution layer in parallel to each residual
block, which can effectively alleviate the local information loss of the temporal convolutional network
(TCN) in case of insufficient time series data. Note that ORBLS and BTCN can effectively predict the
simple and complex sequences, respectively. To validate the performance of the proposed model,
we conducted three predictive experiments on four data sets. The experimental results show that
our model obtains the best predictive results on all evaluation metrics, which fully demonstrates the
accuracy and robustness of the proposed model.

Keywords: wind speed forecast; optimized recurrent BLS; broadened TCN; data preprocessing

1. Introduction

With the increasing global energy problems, wind energy is becoming one of the
renewable energy sources of interest. However, the intermittent and fluctuating nature of
the wind can make the power supply from wind power systems unstable. For example, a
10% difference in wind speed can produce a deviation of around 30% in wind power gener-
ation [1], which significantly affects the utilization of wind energy. Accurate short-term
wind energy forecasts are essential to improving the reliability of wind power systems [2].
Wind speed forecasting is an important component of wind energy forecasting. To improve
the efficiency of power systems and increase the utilization of wind energy, it is necessary
to develop accurate short-term WSP models.

Wind speed forecasts can be classified into ultra-short-term forecasts (few minutes
to one hour ahead), short-term forecasts (one hour to several hours ahead), mid-term
forecasts (several hours to one week ahead), and long-term forecasts (one week to one year
ahead) based on the forecast scale [3]. Currently, existing WSP models can be classified into
physical models, statistical models, AI-based models, and hybrid models.
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Physical models combine many physical factors such as terrain information, density,
and temperature for WSP. It requires not only rich meteorological data but also physical con-
ditions of data and wind field locations [4]. For example, numerical weather prediction [5]
is a typical physical model. Physical methods are effective and accurate for long-term
forecasting, but they are computationally intensive and costly for short-term forecasting.

Statistical models are simple in structure and fast in computation compared to phys-
ical models. There are widely used linear models such as the autoregressive model [6],
autoregressive moving average [7], ARIMA [8], and Bayesian model [9]. Statistical models
have better prediction results for the linear part of the wind speed series. However, the
actual wind speed series usually exhibit prominent nonlinear and non-smooth properties,
when statistical models may obtain undesirable prediction results [10].

AI-based models make good use of the ability of AI to capture the nonlinear features of
the data. Wind speed prediction using BP neural networks [11], SVR [12], and fuzzy neural
networks [13] have obtained good results. However, these models may have problems
such as slow convergence rate and tend to fall into local minimization. Compared with
shallow models, deep learning can accurately extract abstract features and potentially
invariant architectures in the data. Therefore, to further improve the learning ability and
prediction ability of prediction models, deep learning was introduced into WSP, such as
ELM [14], deep belief network [15], CNN [16], graph neural network [17], LSTM neural
networks [18], etc.

Hybrid models have become a trend in WSP in recent years. Hybrid models combine
the different advantages of multiple techniques for prediction, which can carefully explore
the features in wind speed data and effectively ensure prediction accuracy. Hybrid models
can be broadly classified into the following four types:

(1) Hybrid models based on signal decomposition. Advanced signal decomposition
techniques are used to decompose wind sequences into a series of regular subse-
quences to smooth out the non-linear parts of the data. Wang et al. [11] proposed two
WSP models, the EMD-based model and the EEMD-based model, and demonstrated
experimentally that the EEMD-based model outperformed the EMD-based model. To
solve the noise residuals problem of EEMD, Wang et al. [19] used CEEMD for WSP
and obtained more satisfactory results. Ren et al. [20] experimentally demonstrated
that the CEEMDAN-based model always performs best compared to the EMD-based
model. Aside from EMD and its variants [3], wavelet transform [21,22] and VMD
decomposition [23] are also common signal decomposition techniques in WSP.

(2) Hybrid model based on weight assignment. This hybrid model typically uses multiple
models to predict wind speed and assigns appropriate weights to each model. The
final predicted values are obtained from a weighted combination of the predicted
values of each model. To mitigate the adverse effects of multicollinearity of hybrid
models, Jiang et al. [24] used GMDH to automatically identify the weights of three
nonlinear models. The experimental results show that the application of GMDH
can significantly improve the predictive power compared to the widely used equal-
weighting scheme. Aytaç Altan et al. [25] used the gray wolf optimization algorithm
to optimize the weighting of each IMF to create the optimal prediction model. Nie
et al. [26] proposed a weight combination mechanism based on a multi-objective opti-
mization algorithm, which further improved the prediction accuracy and predictive
power of the model.

(3) Hybrid model based on optimization algorithms. The model introduces some heuristic
optimization algorithms to optimize the hyperparameters, weights, network structure,
or thresholds of the model. Liu et al. [27] used Jaya to optimize the hyperparameters
of SVM, which improved the SVM regression performance and effectively improved
the prediction accuracy. Tian et al. [28] used PSO to optimize the weight coefficients
of each prediction model, and the experimental results proved the necessity of the
weight coefficient optimization strategy. Liu et al. [29] used GA to optimize the
internal parameters of LSTM, thus improving the prediction efficiency and prediction
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accuracy of the model. Huang et al. [30] used the modified Bayesian optimization
algorithm to optimize the hyperparameters of the prediction model and obtained
more satisfactory forecasting precision and computation cost. To obtain the best
network structure and weights, Liu et al. [31] combined GA and PSO to optimize
the CNN prediction model and effectively addressed the problem of poor prediction
performance due to wind volatility.

(4) Hybrid model based on error correction. Error correction is a post-processing tech-
nique for WSP, which predicts the residuals and superimposes the results on the
original prediction to obtain the corrected final prediction. Duan et al. [32] used
ICEEMDAN to decompose the errors, and the experimental results showed that the
error decomposition correction method can significantly improve the prediction ac-
curacy. Liu et al. [33] proposed an adaptive multiple error correction method, which
makes full use of the deeper predictable components and effectively improves the
reliability and accuracy of the model. Zhang et al. [34] demonstrated experimentally
that the final predictions corrected by Markov chains are closer to the original wind
field data, which proves the effectiveness of Markov chains.

Although the above WSP models have obtained promising prediction performance,
they still have some problems that need to be further improved. For instance, the linear
model [6–9] in statistical methods is difficult to extract the deep-level features of wind speed
data well. AI-based models involving deep neural networks [15] cause huge computational
costs. Hybrid methods based on weighting strategy [24] may have the problem of multi-
collinearity, which reduces the prediction accuracy. The performance of hybrid methods
based on parameter optimization [27,28] is largely influenced by the understanding of the
researcher of the optimization algorithm.

To deal with the above issues, we propose a new hybrid model for ultra-short-term
WSP. First, ICEEMDAN decomposes the raw wind speed data into a series of sequences to
smooth the nonlinear part of the wind speed data. Second, SE is applied to quantitatively
assess the complexity of each sequence. All sequences are divided into simple sequence
set and complex sequence set based on the values of SE. Third, the ORBLS is designed
to predict the simple subsequence set, and the BTCN is designed to predict the complex
subsequence set. This prediction relationship is based on the ability of the prediction
network to match the sequence complexity, which was confirmed in the experimental
results. Finally, the prediction values of all subsequences are summed up to obtain the final
prediction results.

The contributions and innovations of this research are as follows:

• A novel hybrid model is proposed for ultra-short-term WSP, which quantitatively
assesses the complexity of wind speed series by SE and builds different prediction
models for different subseries with different complexity separately.

• The proposed ORBLS has cyclically connected enhancement nodes that can better
capture the dynamic characteristics of the wind speed sequence, and the improved
PSO is used to optimize the hyperparameters of ORBLS.

• The proposed BTCN adds a dilated causal convolution layer in parallel to each residual
block, which alleviates the problem of massive local information loss from dilated
causal convolution.

• The ICEEMDAN is introduced to smooth the nonlinear part of the wind speed data,
which further improves the forecasting performance.

• Four wind speed datasets are used to comprehensively evaluate the effectiveness and
robustness of the proposed model.

The rest of this article is organized as follows. The Section 2 introduces the model
framework and methods involved in this article in detail. In the Section 3, the experimental
cases and prediction results are elaborated in detail, which verifies the validity of the
proposed model. The conclusions are presented in the Section 4.
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2. Materials and Methods
2.1. Overall Framework of the Proposed Model

Since the wind is stochastic and volatile, the traditional single model does not predict
well. A novel hybrid model is proposed to improve the accuracy of ultra-short-term wind
speed prediction by combining ICEEMDAN, sample entropy (SE), ORBLS, and BTCN.
Note that the proposed ORBLS has cyclically connected enhancement nodes compared to
the typical BLS, and the improved PSO is used to optimize the hyper-parameters of ORBLS.
Notably, in the proposed BTCN, a dilated causal convolution layer is added in parallel to
each residual block to alleviate the local information loss.

The overall model framework diagram is shown in Figure 1. First, ICEEMDAN is
introduced to decompose the wind speed series into multiple subseries to reduce the
noise in the original wind sequence. Second, SE is applied to quantitatively assess the
complexity of each sequence. All sequences are divided into simple sequence set and
complex sequence set based on the values of SE. Third, the ORBLS is designed to predict
the simple subsequence set, and the BTCN is designed to predict the complex subsequence
set. This prediction relationship is based on the ability of the prediction network to match
the sequence complexity, which was confirmed in the experimental results. Finally, the
prediction values of all subsequences are summed up to obtain the final prediction results.
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2.2. ICEEMDAN Model

Due to the high volatility of the wind speed series, ICEEMDAN [35] is introduced to
smooth the wind speed data. ICEEMDAN decomposes a signal into some intrinsic mode
functions or modes.

The original wind speed series is defined as X(n). Randomly generate white noises
wi(n), i = 1, 2, . . . I with µ = 0 and σ2 = 1 where µ is the average value and σ2 is the
variance. Define an operator E{∗} which generates the IMFs by EMD and an operator
M{∗} which denotes the local mean of the generated signal. Specific steps are as follows.

Step 1: Add wi(n) to the X(n) and calculate by EMD the local means of I realizations
xi(n) = X(n) + β0E

{
wi(n)

}
. The first-order residue is computed as follows:

r1(n) =
∣∣∣M{xi(n)

}∣∣∣ (1)

Step 2: Calculate the first modal component:

d1(n) = X(n)− r1(n) (2)

Step 3: Add white noise wi(n) again and a second set of residuals r2(n) = r1(n) +
β1E

{
wi(n)

}
is calculated by local mean decomposition. Define the second modal compo-

nent:
d2(n) = r1(n)−

∣∣∣M{r1(n) + β1E
{

wi(n)
}}∣∣∣ (3)

Step 4: For k = 3, 4, . . . K, compute the kth residual and modal components:

rk(n) =
∣∣∣M{rk−1(n)− βk−1E

{
wi(n)

}}∣∣∣ (4)

dk(n) = rk−1(n)− rk(n) (5)

Step 5: Go to step 4 for next k.
Throughout the implementation process, the coefficients β0 = ε0std(r0(n))/ std

(
E
{

wi(n)
})

and βk = ε0std(rk(n)), j ≥ 1 are chosen to obtain a desired signal-to-noise ratio between
the added noise and the residue, and ε0 indicates the reciprocal of the desired signal-to-
noise ratio between the k signals. The subsequence ˇIMFk(n) obtained after decomposition
is dk(n).

2.3. Sample Entropy

Sample entropy [36] is a quantitative description of the complexity of time series. The
larger the SE value, the lower the autocorrelation of the series and the higher its complexity.
The specific steps are as follows.

Step 1: Reconstruct the sequence x(n) = {x1, x2, x3, . . . xN} as an m-dimensional
vector as follows:

Xm(j) =
[
Xj+1, Xj+2, Xj+3, . . . Xj+m−1

]
(6)

Step 2: For 1 ≤ j ≤ N − m + 1, j 6= k, define the D〈Xm(j), Xm(k)〉 as the biggest
distance between Xm(j), and Xm(k) as follows:

D〈Xm(j), Xm(k)〉 = max
{∣∣Xj+w − Xk+w

∣∣} (7)

where w = 0, 1, 2, . . . m− 1.
Step 3: Count the sum number of D〈Xm(j), Xm(k)〉 < r, for every j value and obtain

Bm
j (r) by calculating the ratio with N−m+ 1. Calculate the mean for Bm

j (r) to obtain Bm(r).

Bm
j (r) =

num{D〈Xm(j), Xm(k)〉 < r}
N −m

(8)
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Bm(r) =
∑N−m+1

j=1 Bm
j (r)

N −m + 1
(9)

Step 4: Update the m as m + 1 and repeat steps 1–3 then get the mean value of Bm+1(r).
The sample entropy can be expressed as follows:

SE(m, r) = lim
n→∞

{
−In

(
Bm+1(r)

Bm(r)

)}
(10)

When N = ∞, the estimated result can be obtained:

SE(m, r, N) = −In
(

Bm+1(r)
Bm(r)

)
(11)

2.4. ORBLS Model

We designed ORBLS as one of the models to predict simple subsequence set. Compared
to the conventional BLS [37], the proposed ORBLS has cyclically connected enhancement
nodes, which can better capture the dynamic features of the time series. Moreover, the
improved PSO in ORBLS is used to optimize the correlation weights. The following is the
detailed process of the ORBLS algorithm.

Define the input wind speed series X(n) and n feature mappings ϕi. The ith mapped
feature Zi is defined as follows:

Zi = ϕi(X(n)Wei + βei), i = 1, 2, . . . n (12)

where Wei and βei represent random weights with the proper dimensions.
The feature nodes are denoted as Zn , [Z1, Z2 . . . Zn], where the symbol , means

“noted as”. We collect Zi into Zn, which is further input to the enhancement nodes Hj.
As shown in Figure 2, the enhancement nodes Hj are connected by a loop to form a

cyclic structure, which processes the input sequence of one element at a time. Unlike the
original BLS, the definition of Hj in ORBLS is as follows:

Hj = ψj

(
∂1ZiWhj + βhj + ∂2Hj−1Wmj

)
, j = 1, 2, . . . m (13)

where Whj, Wmj, and βhj are random weights. When j = 0, H0 = 0. The activation function
ψj is typically chosen as the tansig function. ∂1 and ∂2 are parameters that balance the effect
of the two components.
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Let Hm , [H1, H2 . . . Hm], then the output of the ORBLS can be denoted as:

Y = {Zn|Hm}Wn
m (14)
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where the Wn
m is the final target weight needed by ORBLS and is obtained through the ridge

regression algorithm, that is, Wn
m , {Zn|Hm}+Y.

Let {M} = {Zn|Hm} then {Zn|Hm}+ can be expressed as follows:

{Zn|Hm}+ = lim
λ→0

{
λI + {M}{M}T

}−1
{M}T (15)

where λ is l2 regularization.
However, due to the recurrent connections in the enhancement nodes, incremental

learning in ORBLS is too complicated to be feasible. Inspired by the idea of parameter
optimization, the improved PSO [38] is introduced to find the parameters of ORBLS:
{NF, NW, NE}, instead of incremental learning.

Randomly generate n particles with their dimensions of three dimensions corre-
spond to the three parameters of ORBLS {NF, NW, NE}. Initialize the particle position
xid ∈ (1, 100) and speed vid ∈ (−1, 1). Determine the value of each parameter, such as
c1 = c2 = 1.5, wmax = 1.0, wmin = 0.4, and itermax = 100, where c1 and c2 are learning
factors, wmax and wmin are inertia weights, and itermax is the maximum number of iterations.

When the iteration of IPSO is consistently performed, the position and speed of the
particles are continually updated through the following formula:

vid = wvid + c1r1(pid − xid) + c2r2

(
pgd − xgd

)
(16)

xid = xid + γvid (17)

where γ is the velocity coefficient; the value of inertia weight w is w = wmax − (wmax − wmin)×
1/iter. When reaching the maximum iterative number itermax, the iteration is stopped and
the best value of {NF, NW, NE} can be obtained.

2.5. BTCN Model

We designed the BTCN as one of the models to predict the complex subsequence set.
TCN [39] has powerful feature extraction capabilities and is well suited for processing time
series. To alleviate the problem of loss of information of TCN, this paper proposes BTCN,
where an expanded causal convolution layer is added in parallel to each residual block.

BTCN satisfies two principles: (1) the generated output is of the same length as the
input; (2) the information cannot leak from the future to the past. BTCN mainly consists of
dilated causal convolution and improved stacked residual blocks, where the former is used
for historical information extraction and the latter is used for network architecture building
of BTCN.

The first layer of BTCN is a one-dimensional fully convolutional network, and zero
adding of length (kernel size 1) is added to keep subsequent layers the same length.
Therefore, the hidden layer and the input layer of BTCN have the same length, which in
turn satisfies principle (1). To satisfy principle (2), BTCN uses causal convolution. Let{

x1, x2, . . . , xt} be the input, then the causal convolution is described as:

p(x) = ∏T
t=1 p

(
xt
∣∣∣x1, x2, . . . , xt

)
(18)

To increase the receptive field, the dilated convolution is introduced into the causal
convolution, which leads to the dilated causal convolution. Dilated causal convolution
increases the receptive field by increasing the number of layers and parameters of the
network. The relationship between the receptive field of the dilated causal convolution and
the causal convolution is formulated as follows:

h̃v = (d− v)× (hv − v) + hv (19)
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where d denotes the dilated rate, and hv and h̃v are the receptive field sizes of the causal
convolution and the dilated causal convolution in the vth layer, respectively. The receptive
field of the latter layer is closely related to the receptive field of the former layer as follows:

wv = wv−1 + (hv − 1)× lv−1

= wv−1 −
[(

h̃v − 1
)
×∏V−1

v=1 Sv

] (20)

where wv and wv−1 are the sizes of the receptive field at layer v and v− 1, respectively. Sv
is the stride at layer v(v = 1, 2, . . . , V − 1).

Considering the problem of gradient decay during training, the residual connection is
introduced in the output layer of TCN. The residual block applied in TCN consists of two
layers of dilated causal convolution.

In order to alleviate the problem of massive local information loss in the dilated causal
convolution, BTCN improves the residual block. As shown in Figure 3, BTCN adds a
dilated causal convolution layer in parallel within each residual block. In residual block,
the output o of transformation R(x) is added to the input x as follows:

o = Activation|x + R1(x) + R2(x)| (21)

where Activation|·| is activation function.
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Finally, the output of these two parallel causal convolutions is added to the input
after 1× 1 convolution operation, and the function of 1× 1 convolution is used to ensure a
uniform tensor shape.

2.6. The Prediction Steps

In this paper, we propose a novel model for ultra-short-term wind speed prediction.
First, we use ICEEMDAN to decompose the original wind sequence X(n) = {x1, x2, . . . xn}
into multiple subseries ˇIMFk(n), k = 1, 2, . . . , 11. It should be noted that ICEEMDAN
adaptively determines the number of decomposed subsequences based on the size and
volatility of the data. The sample entropy SE(m, r) is then calculated for each sequence.
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The higher the SE value, the lower the autocorrelation of the series and the higher the
complexity. We sort all sequences according to the sample entropy value from small to
large, and take the first five sequences to form a complex subsequence set, and the rest are
simple subsequence sets.

Then, the ORBLS prediction network is used to predict a set of simple subsequences,
where PSO is used to optimize the hyper-parameters {NF, NW, NE} of ORBLS. The BTCN
prediction network is designed to make predictions on complex subsets of sequences. It is
worth noting that this predictive relationship, i.e., ORBLS predicts the simple subsequence
set and BTCN predicts the complex subsequence set, is determined by matching the
predictive power of the network with the complexity of the sequence set. Subsequent
experiments confirmed this fact. Finally, the predicted values of all subsequences are
superimposed to obtain the final predicted wind speed: Y(n) = {y1, y2, . . . yn}.

The entire steps of the proposed predictive framework are as follows:
Step 1: ICEEMDAN is used to decompose the raw wind speed data {x1, x2, . . . xn}

into a series of subseries ˇIMFk(n), k = 1, 2, . . . , 11.
Step 2: Calculate the SE value of each ˇIMFk(n).
Step 3: Sort the ˇIMFk(n) by SE value from largest to smallest and take the top five

ˇIMFk(n) to form a complex sequence set. The rest are classified as the simple sequence set.
Step 4: Build ORBLS model to predict simple sequence set and build BTCN model to

predict complex sequence set.
Step 5: The final forecasted results can be obtained by stacking all forecasted values.
To show the working principle of the model more clearly, we list the specific steps in

Algorithm 1.

Algorithm 1: The proposed predictive framework for WSP

Input:
X(n) = {x1, x2, . . . xn}
np = 40, ep = 50, itermax = 100.
Output:
Y(n) = {y1, y2, . . . yi}
Process:
1: for k = 1:K
2: get ˇIMFk(n) by Equation (5)
3: get SEk by Equation (10)
4: end
5: //ORBLS algorithm main steps
6: for i = 1:n do
7: Calculate Zi = ϕi(X(n)Wei + βei)
8: end
9: Obtain the final Zn

10: for j = 1:n do
11: Calculate Hj = ψj

(
s1ZiWhj + βhj + s2Hj−1Wmj

)
12: end
13: Obtain the final Hm

14: Calculate connecting weights: Wn
m , {Zn|Hm}+Y

15: Obtain the Y = {Zn|Hm}Wn
m

16: //BTCN algorithm main steps
17: Calculate causal convolution ∏T

t=1 p
(

xt
∣∣x1, x2, . . . , xt)

18: Increase the receptive field: h̃v = (d− v)× (hv − v) + hv

19: Update the receptive field: wv = wv−1 −
[(

h̃v − 1
)
×∏V−1

v=1 Sv

]
20: Calculate basic block o = Activation|x + R(x)|
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3. Case Analysis
3.1. Data Description

To demonstrate the predictive performance of the proposed model in ultra-short-term
WSP, we used four wind speed datasets from four German power companies including
50Hertz-power-company (HER), Amprion-power-company (AMP), TenneTTSO-power-
company (TEN), and TransnetBW-power-company (TRA). Those datasets with 15 min
intervals were collected from 23 August 2019 to 22 September 2019. Each dataset con-
tains 2880 samples. The datasets are freely available at http://www.netztransparenz.de/
(accessed on 20 March 2021).

We perform single-step ultra-short-term WSP experiments with a step length of 15 min.
In our experiments, the first 80% of the wind speed sequence is used as the training set,
and the rest is done as the test set for ultra-short-term wind prediction. Table 1 displays the
information of the four datasets. Experiments are implemented in MATLAB R2021b on a
64-bit personal computer with Intel(R) core i5-9300 CPU/16.00 GB RAM.

Table 1. The statistical information of wind speed data.

Dataset Time-Step
(min)

Mean
(m/s)

Median
(m/s)

Max
(m/s)

Min
(m/s)

Standard
Deviation

(m/s)

HER 15 0.89764 0.65000 5.60000 0 0.88480
AMP 15 0.42297 0.30000 2.06000 0 0.38803
TEN 15 0.84532 0.59420 4.76590 0.01420 0.78575
TRA 15 0.12757 0.07445 0.86230 0 0.14548

3.2. Evaluation Index

To comprehensively evaluate the prediction performance of the proposed model, four
evaluation indicators were given. MAE can accurately reflect the average value of the
absolute error. MAPE divides the absolute error by the corresponding actual value. RMSE
represents the sample standard deviation between the predicted value and the actual
observation value, which has a very sensitive reflection and can well reflect the accuracy of
the prediction. SSE represents the total error of the model. Their definitions are as follows:

MAE =
1
N

N

∑
i=1
|yi − ŷi| (22)

MAPE =
1
N

N

∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣ (23)

RMSE =

√√√√ 1
N

N

∑
i=1

(yi − ŷi)
2 (24)

SSE =
n

∑
j=1

(yi − ŷi)
2 (25)

where ŷi is the predicted value and yi is the actual value.

3.3. Comparable Methods

To verify the effectiveness and advancement of the proposed model, it was compared
with twelve advanced predictive models, involving PSO-ANFIS [40], VMD-GA-BP [41],
EEMD-GPR-LSTM [42], MWS-CE-ENN [19], ICE-MOV-BFS [26], BLS [37], TCN [39], opti-
mized BLS (OBLS), ORBLS, BTCN, ICEEMDAN-ORBLS, and ICEEMDAN-BTCN. Table 2
lists the parameter settings of six comparison methods. BLS, TCN, OBLS, ORBLS, BTCN,

http://www.netztransparenz.de/
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ICEEMDAN-ORBLS, and ICEEMDAN-BTCN are used to perform the ablation experiment
for proposed model.

Table 2. Parameter settings of the models.

Model Parameter Setting

PSO-ANFIS itermax = 300, np = 40, c1 = 1.0, c2 = 2.0, nm = 4, nr = 4, nv = 52
VMD-GA-BP k = 11, itermax = 150, ep = 100, np = 40, lr = 0.1, nb1 = 9

EEMD-GPR-LSTM k = 11, ep = 200, nb1 = 100, nb2 = 100, s1 = 50, σ = 20

MWS-CE-ENN ep = 1000, lr = 0.1, pr = 0.000001, np = 40, ni = 5, nb1 = 6, no = 1,
itermax = 100, nstd = 0.2

ICE-MOV-BFS ep = 100, ni = 3, nb1 = 5, nb2 = 5, no = 3

Proposed Model nstd = 0.01,np = 40, itermax = 100, c1 = 1.5, c2 = 1.5, ep = 50, lr = 0.002,
λ = 10−30, wd = 0.05, n f = 32, ks = 3, d f = [1, 2, 4, 8, 16]

In Table 2, itermax is the iterative number; ep is the number of network iterations; np
is population size; c1 and c2 are personal and global learning coefficients, respectively; nr,
nv, n f ni, and no are the number of rules, variables, filters, input nodes, and output nodes,
respectively; k is decomposition number of VMD/EEMD; nbi is the number of the i-th
hidden nodes; lr is the learning rate of the network; pr is the training requirement accuracy;
wd is the weight of dropout; s1 is the length scale of GPR; σ is the parameter in GPR; nstd is
the noise standard deviation in ICEEMDAN/CEEMDAN; λ is the regularization parameter
for ridge regression, ks is the kernel size of filter, d f is the dilation factor.

3.4. Experimental Results
3.4.1. Experiment I: Comparison between Different Forecasting Methods

We verified the effectiveness and advancement of the proposed model by comparing
it with PSO-ANFIS, VMD-GA-BP, EEMD-GPR-LSTM, MWS-CE-ENN, and ICE-MOV-BFS.
The training and testing processes of each were repeated 10 times for all models. The
average values of the evaluation indicators are listed Table 3, where the best predictions
are highlighted with dark gray backgrounds.

Table 3. Forecasting performances of the proposed model and reference models.

Dataset Metrics Proposed
Model PSO-ANFIS VMD-GA-BP EEMD-GPR-LSTM MWS-CE-ENN ICE-MOV-BFS

HER

RMSE 0.0086 0.0120 0.0137 0.0126 0.0132 0.0097
SSE 0.0317 0.0615 0.0806 0.0676 0.0746 0.0403

MAPE 4.1366 5.1392 5.2415 11.7694 6.1941 4.7523
MAE 0.0053 0.0077 0.0092 0.0089 0.0082 0.0069

AMP

RMSE 0.0147 0.0186 0.0187 0.0296 0.0231 0.0167
SSE 0.0930 0.1481 0.1505 0.3743 0.2284 0.1197

MAPE 4.1848 5.0249 6.3716 5.9358 5.8755 4.6723
MAE 0.0107 0.0133 0.0146 0.0143 0.0127 0.0124

TEN

RMSE 0.0087 0.0107 0.0114 0.0118 0.0129 0.0094
SSE 0.0324 0.0490 0.0558 0.0591 0.1601 0.0378

MAPE 3.5071 4.1562 6.3884 5.4492 5.2321 4.8391
MAE 0.0055 0.0066 0.0083 0.0073 0.0081 0.0069

TRA

RMSE 0.0259 0.0369 0.0357 0.0266 0.0327 0.0264
SSE 0.2879 0.5829 0.5460 0.3029 0.4577 0.2983

MAPE 5.7290 7.9526 8.8673 5.7345 6.3028 5.7326
MAE 0.0183 0.0271 0.0266 0.0197 0.0244 0.0191
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Interestingly, we can find from Table 3 that the proposed model has the best prediction
performance on each of the RMSE, SSE, MAPE, and MAE evaluation indicators of the four
datasets among all models. It is worth noting that even on the most volatile TRA dataset,
our model still outperforms all the benchmark models, which confirms the superiority of
our model.

To visualize the effectiveness of the proposed model in fitting the wind speed series,
we selected one day from each of the four datasets and plotted the predicted versus actual
values of the model as shown in Figure 4. From Figure 4, it can be seen that the proposed
model shows a high fit on all datasets, which reflects the effectiveness of our model.
Moreover, our model fits best on the HER dataset, and the prediction curve is close to the
actual value curve, indicating a good prediction.
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3.4.2. Experiment II: Experiments on Sample Entropy to Quantify Sequence Complexity

We designed ORBLS and BTCN to predict the simple sequence set and complex
sequence set respectively, and to verify their reasonableness, we designed Experiment II.
We use ORBLS to predict the two sequence sets, the simple sequence set and the complex
sequence set, which are divided by sample entropy, and BTCN also predicts these two
sequence sets. The experimental results are shown in Table 4, where all models were
repeatedly trained and tested 10 times. In addition, the SE values of each IMF are plotted
in Figure 5.
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Table 4. Forecasting performances of BTCN and ORBLS.

Model Subsequence Set RMSE SSE MAE

BTCN
high subsequence set 0.0031 0.0042 0.0016
low subsequence set 0.0085 0.0310 0.0009

ORBLS
high subsequence set 0.0036 0.0056 0.0020
low subsequence set 0.0007 0.0002 0.0005
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According to Figure 5, the top five IMFs with the highest SE values are classified
as complex sequence sets; the remaining ones are classified as simple sequence sets. Ac-
cording to Table 4, BTCN predicts better for complex sequence sets compared to simple
sequence sets, and ORBLS predicts the simple sequence set much better than the complex
sequence set.

3.4.3. Experiment III: Ablation Experiment between Single Models and Hybrid Models

To verify the rationality of the proposed model, it was compared with BLS, TCN,
optimized BLS (OBLS), ORBLS, BTCN, ICEEMDAN-ORBLS, and ICEEMDAN-BTCN.
Similarly, all models were repeatedly trained and tested 10 times. The experimental
results are shown in Table 5, where the best predictions are highlighted with dark gray
backgrounds. The forecast results for 22 September 2019 are plotted in Figure 6, which also
shows the forecast errors in superimposed shades.

Table 5. Forecasting performances of the proposed model and reference models.

Model RMSE SSE MAPE (%) MAE

TCN 0.0175 0.1310 8.4706 0.0108
BLS 0.0308 0.4058 6.4823 0.0164
BTCN 0.0149 0.0952 5.6806 0.0091
OBLS 0.0122 0.0642 5.4614 0.0080
ORBLS 0.0117 0.0588 5.0518 0.0075
ICEEMDAN-BTCN 0.0146 0.0916 6.0596 0.0094
ICEEMDAN-ORBLS 0.0091 0.0356 4.6292 0.0061
Proposed 0.0086 0.0317 4.1366 0.0053
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It can be found in Figure 6 that the prediction error of our proposed model is the
smallest and the curve fitting is the closest. According to Table 5, the proposed model is
consistently superior to BLS, TCN, optimized BLS (OBLS), ORBLS, BTCN, ICEEMDAN-
ORBLS, and ICEEMDAN-BTCN. This further proves the advantages of our proposed
model due to its combining ICEEMDAN, ORBLS, and BTCN.

Furthermore, first, compared with ICEEMDAN-ORBLS or ICEEMDAN-BTCN, the
proposed model provides better predictive performance due to combining ORBLS and
BTCN, thus showing the effectiveness of sample entropy. Second, compared with BLS or
OBLS, ORBLS obtains better predictive performance due to cyclic enhancement nodes and
IPSO optimization hyperparameters. Third, BTCN offers better predictive performance
compared to TCN, which proves the advantages of BTCN. Fourth, compared with ORBLS
and BTCN, ORBLS and BTCN based on ICEEMDAN decomposition have better prediction
results, which reflects the importance of decomposition for improving model prediction
performance.

4. Conclusions

In this paper, we propose a novel strategy based on ICEEMDAN, sample entropy,
ORBLS, and BTCN for ultra-short-term WSP. Experimental results show that the proposed
model achieves better performance than the compared advanced predictive models. That
can be attributed to the following several reasons: (1) The proposed model combines
ORBLS and BTCN well for prediction by sample entropy and obtained more satisfactory
forecasting precision. (2) ICEEMDAN decomposes the raw wind sequence to effectively
smooth the nonlinear part of the wind speed data, which enables the model to more
accurately simulate the fluctuations of wind and thus further improve the prediction
performance. (3) ORBLS has cyclically connected enhancement nodes to better capture the
dynamic characteristics of the wind speed sequence. Note that improved PSO replaces
incremental learning to better update the hyper-parameters of ORBLS, which can provide
high-quality sample generation performance; therefore, ORBLS obtains high prediction
accuracy and stability. (4) BTCN adds a dilated causal convolution layer in parallel to each
residual block to alleviate the problem of massive local information loss, which further
improves its predictive performance.

In future work, we will consider the effect of the other variables such as vertical wind
speed, air temperature, spatial location, and turbulent energy transport on the ultra-short-
term wind speed prediction, which may further improve the predictive performance.
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Nomenclature

AI Artificial intelligence
ANFIS Adaptive-network-based fuzzy inference system
ARIMA Autoregressive integrated moving average
BLS Broad learning system
BP Back propagation
BTCN Broadened TCN
CEEMD Complementary ensemble empirical mode decomposition
CEEMDAN Complete ensemble empirical mode decomposition with adaptive noise
CNN Convolutional neural network
EEMD Ensemble empirical mode decomposition
EMD Empirical mode decomposition
ELM Extreme learning machine
GA Genetic algorithm
GMDH Group method of data handling neural network
GPR Gaussian process regression
ICEEMDAN Improved CEEMDAN
IMF Intrinsic mode functions
IOWA Induced ordered weighted averaging
LSTM Long short-term memory
MAE Mean absolute error
MAPE Mean absolute percentage error
PSO Particle swarm optimization
ORBLS Optimized recurrent BLS
RMSE Root mean square error
SE Sample entropy
SSE Sum of squared error
SVM Support vector machine
TCN Temporal convolutional network
VMD Variational mode decomposition
WSP Wind speed prediction
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