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Abstract: Climate neutrality is one of the greatest challenges of our century, and a decarbonised
energy system is a key step towards this goal. To this end, the electricity system is expected to become
more interconnected, digitalised, and flexible by engaging consumers both through microgeneration
and through demand side flexibility. A successful use of these flexibility tools depends widely on the
evaluation of their effects, hence the definition of methods to assess and evaluate them is essential for
their implementation. In order to enable a reliable assessment of the benefits from participating in
demand response, it is necessary to define a reference value (“baseline”) to allow for a fair comparison.
Different methodologies have been investigated, developed, and adopted for estimating the customer
baseline load. The article presents a structured overview of methods for the estimating the customer
baseline load, based on a review of academic literature, existing standardisation efforts, and lessons
from use cases. In particular, the article describes and focuses on the different baseline methods
applied in some European H2020 projects, showing the results achieved in terms of measurement
accuracy and costs in real test cases. The most suitable methodology choice among the several
available depends on many factors. Some of them can be the function of the Demand Response (DR)
service in the system, the broader regulatory framework for DR participation in wholesale markets, or
the DR providers characteristics, and this list is not exclusive. The evaluation shows that the baseline
methodology choice presents a trade-off among complexity, accuracy, and cost.

Keywords: demand response; smart grids; baselines; flexibility: decarbonisation; H2020 projects

1. Introduction

As the Paris Agreement calls for climate neutrality in order to succeed in limiting
global warming, the energy sector needs to continue and accelerate on its path towards
decarbonisation [1]. Renewable energy sources (RES) have established themselves as
the alternative solution to fossil fuels, and their share in the global energy output has
increased markedly. Electricity generated globally by wind and solar energy alone has
gone from 54 TWh in the year 2000 to 1871 TWh in the year 2018 [2]. However, the high
penetration of RES in the electricity sector comes with new challenges for the system due
to the fluctuations associated with the intermittent nature of RES.

However, the creation of liberalised electricity markets and smart electricity systems
assign a significant role to final users, who are encouraged to become more active than
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before [3]. Microgeneration with RES, as well as energy consumption and load management
on the consumers’ side, lead to more engaged participants in the grid. New technologies,
such as smart meters and feedback mechanisms, are opening a series of possibilities for the
users [4,5].

To decarbonise the electric grid, significant changes are needed. The objectives are to
integrate the expected growing share of RES in the electricity generation, to accommodate
more active users, and, at the same time, to continue providing a reliable supply through a
resilient network [6].

Traditional methods to address these changes involve capital investments in the
transmission and distribution system. However, making adjustments on the demand side
alleviates the pressure on the grid, which can lead to investment deferral and lower costs.

The adjustments in electricity demand are carried out through the framework of
Demand Response (DR), or Demand Side Flexibility (DSF). DR refers to programs aiming
at reducing the overall demand peaks and congestion in the network [7]. DR programs aim
to provide incentives to customers, whether industrial, commercial, or residential, to alter
their consumption patterns in ways that alleviate the pressure on the grid. A dedicated
tariff structure or DR program is designed for incentivising electric consumption pattern
changes by end-users in response to changes in electricity price over time. Alternatively,
DR can induce lower electricity demand when grid reliability is jeopardised or when some
markets face high prices [8].

DR is a relevant topic, and several reviews have tackled the subject. For example,
in [9], DR is discussed in the industrial and commercial sectors, along with barriers and
challenges. DR models are presented for such sectors along with barriers and challenges.
In [10], a review is presented on DR programs with a focus on pricing methods and
optimisation algorithms. The control mechanisms of DR, the motivations to decrease power
consumption, and the optimisation models for DR strategies control are presented.

The authors in [11] present a review of DR programs. The work examines factors
influencing the programs (e.g., type of market, reliability, power flexibility, participants’
economic motivation, etc.), benefits, and barriers, and suggests a classification of the cases.
The research examines enabling technologies and practical strategies. A relevant work on
5G IoT technologies applied on DR programs on smart grids is [12]. Its focus ranges from
sensing, communication, and computing areas to smart grid security and reliability.

Ref. [13] presents a review concerning blockchain technologies applied on smart grid
applications, including DR programs.

In the European Union (EU), the role of DR has been recognised and formalised.
The Energy Roadmap to 2050 acknowledges the need for the distribution grid to become
smarter and increase DR to accommodate distributed RES in the system [14]. The 2012
Energy Efficiency Directive (EED) 2012/27/EU, in Article 15, regulated technical and
contractual actions to support DR and included provisions to enable its participation in the
wholesale and balancing markets [15]. Further, Electricity Directive 2019/994/EU amended
EED Article 15 and, in Article 17, specifically addressed the removal of barriers to DR
aggregation [16].

The benefits of DR programs are proven to reduce electricity prices, improve system
stability, and reduce price volatility [17]. The characteristics of DR to provide a cost-effective
flexibility resource [18], release its market potential, and ameliorate system emergencies [19]
has increased the interest in the topic.

Users participating in these programs get rebates for electricity consumption reduction
during DR events. That means that a successful business case for DR depends on a
convincing calculation of the BL and, consequently, of the benefits that participation in
the program provides. We can describe the user’s baseline (BL) as the estimation of the
electricity that would have been consumed in the absence of a DR event. To determine the
demand variation value, the counterfactual BL is compared to the actual metered electricity
consumption during the event [20]. BL calculation can be performed in real-time or after
the event.
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For the real-time calculations, a load forecasting method is applied. This requires
available historic data to be used as input and a fast, reliable computation technique to
process it for short-term predictions [21]. In contrast, when historical data are unavailable,
the calculation is done after the event. The BL is used to verify the performance of the
demand resource and to settle the compensation amount due to its provider [22]. The
power, energy, and financial flows need to be redesigned based on estimated data. Methods
for estimating BL should have a solid scientific basis, and the techniques or algorithms
used for the estimation should deliver reliable and accurate results. Today, the high-
precision techniques enabled by the availability of high computing power makes the rolling
optimisation of load forecasting possible (e.g., deep learning [23], feature engineering [24]).
A reliable BL is key for creating a DR offer in the market, and, without it, it would be
impossible to verify effective load reduction and performance of the demand resource to
settle a fair compensation [25]. Figure 1 is a visual example of the application of a BL.
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There is a documented economic drawback caused by failures in the methods of
BL calculation due to the lack of accuracy to predict customers’ load profiles—both for
residential customers [26,27] and for commercial and industrial facilities [28]. The accuracy
and reliability in the computation of the BL are recognised as a gap or a barrier to the
successful roll-out of DR [10,29] and, because there is no unified method in addressing BL
estimation, there is a call for an overview of best practices [30].

Although there are several reviews in the DR field, there is little with respect to baseline
definition. In [31], the challenges and opportunities of load profiling techniques for DR
are discussed. Focus is given, however, on reviewing the data mining techniques with
respect to technical approaches, such as direct clustering, clustering evaluation criteria, and
customer segmentation. The review examines data mining techniques for load profiling.
To the best of our knowledge, there is no review concerning the methodologies used for
calculating the baseline in today’s context where new computing capabilities meet the
necessity for higher accuracy, and this is the gap that we try to cover in this article and the
key incremental contribution.

This work presents and analyses the methodologies for calculating the BL. We take
into consideration standardisation efforts, business initiatives, and reports, as well as novel
methodologies proposed by articles in the rich literature review. Our study reviews past
research and presents an updated overview and an analysis of existing methodologies
for BL. Best practices for BL calculation are identified, their methods are analysed, and
standardisation efforts are summarised. Additionally, this article presents how baselining
is performed in practical cases, based on real DR use cases. We identified as a literature gap
the collection and analysis of real tests and real application of baseline methodologies in
practice, and, therefore, we reviewed the results of European funded projects for evaluation
of DR. Thus, the present research has a strong focus on European H2020 projects. The
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insight deriving from these examples can guide both policymakers and the scientific
community to address future investigations on this topic.

The text is organised as follows: Section 2 gives an insight on DR fundamentals and
describes DR service providers and flexibility services. Section 3 lists the methods used to
build this review; in other words, it describes the sources that have been considered for
review and the goals of this reviewing procedure. Section 4 reviews the state of the art in
baselining methodologies, including novel proposed methods and standardisation work.
Section 5 analyses some EU smart grid projects employing DR and shows the solutions
chosen for the BL definition in real cases. A discussion of the findings is presented in
Section 6, whereas Section 7 concludes the article, makes recommendations and foresee
limitations of this work and further research. In Appendix A, the interested reader can find
expanded tables regarding the findings.

2. DR Service Providers and Flexibility Services

DR is a mechanism through which the end-user load profile can be controlled, typically
with price signals or by an automated control. The end-users thus offer their flexible
electricity demand as a resource to the system, which is comparable to electricity generation.
Therefore, he can participate on par with electricity supply in the wholesale, balancing, and
ancillary services markets.

In the conventional market model (retailer business model or retail DR), the DR is
procured and under the control of utilities (e.g., distribution utilities, municipality-owned
utilities) [32]. Users can aggregate and pool together their demand-side flexibility either
under the control of the retailer, or, in other market models, through an independent
aggregator. Local electricity markets are other models where DR can be valorised. In the
context of an increasing decentralisation of the electric grid, the connection of decentralised
units (e.g., microgrids) to the wholesale electricity markets is supported by the emergence
of local electricity markets that incentivise the management of resources at lower levels [33].
Current research identifies that flexibility markets and local electricity markets can function
either separately alongside each other or in a hybrid form [34].

DR can be implemented in two modalities. First, the implicit (price-based) DR relies
on consumers reacting to time-varying electricity prices reflecting the value and cost of
electricity in different time periods. The second is the explicit (incentive-driven) DR, where
consumers receive a reward to change their consumption upon request. Explicit DR can
be offered either directly by end-users themselves or by permitting a third party, such as
an aggregator, to collect a portfolio of participants and represent them while benefiting
from scale and managing capabilities inherent to their business [35,36]. Implicit DR has the
advantage of being comparatively easier to implement but cannot participate in as many
markets, whereas explicit DR creates controllable loads that can assist with the local RES
and provides ancillary services to the distribution system [37].

Participation in DR can have both financial and non-financial motivations (e.g., envi-
ronmental considerations), which can be equally influential but need to be sustained by
support strategies in program implementation [38]. From the consumer point of view, in
order to support them to navigate the options in DR (mainly explicit DR), it is useful to
profile load mix and personal preferences, then to identify different contracts to engage
different categories [39]. Consumers should be guaranteed access to reliable information to
limit their confusion of choice [40]. At the consumer level, there are perceived difficulties
of adoption associated with DR due to inertia, unclear policy framework, and investment
costs [41]. That highlights the need for more work to increase its acceptance [42]. Among
the commercial and institutional (C&I) electricity consumers, the concerns relate to interfer-
ence with core processes and product quality [43], which can be addressed with adequate
incentives and clear, simple, and flexible conditions of usage [44].
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2.1. DSO’s and TSO’s Needs

Flexibility services should consider both distribution system operators (DSOs) and
transmission system operators (TSOs) needs. Important characteristics are time frames
(from real-time operation to long-term planning), identification and description of the need
(type of event and possible solutions), etc. Moreover, every service that can meet SO’s
needs has different characteristics: schedule, advanced notice, frequency, response time,
and duration. From [45,46], we show a brief description of needs and flexibility services
definition for DSO (Table 1) and TSO (Table 2).

Table 1. DSO needs and services overview.

DSO Needs Service Provision Description of the Service

Power quality and loss
reduction Phase balancing

Service to maintain the balance of
loads among phases to reduce losses,
increase the distribution network
capacity, reduce the risk of failures,
and improve voltage profiles.

Extreme events’ support

- Islanding
- Blackstart
- Emergency load
- Backup generation

capacity

Services designed to increase the
resiliency of distribution networks for
a quick recovery from extreme events
(driven mainly by natural disasters
and extreme weather, whose
frequency and severity might increase
as a direct impact of climate change).

Network investments’
deferring (1 to 3 year
timeframe)

- Voltage control
(power based)

- Congestion
management
(capacity based)

Services that aim at using flexibility
in the network planning context, to
solve either current or forecasted
physical congestions related to
reduced network capacity (overload
or voltage violation).

Physical congestion
control

Congestion Management:

- Corrective (near
real-time)

- Predictive
(intraday/day
ahead)

- Planning (months
ahead)

Service required whenever
insufficient power is provided to
consumers due to physical limitations
of the network, which can be caused
by excessive power demand hours
(e.g., concentrated EVs charge, power
generation, etc.).

Voltage violations
control

Voltage Control:

- Corrective
(real-time)

- Predictive
(intraday/day
ahead)

- Planning (months
ahead)

Required to maintain voltages within
specific standard limits and restore
their values to the nominal value after
grid disturbances occur. It is used to
minimise reactive power flows,
investments, and technical losses.
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Table 2. Flexibility services for TSO power system operation and planning.

Needs Services Types

Balancing requirements

Frequency response
services

Frequency containment reserves
(FCR)
Automatic frequency restoration
reserve (aFRR)
Manual frequency restoration reserve
(mFRR)
Replacement reserves (RR)
Fast frequency reserves
(FFR)/synthetic inertia

Innovative frequency
response/quality services

Ramp control
Smoothed production
BRP portfolio balancing
Damping of power system
oscillations
Local grid balancing

Congestion management

Intra-regional
Operational/Real-time
Short-term planning
Long-term planning

Cross-border
Re-dispatch
Countertrading

Non-frequency ancillary
services for voltage
control and restoration

Reactive power and
voltage control

Obligatory reactive power service
(ORPS)
Enhanced reactive power service
(ERPS)
Fault-ride through (FRT) capability

System restoration
Black start
Islanding operation

Adequacy requirement Capacity remuneration
mechanisms Strategic reserve

In the following paragraphs, we present analytically several BL methods, as identified
in the literature review.

2.2. The Role of Aggregators

Our paper does not focus on aggregation issues, such as the complexity of aggregated
baselines or the non-equal incentive problem (e.g., the incentive calculated for a group is
not equal to the sum of incentives for single users [47]). For completeness, we present some
basic information about load aggregation.

Aggregation can be described as a function performed by an entity to combine multiple
user loads or generated electricity (i.e., for sale, purchase, or auction in an electricity
market) [16].

Insight regarding the aggregators role on DR has been given in [48]. The report
describes how aggregation can enable the DR participation by smaller users.

Users have to face different issues, which can be listed as:

• Lack of knowledge (both on their own consumption and electricity markets),
• Behaviour influence and engagement,
• Closed markets to small consumers,
• Risks for DR providers (failures are challenging to mitigate).

For these reasons, suppliers and independent aggregators can greatly contribute to
DR development. In particular, there are several examples of markets where independent
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aggregators are regulated and represent the vast majority of DR participants [49,50]. This
form of aggregation is described in [48] to help consumers:

• Offering a fair compensation focusing on electricity consumption services (most sup-
pliers would not engage in services affecting their core business),

• Competing for providing customised services, based on consumer-specific load and
necessities,

• Providing an IT specialised service.

However, independent aggregation is required to undergo national regulation on the
law and sub-law level. Given, in many cases, the administration of electricity as a public or
semi-public good, with infrastructure that needs to interoperate optimally, a more robust
normative framework is required. Aggregation issues are planned to be addressed in future
work, thus no further analysis is made in this paper, also because this would exponentially
expand the volume of this work. For topics cited in this paragraph, the reader can refer to
the future work section.

3. Methods

In this section, we present our review method and the sources of information consid-
ered.

DR is an evolving topic, as well as BL for DR subjects. We investigated the network
of existing literature, its connections, and findings. Because of the vast number of inter-
connections and interdependences among algorithms, methods, and comparative papers,
we decided to proceed with a methodological literature review to provide future direction.
The objective of our contribution is to identify and review the methodologies proposed and
used in practice for BL calculation. We have evaluated:

• Reports from industry associations and consulting firms involved in the research of
BL definition in the field of DR;

• Scientific publications describing novel methodologies for calculating the baseline;
• Standardisation efforts focusing on methodologies for BL calculation;
• Research projects describing the methodologies used in practice for BL calculation.

The objectives were to understand the background of DR status [51], their chal-
lenges [52], and opportunities [53]. With respect to what has been used in practice, we have
taken into consideration research projects realised in recent years. As of 2017, in Europe, a
total of 346 projects investigating DR had been carried out or initiated [54]. Reports and
publications from these sources have been consulted and have led to the identification
of the research gap with respect to the BL calculation [8]. The H2020 projects have been
identified using the Smart Grid Projects Outlook, focusing on projects starting after 2014, of
which 23 address BL categorisation [54].

In strictly addressing the baselining methodologies for DR programs, which are
technical in nature, this study reviews efforts that are not limited to the EU alone. A
chronologic approach reveals that the earliest efforts have examined the implementation
of DR and signalled the need for a reliable BL in the US (California) since 2002 [55].
Standardisation efforts and further studies have been regularly reported in the USA by
public authorities and laboratories after that [29,56–62]. Case studies from the EU and other
countries have been reviewed as they were reported throughout scientific publications in
international journals of Science Direct and IEEE Xplore.

The review effort was carried out to identify the following:

1. The type of the algorithm (mathematical model);
2. How the choice of algorithm is connected with the particularities of the case study;
3. The requirements to enable its implementation;
4. The advantages of the chosen method;
5. The disadvantages or limitations.

In what follows, we analytically present the findings of the aforementioned review
work. Section 4 analytically presents the methodologies for BL calculation as these
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are proposed and described by industry associations and consulting firms’ initiatives
(Section 4.1), by standardisation efforts (Section 4.2), by scientific papers with novel ap-
proaches (Section 4.3). In contrast, BL calculation methods used in practice are considered
in Section 5, where the methods used by research projects are listed.

Results have been summarised in tables for a comparative overview. It is important
to note a difference in scope between studies and reports from regulators and utility
companies on one hand, and scientific projects and papers on the other hand. The point
of view of regulation and the adjustments on the side of utility companies are compelled
to address and accommodate DR from all customers, regardless of their size—whereas
academic research offers stronger insight into residential end-user behaviour. This work
compiles all findings in a non-discriminatory fashion.

4. Overview of BL Calculation Methodologies

The baseline calculation methodology is of vital importance, as it first defines all the
success of DR programs. Such success depends on a credible operational procedure for
determining the magnitude of load reductions, which is reflected in fair compensation for
the participants. Therefore, the reliability of BL calculation methods and corresponding load
variations are essential. The lack of standards and measurement procedures could lead to
scepticism, dissatisfaction, and consequent disengagement of participating customers [63].

In a nutshell, it can be said that BL calculation methods involve two main steps [64]:

1. A rough BL profile. The calculation is based on the decision whether to apply a
day-matching method (average consumption of the same user for similar days in the
past) or a regression analysis (a consumption level predicted from more data points).
Other novel unstandardised methods based on artificial intelligence (AI) are in an
experimental stage. This step includes data selection.

2. An adjustment method to refine the rough first estimation. It is especially needed for
consumption profiles that are weather sensitive.

The calculation is carried out with a computational tool. Given the field of application
and its characteristics, the choice of the algorithm for the computation impacts the outcome
by being more or less accurate.

The number of options available for each step leads to a large number of combinations
in the process, thus the need for an overview and recommendations for a way forward.

In the following, we present the methodologies for BL calculation as found in our
profound literature review, as explained in Section 3.

4.1. Estimation Methods and Practices Focused on Industry Associations and Consulting Firms
Initiatives

In this paragraph, we present the methods for estimating the baseline based on
initiatives from industry associations, consulting firms, or commissions. Figure 2 shows a
timeline of the initiatives selected. We also present the methods developed, which have
been driven by market incentives.

Back in the early 2000s, the US electricity crisis increased the interest in programs
to encourage customers to reduce their peak loads [65]. In the following subsections, we
present the methodologies by each business or industry association initiative.
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4.1.1. California Energy Commission—CEC (2003)

An early analysis of BL methods was carried out for a standardised measurement and
verification (M&V) by CEC as an attempt to systematically explore BL components and
their accuracy [55]. The scope of the study included small- and medium-sized customers
intending to compensate users for reducing their loads on short notice (2 to 24 h). The report
reviews and compares proposed methods for BL estimation based on interval-metering
and identifies three components to each BL method, as summarised in Table 3; in the table,
for each component detected, we give a description and factual examples.

Table 3. Main components of calculation methods used in [55].

Component Description Examples

Data selection criteria Criteria to determine
days/period of data

- last X to Y uncurtailed
business days

- subset of the last business
days with the highest load

- full season of data
- excluding and replacing

days procedure

Estimation method Calculation procedure to
determine provisional BL load

- average
- weather-based regression

Adjustment method Shift or scale due to known
conditions

- unadjusted
- additive
- scalar
- weather-based

The BL methods were tested under various conditions to examine their accuracy. They
were evaluated for:

• The simplicity of calculation,
• Minimising the burden on participants and operators (e.g., costs, ease of understand-

ing, and ease of operation),
• Limiting the potential for gaming, ability to know the BL immediately after a curtail-

ment or before making a curtailment decision,
• Minimising method bias (systematic tendency to over- or under-state),
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• Minimising method variability; significant concerns are related to providing accurate
BLs for weather-sensitive accounts, avoiding windfall credits for cool weather, or
planned shut-downs.

The final recommendation is that the method for BL calculation should provide
alternatives based on customer load types and operating practices. Other specific findings
are listed in Table 4.

Table 4. Load specific recommendation from [55].

Topic Specific Recommendation

Default BL The best and more practical BL is simple average of last 10 days,
with an additive adjustment (two hours prior to event)

Weather-sensitive loads Temperature-Humidity Index (THI) based adjustment is the
most effective, as suggested also by PJM

Weather Regression (WR) vs.
Simple Average (SA)

WR is effective, but increases data requirements; SA with
adjustment results are comparable to WR ones

Highly variable loads High variable loads are challenging despite the BL
methodology chosen

4.1.2. California Public Utilities Commission—CPUC (2008)

Standardisation efforts for measurement and evaluation mechanisms in the DR scenar-
ios were identified as part of the “Load Impact Estimation for Demand Response: Protocols
and Regulatory Guidance”, published by CPUC [66]. To ensure verifiable energy savings,
CPUC established a set of protocols, delineating a list of the minimum requirements for
estimation of load impacts of DR resources, and defined a set of methodologies to de-
termine their cost-effectiveness. The standard baselining method is highlighted as being
the so-called “3-in-10”, which is “based on the hourly average of the three (3) highest
energy usages on the immediate past ten (10) similar days” [56]. Further, arguably more
accurate BL methods considered by CPUC follow the same principle, but for 5-in-10, or
a 10-day-average BL. However, evidence suggests that the 3-day BL estimation method
would lead to overestimation (and thus overpayment) in the demand bidding program,
and the 10-day average method is proposed for a more reliable standard instead [58]. The
study [67] evaluates the “best performing 4-in-5 day” BL method. It shows that the method
is biased, with special reference to spillover (a phenomenon that occurs when customers
perform energy load reductions outside the DR program’s hours).

A standard BL profile (BLP) is then improved with a so-called “Morning-of” adjust-
ment [56]. (In some work, the nomenclature CBL—customer baseline—is used instead of
BLP for the same concept. In this work, we refer to it as BLP.) For this adjustment, various
methods are proposed. The two main categories are: (i) “averaging methods, which use
a linear combination of hourly load values from previous days to predict the load on the
event day”, and (ii) “explicit weather models, which use a formula based on local hourly
temperature to predict the load” [57]. An investigation carried out in 33 C&I buildings
revealed that the use of a morning-of adjustment factor for weather-sensitive C&I buildings
reduces the bias and improves the accuracy of all BLP models examined. Concerning
the evaluation of loads for building with low load variability, all BLP models perform
reasonably well in accuracy. In contrast, for customer accounts with highly variable loads,
no BLP model produced satisfactory results [57].

As for industrial consumers, it can be challenging for companies to follow a BL
development approach that is unsuitable for the organisation’s size, production profile,
culture, or geography. In order to evaluate a customised BLP for a facility, the complexity
and priorities of the site need to be included in the calculation, with parameters such as
business cycle variability, numbers of product lines, and weather-related impact on energy
performance [59].
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The purpose and use of the BLP are exemplified with an evaluation of the impact
of DR. The impact evaluation can, in turn, be carried out through one of three broad
categories—day-matching, regression analysis, and other—each with different require-
ments, as summarised in Table 5:

Table 5. DR impact estimation methods and their application [66].

Method Description Comments

Day-matching

- Difference between a
reference value and the
actual load on an event day

- Relevant days are selected

- Useful for ex post impact estimation
- Can use weather adjustments
- Primary approach for large C&I

customers
- Difficulties estimating uncertainty

adjusted impact estimates

Regression
analysis

- Relies on statistical analysis
to develop a mathematical
model that considers a
range of influencing factors
(e.g., weather variables,
participant characteristics,
etc.)

- Preferred whenever ex ante
estimation is also required

- Robust and flexible
- Requires more skills and it is less

transparent
- Permits one to quantify the

influence of specific characteristics
(e.g., heat build-up, multi-day
events, etc.)

- Should be considered as the default
option for the majority of
applications

Other methods
Include sub-metering,
engineering analysis, duty-cycle
analysis, and experimentation

- Specific conditions (e.g., erratic
consumer behaviour, lack of
variability, data limitations, budget
constraints, etc.)

- Engineering analysis are when
there is no behavioural influence by
the consumers, operational
experimentation, and measurement
or verification activities

- Possible combination with
regression analysis

4.1.3. Cadmus Technical Consulting Group (2008)

An evaluation of predictive accuracy of BL calculation in 92 facilities of C&I, govern-
ment, non-profit, and education (GNE) customers found that regression methods are the
most accurate for 87% of the cases. Upon a closer look, for all the small C&I and GNE
users, it is confirmed to be the right choice, but accuracy in the case of large C&I users is
sufficient only 48% of the time. Regression does not predict well for facilities with highly
variable day-to-day consumption in the hours of the event. There, the best predictor of
consumption is consumption in recent previous days, therefore many large C&I facilities
selected X-of-Y-previous-day baselining methods [60].

4.1.4. KEMA Consultancy Company (2011)

In 2011, KEMA prepared for PJM an analysis for DR options and their adjustments [68].
The aim was to evaluate accuracy, bias, and feasibility, and attempt to associate a user load
with a specific BL method. The analysis is based on data requested from PJM distribution
companies, both program participants and control groups. The duration was over a 28-
month period. Adjustment tested have been additive, multiplicative, and PJM weather
sensitive. The BL methods considered included several average, matching, and regression
methods.
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4.1.5. Australian Energy Market Operator—AEMO (2020)

In 2020, AEMO prepared a report to provide an update to the Australian Renewable
Energy Agency (ARENA) and the industry [69]. The document gives insight into a virtual
power plant (VPP). It describes findings regarding DER load generation forecasting and
network support services, such as frequency control ancillary services (FCAS). Regarding
FCAS, it calculates a BL using power measurement for the last 5 s before frequency excur-
sions. Results suggest an interesting capability of VPP to provide FCAS and react to energy
market price signals.

4.1.6. Work for Southern California Edison

Another interesting work, validated through Southern California Edison’s residential
smart meter data, is [70]. There have been developed three statistical BL methods to forecast
load BL. The first two are the regression spline model and mixed effect change point model,
and they fall within the category of Type II BL (see Table 6 for definitions). The results are
compared with the fixed effect model (a simplified version of the regression spline model)
and Type I BL methodology (based on the estimation on similar day-based algorithm). The
proposed forecasting models produced a more accurate forecast for BL load.

4.1.7. Programs Driven by Market Incentives and Manipulation Risks

Alternatives to statistical and computational BL estimation methods have been ex-
amined based on market incentives, and focus has been given on administrative and
contractual approaches.

The weaknesses that contractual approaches aim to address have to do with the
opportunities to game the system. For example, by using last year’s data for computation,
consumers can be effectively incentivised to inflate their BLs so as to increase the DR
program payment. Considering wholesale markets, work in [71] described how demand
reduction payment can bring to customers BL inflating during normal peak periods and
exaggerate demand reduction during DR events. The suggestions proposed to define the
BL are (i) an aggregate BL approach, (ii) a “contractual baseline in which the marginal
consumption decision is based on the time-varying wholesale rate”, and (iii) an adjustment
of demand reduction compensation with wholesale rate minus the retail rate. Because
the as-called “incentive for manipulation” is undermining DR programs, studies suggest
policymakers consider the threat by modifying DR market rules. As options to consider,
the authors suggest evaluating marginal cost pricing, as well as DR in the ancillary and
reserve market [72].

In particular, during uncertain DR events’ schedules, users could artificially inflate BL,
which would have a significant impact on the effectiveness of the programs [73].

Several attempts have been put in place to analyse the issue (e.g., formulating payoff-
maximising user function [74]). Manipulation attempts often are difficult to detect, due to
the asymmetric information available between users and market administrators [75].

The method of full locational marginal price (LMP) payment is sometimes called to
be a double payment for demand reductions. The reason is that the DR provider would
benefit both from the cost saving of not consuming an increment of electricity plus an LMP
payment for not consuming the same amount of electricity [76,77].

This could induce excessive demand reduction, compromising the efficiency of DR
programs. To correct these shortcomings, contractual obligations would have to be added
to the estimated BLP [78].

The alternative approaches that bypass statistical methods are in fact addressing
the weaknesses of conventional BLP estimation methods. In flexibility markets at the
distribution level, BL calculation based on averaging or interpolation leads to concerns
about manipulation [79] and inflating, whereas methods such as those based on regression
add complexity and administrative costs, suggesting that BL are not suitable for those
markets [80].
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4.2. Standards

BLP estimation output complexity increases with each choice made in the estimation
process. Several standardisation attempts have tried to set the guidelines for evaluating the
BLs while performing DR. Similarities may be found between the approaches described by
standards and the approaches in scientific articles or initiatives from industry associations
and consulting firms. However, as the goal of this work is to present all findings in a non-
discriminatory fashion, as stated in Section 3, it is vital to present BL calculation methods,
as these are demonstrated in standards. In the following, the reader can find summarised
information of standardisation attempts so far.

4.2.1. National Action Plan for Demand Response—NAPDR

In the US, following the Energy Independence and Security Act in 2007 [81], the Federal
Energy Regulatory Commission (FERC) produced a report assessing the DR potential where
measurement of customer BL is considered an issue [82]. The North American Energy
Standards Board (NAESB) developed a Business Practice Standards for DR M&V [83]. The
document defines broad types of DR programs and different performance methods. To
provide guidance on M&V methods, the National Forum on the National Action Plan
for Demand Response (NAPDR) produced a report aimed at helping to advance the
development of DR resources. [82] Following the terminology and framework of NAESB,
EnerNOC released a white paper [84] and a report [59], primarily to investigate how to
measure DR resources and to establish an energy BL for industrial facilities.

NAESB standards entail five BL evaluation methods, as listed in Table 6.

Table 6. BL evaluation methods in [85].

Method Description
Maximum Base Load Demand resource keeps electricity usage below a certain level

Meter Before/Meter After Electricity demand is compared during the DR time occurrence
and similar readings before the DR event

BL Type I Uses historical interval meter data of the demand resource

BL Type II Uses statistical sampling for an aggregated demand resource to
estimate electricity usage

Metering Generator Output
Considers the output of a generator, located behind the demand
resource’s revenue meter, then the demand reduction value is
based on this output

Regarding BL characteristics for evaluation, NAESB notes: “baseline window, calcu-
lation types, sampling precision, exclusion rules, baseline adjustments, and adjustment
windows”. For the BL window, the 10 most recent program eligible non-event days are
calculated. Additionally, it is suggested to account for further information regarding the
event (e.g., real-time telemetry, performance window, measurement type, etc.)

The methods in Table 6 have been evaluated with reference to the service provided
(energy, capacity, reserves, and regulation) by [85] (IRC 2008) and [86] (PJM 2018). The
findings of the studies are summarised in Table 7.

Table 7. Methodologies used for BL calculation as used by IRC and PJM in [85,86].

Service TypePerformance
Evaluation Type Energy Capacity Reserves Regulation

Maximum Base Load IRC IRC, PJM - -
Meter Before/Meter After IRC IRC IRC, PJM IRC, PJM
BL Type I IRC, PJM IRC IRC -
BL Type II IRC IRC IRC -
Metering Generator
Output IRC IRC IRC IRC
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For a deeper analysis of service types per BL method, we recommend further evalua-
tion on the topic.

4.2.2. International Performance Measurement and Verification Protocol—IPMVP

The IPMVP protocol offers a framework for carrying out and evaluating efficiency
and demand management measures [87].

Regarding energy, it defines energy conservation measures (ECM) as a set of actions
for energy conservation, efficiency improvement, or demand management.

The protocol points out that demand savings cannot be measured directly, because
savings represent the absence of demand. For that reason, “savings are determined by com-
paring measured consumption or demand before and after implementation of a program”.
The comparison among before and after demand follows the general M&V equation:

Savings = (Baseline Period Energy − Reporting Period Energy) ± Adjustments

The protocol aims at implementing a quality M&V process. It lists considerations
about BL period selection, reporting period, and types of adjustments. BL period and
reporting period are set to properly represent operating modes. Particular emphasis is
placed on measurement boundaries (entire facility or a portion), intended as the choice of
granularity of measurements for determining savings.

The choice of the options depends on the purpose of the reporting and relevant data
available on site.

Following the [87] principles and guidelines, the EU Project DRIMPAC 2020 [88]
developed an example of a regression model. In the regression model, the dependent
variable is energy demand (ED). For the independent variables (defined as H(t) humidity,
Tout(t) outdoors temperature, WDN normal weekday, WDh holiday weekday, WE weekend
days, Tstamp timestamp, Oill(t) outdoors illumination, HDM(t) heating degree minutes, and
CDM(t) cooling degree minutes), historical data are used (previous 24 h); e is the error of the
regression model.

The multi-variate regression model is proposed in the following form:

ED = a + b1 ∗ H + b2 ∗ Tout + b3 ∗ WDn + b4 ∗ WDh + b5 ∗ WE + b6 ∗ Tstamp + b7 ∗ Oill + b8 ∗ HDM + b9 ∗ CDM + e

From the model developed for energy demand, it is possible to extract the model for
power demand, as these two quantities are proportional:

PD ∝ ED

The model is applied to past values to extract the coefficients (a, bi), then the BL is
calculated. The BL shows the consumption that would have taken place without any DR
event with reference to the previous day of the event. The above model is generic and can
include all possible parameters. The scope of the method is to include the parameters that
impact the BL calculation for each specific site.

The above is only an example for evaluating the baseline. Numerous other examples
can be found in Section 4.3—Novel Tools for Estimation. In general, as time passes and DR
becomes more and more popular in the scientific community, it is expected that more inno-
vative models and more accurate estimation methods will emerge for the BL calculation.

4.2.3. Energy Management Systems—ISO 50006:2014

According to ISO 50006:2014 [30], in order to measure and quantify energy perfor-
mance, there are two variables to consider: energy performance indicator (EnPI) and
energy BL (EnB). EnPI is defined as “a measure or value that quantifies results related
to energy efficiency, use and consumption in facility, systems, processes and equipment”.
EnB, instead, refers to energy performance during a specific time period, and it is used as a
reference during the implementation of actions for energy performance improvement. EnB



Energies 2022, 15, 5259 15 of 36

is set to the value of EnPI during the baselining period. A comparison with EnPIs of the
reporting period illustrates the improvement in energy performance. To establish an EnB,
it is suggested to first establish the purpose of the calculation, then determine a suitable
data period, then collect the data, and, finally, determine and test the EnB.

4.3. Novel Tools for Estimation

BL evaluation and adjustment techniques for DR are benefitting from the improved
computational capabilities of recent years, which allow processing of large amounts of data
and near-real-time decision-making—both important enablers of DR. Machine learning
(ML) techniques, such as deep learning (DL), support vector regression (SVR), linear
regression (LR), neural networks (NN), and genetic programming (GP), are now accessible
for use in problems of system optimisation [89]. Their application in DR means that more
data can be processed (i.e., averaged) in less time, which leads to more accurate estimates
and greater flexibility.

Recent progress in the application of ML shows success in load forecasting [90–93],
modelling [17], and control [94,95]. Learning-based DR management system approaches in
buildings have been studied [96], considering also comfort constraints for the users [97,98].
There have been attempts using ML to classify consumers concerning potential perfor-
mance [99,100] and to forecast the impact of their decisions in relation to long-term costs
and schedules of residential device usage [101]. ML and, more specifically, NN have also
been applied to the modelling of electricity prices as multi-agent systems [102,103], for
optimisation of DSM of power system management in real-time [104], and for electrical con-
sumption forecasting [105]. GP has shown to have good results, with low approximation
error and computational cost on widely known energy efficiency forecast datasets [106].

In view of these results, application of ML techniques has been sought in the estimation
of BLP for DR. In a comparative study of five ML techniques—high X of Y, last Y days,
regression, neural network, and polynomial interpolation—carried out on actual smart
meter data, NN and polynomial interpolation outperformed the other methodologies in
terms of reliability of prediction, lowering the estimation error [107,108]. NN has also
shown useful application in BL calculation for industrial facilities [109]. Regarding HVAC
related loads, ref. [24] applies a feature engineering method. It uses a combination of
feature selection and hyperparameter tuning applied to various ML models, with positive
results. For residential users, the highest accuracy of BL calculation appears to be achieved
through probabilistic methods [110,111], whereas a Bayesian inference approach has been
shown to support real-time updating needs [112]. Clustering customers in order to reduce
heterogeneity and improve predictability can also be carried out with ML techniques [113].

A particular point of interest is the increasing penetration of distributed photovoltaic
systems (DPVS), which leads to volatile customer actual load data. Estimating DPVS
output correctly has direct implications on the BLP estimation. ML techniques have
proved to provide successful support, which has been explored with the SVR-based model
approach [114] and k-means clustering algorithms combined with decupling-based BLP
estimation for residential customers [115]. Clustering by k-means adopted alone, used to
categorise consumers based on their load profile, has shown to have a good performance
on the accuracy, bias, variability, and reliability in terms of prediction [116].

Concerning the residential building sector, in [117], there is a review on the devel-
opments of DR programs, with specific reference to methodologies and procedures for
assessing building energy flexibility with numerical models and control algorithms. A
useful taxonomy for such models can be found in [118]. One of the main findings is that
heuristic approaches can provide approximations with acceptable accuracy in relatively
short time frames, then a more analytical approach should be evaluated. The study in [117]
shows how a combination of different approaches is useful. The techniques adopted include
linear integer programming, different machine learning techniques, and model predictive
control. Overall, to accurately assess its performances, the combined approach deserves
further investigation.
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Apart from being tools used for the methods of BL estimation and adjustment, ML
techniques show potential for becoming themselves a method for BL estimation. Through
unsupervised learning, a BLP of residential users could be generated, which in some studies
outperformed day-matching techniques [119,120].

There are also other models proposed in the literature for calculating the baseline.
An example is the model proposed in [121], which takes into account simple adjustment
factors through physically based models. According to the authors, gaming responses are
detected before and after DR. Such a model can be applied for some loads, but it depends
on end-use share and the customer segment.

Another interesting proposal is the control group method [122,123]. It uses historical
data of the non-DR customers who exhibit the most similar load patterns to the DR partici-
pants [124] and sometimes applies a clustering technique [122,125]. The method presents
statistically significantly better overall performance compared to several day-matching
and regression techniques. The main advantage is the possibility to use readily available
historical data from other users. That is valuable, for example, in the case of a new customer.
For instance, in [123] authors obtain the data of the control group, selecting from the entire
group monitored only the users who are not participating in DR, for the round considered.
Other methods are to include costumers not participating at all in the program, or creating
a virtual control group and then using a difference-in-difference approach for comparisons.
Another drawback is that the technique is challenged by DPSV systems and, in general,
on-site energy production systems [122]. The method could become expensive, in terms
of resources, as the precision increases. In recent years, a closed-loop mechanism coupled
with adjustments, with extensive comparisons with day and regression-based, has shown
to have promising results, but needs further research on probabilistic estimation [126].

In [127,128], authors described an experimental demonstration of baseline load fore-
casting using frequency regulation applied to commercial buildings. They modelled the
facilities and used a hierarchical control with a predictive controller. The results showed
how this method is appropriate for commercial facilities.

Finally, there have been comparative studies [129–132] evaluating the “self-reported
baseline” method combined with a calling probability mechanism of participation to DR of
the users.

5. BL Calculation Methods in Practice: H2020 Projects

European innovation projects have an important role regarding examples of practical
use of different BL methods. Twenty-three projects were identified among H2020 projects,
addressing BL calculation in real cases. Table 8 provides an overview of the initiatives.

As summarised in Table 8, four projects explicitly refer to standards, such as the IPMVP,
for determining the BL. Most of the projects (12 in total) use historical data to define the
BL, whereas five projects (23% of our sample) note that simulations and statistical methods
are used to define the BL. In general, it is of interest to note that 77% of the projects use
historical data for BL. Some of these public deliverables do not include information about
the accuracy and precision of their methods, so, it is not easy to extract such information.
However, for many of these projects, more detailed information about the precision and
accuracy of these approaches used is included in the in-depth description provided in their
supporting documentation. The reader is directed to the relevant references (deliverables)
of the projects in order to identify such information.
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Table 8. H2020 projects and methods used for defining the BL.

n. Ref. Project Methods and Data Used for BL

1 [133] ADDRESS Similar days, historical data

2 [134] AnyPLACE Load forecasting

3 [135] CITYOPT Statistical method to calculate the power saved,
particularly in energy efficiency

4 [136] CityZen Amsterdam Historical data; 1-year monitoring

5 [137] DELTA

Regression model based on historical data,
weather parameters, type of day used for BL;
standards such as ISO, NAPDR, IPMVP
are listed

6 [138] DR-BoB
IPMVP for yearly global evaluation of
additional energy efficiency measures;
historical data

7 [88] DRIMPAC
Standards such as ISO, NAPDR, IPMVP are
listed; regression model based on historical data,
weather parameters, type of day used for BL

8 [139] DRIVE Historical data (measurements and smart
meter data)

9 [140] ECOGRID Historical data; price and load forecasts

10 [141] eDREAM Historical data

11 [142] EnergyLab NordHavn—New
Urban Energy Infrastructure Data collection

12 [143] Flex4Grid Measurements play key role; control and user
groups are used for comparison

13 [144] FlexCoop
Takes into account IPMVP and NAPDR;
algorithms are created; user-centric approach
is used

14 [145] IndustRE Historical data

15 [146] NOBEL-GRID Historical data

16 [147] P2PSmarTest Historical data used; day-matching plus
regression models; window between 5–10 days

17 [148] RESPOND Measurements for the BL

18 [149] Semiah Measurements and simulations to get modified
load profiles

19 [150] SINFONIA
Energy consumption data for each building
within a district simulation for all buildings
within the district

20 [151] SmarterEMC2 Measurements are used to define the BL

21 [152] SmartUp Measurements before and after the event

22 [153] Upgrid Consumption data plus HEMS simulating BL
(simulation tools used)

23 [154] Vulnerable Consumers and
energy efficiency

two groups of customers: control (for the BL)
plus intervention group (for DR
actions)Historical data; previous similar days

6. Summary and Discussion

This study examined literature, reports, and scientific publications addressing the
calculation of the BLP, which is necessary to carry out DR programs. Three standardisation
efforts were identified, providing guidelines for BL estimation. Finally, 23 European H2020
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projects were analysed, with a focus on the methods applied to baselining definition. The
discussion of the overview looks at the challenges and opportunities for each method. First
(Section 6.1), we summarise the methodologies presented in each one of our identified
sources of information. We give a clear picture of what is being presented in the literature
review, thus summarising the information analysed in detail in Section 4. Next (Section 6.2),
we discuss the findings by summing up all the methods for calculating the baseline found
in the literature. In this way, we present all the methodologies, their level of complexity,
and the case in which it is best to use one particular method, i.e., which customers group is
best suitable for using a particular methodology.

6.1. Summary

Table 9 shows the BL calculation methodologies proposed by the analysed reports and
studies.

Table 9. Summary of BL calculation methodologies proposed by reviewed projects.

Report/Study Method/Guidelines for BL

Xenergy document for the analysis
of baselining [55]

Interval metering, based on three components:

• Data selection criteria (which days and time
periods of data used)

• Estimation method (the calculation procedure)
• Adjustment method (scales the provisional BL)

CPUC studies [66]

Standardised M&V mechanisms:

• Day-matching methods: good for ex post impact
estimates preferable for use in customer settlement

• Regression-based methods: most common/default
option; preferred method whenever ex ante
estimation is also required

Report and studies by Ernest
Orlando Lawrence National Lab
[57,61,62]

In [57], the models are sorted into two groups:

• averaging methods: use of a linear combination of
hourly load values from previous days to predict
the load on the event day

• explicit weather models: use a formula based on
local hourly temperature to predict the load

Refs. [61,62] use linear regression method modelling:

• 15 min interval, whole building electric load data
• weather data effects

Report by Quantum Consulting for
the Southern Edison Company [58]

Different methodologies for BL:

• For the day-ahead program, it is suggested to
consider changing the 3-day DBP BL method for
program settlement

• Customer-specific BL: sub-metering used to
improve the reliability of impact estimates

DR in wholesale electricity markets:
the choice of customer BL [78]

Different methodologies for BLs:

• Administrative customer BL, estimate the users’
consumption levels using, for example, the last
year’s data

• contractual customer BL approach: for a robust
framework that restores efficient DR under full
locational marginal price (LMP) payment
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Table 9. Cont.

Report/Study Method/Guidelines for BL

Report by Northwest Energy
Efficiency Alliance (NEEA) [59]

Different steps for defining the BL:

• Establish the boundaries of the facility
• Identify the energy sources
• Determine the BL period duration and the specific

historical time frame
• Define energy performance indicators (EnPIs),
• BL adjustment is determined

KEMA report by PJM [68]

Several methods for each category:

• Average
• Matching
• Regression

Different adjustment tested (additive, ratio,
regression-based)

Evaluation on DR by CADMUS
Group for PPL Electric Utilities [60]

Different BL modelling approaches:

• Several-day matching: when there is highly
variable day-to-day consumption in the hours of
the event

• Regression methods: for 87% of the overall
facilities, the regression method is the most
accurate one

Table 10 lists the BL calculation standards. As can be seen from the tables, many of
the methods described share some common points, for example, using a window of days
for utilising data for creating the baseline. Regression models and day-matching models
are referred to in the tables, meaning that these techniques are popular for extracting the
baseline. Apart from this, there are differences for each model and, in the end, it depends
on the system needs as to which model will be chosen. This report does not aim to favour
one technique or another, but to list the techniques and leave it up to the system designer to
choose the most suitable method. This section describes some of the characteristics of the
techniques found in the literature and thus presents some kind of comparison among them.

Table 10. Guidelines for BL calculation according to standards and protocols.

Standard/Protocol Method/Guidelines for Baselining

NAPDR [20]
Specific parameters are defined: BL window (the 10 most recent
program eligible non-event days), sampling precision and accuracy,
BL window, and exclusion rules

IPMVP [87]

It considers: period selection, reporting period, and types of
adjustments. Measurement boundaries are important:

1 retrofit-isolation—key parameter measurement
2 retrofit isolation—all parameter measurement
3 whole facility: the measurements performed at the facility level
4 calibrated simulation: all calculations based on simulations

ISO 50006:2014 [30]

EnPI quantifies results related to energy consumption. EnB refers to
energy performance during a specific period (reference). A
comparison between EnPI and EnB illustrates the improvement in
energy performance. To establish an EnB it must set the purpose of
the calculation and a suitable data period. Collection of data and
determination and test of EnB follow.
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Table 10 summarises the guidelines for BL calculation from dedicated standards and
protocols.

Tables 9 and 10 indicate that the estimation of BLP relies most often on previous
metering data and highlights the relevance of period and duration selection for accurate BL
calculation. Day-matching approaches and regression models are the two main categories
used for BL estimation in research as well as in practice and are referenced by the standards.
Adjustment of the BLP is especially important with regard to weather effects. Other novel
approaches, different from day-matching and regression, and not standardised yet, rely on
computational capabilities and AI.

For a comprehensive listing of the main methods and adjustments identified in this
review, the reader can refer to Appendix A.

The complexity of the decision process of the method for BL calculation is posed by
the availability of a large number of options at each step.

The number of parameters, the availability of data, and the choice of algorithms
determine the level of accuracy in the BL calculation. As reflected in the analysis of H2020
projects, the choice of BL calculation method is not standardised, and there is no “best
method”—but rather, a “most suitable method” for each case.

Regarding the day-matching techniques, the BL calculation should provide alternatives
based on customer load types and operating practices [55], whereas more accurate BLs
for many large C&I facilities are needed [60]. However, for regression models, we point
out that they are generally more complex, harder to understand, and include a higher
cost. They provide a BL corresponding to particular weather conditions of curtailment
day. However, if observations do not feature extreme conditions as the curtailment day,
the model estimate may be inaccurate. In case the account is not weather-sensitive, it
may be less accurate than simpler methods. Models that incorporate temperature (e.g.,
explicit weather models) improve accuracy and avoid bias [57]. However, the model could
have significant errors associated with the correlation between regression parameters and
the autocorrelation of their residuals [26]. Regression models give the most accurate BLs
for many C&I customers and GNE facilities [60]. Regarding novel approaches, such as
polynomial regression, it is efficient when applied to industrial facilities [109].

As for other probabilistic estimation techniques, residential customers are charac-
terised by uncertainty in consumption behaviour. The GP-based methods can actively
discover customer patterns and embed such knowledge into learning in a short time, im-
proving the accuracy of the prediction [111]. The BLR approach provides an improved
forecast of hourly load where real-time model prediction is needed [112].

The adjustment of the baseline is also of crucial importance apart from defining the
baseline itself, as it can be decisive for the accuracy and precision of the baseline. Thus, the
adjustments that can take place for improving the rough BLP estimation belong to three
main categories:

1. Pre-curtailment hours adjustments,
2. Weather-based adjustments, and
3. Structural change-based adjustments.

All of the adjustment methods above are noted in numerous references that have been
analysed in this work. The exact article where a specific adjustment method is analysed
can be found in the information presented in Appendix A. It should be noted that all three
methods have their pros and cons.

Specifically, the first method (pre-curtailment hours adjustment) can adjust well for
alterations in the load that occur constantly during the day, and it can provide very good
accuracy if the duration of the adjustment is at least 2 h before curtailment. However, if
the load changes during the curtailment period, the accuracy drops. This method may be
inappropriate if day-to-day load variation is constant over the day. Literature indicates that
the appropriate pre-curtailment increase in load (e.g., pre-cooling) can result in overstated
BL, whereas the pre-curtailment decrease in load in response to a curtailment request
(e.g., long ramp-down, cancelling a shift) can result in an understated BL. Applying a
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morning adjustment factor significantly reduces bias and improves the accuracy of the
models examined [57].

With respect to the second method (weather-based adjustments), as the name implies,
it considers weather conditions for the adjustment, which can be considered as an advan-
tage, as weather conditions can greatly influence the consumption, and thus the baseline.
A disadvantage can be noted in the case when predictions of weather do not correspond to
reality, and it adds complexity to the overall procedure. In addition, adjustments may not
be known to the customer until after the curtailment period, which is another disadvantage.
The weather-based adjustments are of particular relevance for residential customers and
C&I buildings, but not in industrial process loads. Weather data may occasionally contain
erroneous values, which produce outliers in the model predictions, therefore weather data
should be screened for consistency [57].

Finally, the last method, namely the structural change-based adjustments, can con-
tribute to adapting the baseline to structural changes or to address a large facility’s change
of occupation. However, a disadvantage of this method can be that potential input and
approval from stakeholders may be necessary. Structural change-based adjustments can
be used for industrial facilities, and the organisation should define intervals at which it
reviews the key characteristics of its operations that determine energy performance.

The adjustment methods can improve the accuracy and precision of the baseline
definition, and thus they can contribute to a more precise DR program with accurate
calculations for the load curtailed and thus lead to accurate remunerations for customers.
In Appendix A, the reader can find summarised information with respect to the different
adjustment methods.

6.2. Discussion

In general, we identify eight methodologies for defining the baseline:

• Day-matching (DM);
• Regression;
• Control group;
• Self-reported BL;
• Polynomial regression (PR);
• Neural networks (NN);
• Other probabilistic estimation techniques;
• Unsupervised learning techniques.

Table 11 shows our findings exploring the most recent literature on BL methodologies.
It summarises the methods, their level of complexity, and optimal and critical target groups
identified. For each method, we present the indicative cost, along with information about
the accuracy of each technique. In this way, the user can have a rough idea about the
pros and cons of each method. There is a variety of methodologies to choose to define
the baseline. In addition, several parameters play a role in deciding the most suitable
methodology, such as the consumer group for which the baseline is calculated, the overall
complexity that the system can afford, and the total cost, to name some of these parameters.
We have evaluated and compared all these factors, with their utilisation in the literature.
The results of the comparison give a clear picture of which can be the most suitable BL out
of the available ones. We can state that there is no unique solution that fits all needs.

Table 11 aims at clarifying to the reader the basic pros and cons of these methods and
sheds some light on the available methodologies that can be applied. The final decision is up
to the baseline designer according to the system’s needs and the aforementioned parameters
and trade-offs. It should be also noted at this point that, especially for the accuracy and
complexity of each method, not all sources have clear evidence. Thus, analysing the accuracy
and complexity of only some of the methods would have been unfair towards the rest.
However, analysing accuracy and complexity issues may result in an even more lengthy
paper, thus losing the focus of the current work, which is to present the methodologies
and give a fair basic comparison. Therefore, we are limited at this point in presenting only



Energies 2022, 15, 5259 22 of 36

basic information with respect to accuracy and complexity. It is planned for further work to
analyse such issues for the baseline calculation methodologies. It is reminded at this point
that the scope of the paper is to list the methodologies and give the reader an idea of possible
methodologies among which to choose the one that would best fit the needs of the system.

Table 11. Summary of BL methodologies and their evaluation.

Category Complexity Accuracy
Estimated Cost

(If Smart Meters and
Sensors are Already

Installed)

Optimal Target
Group(s)

Critical Target
Group(s)

Day-matching (DM)
Low *

(* if historical data
are available)

Low/Medium Low Large C&I users

- Weather
sensitive users

- Prosumers
(renewable
production)

- Variable load
customers

Regression

Medium/High *
(* requires

appropriate
evaluation of

variables and data
range)

Medium Low Weather sensitive
users

Depends on the
model

Control group
Low *

(* if historical data
are available)

Medium Low New users

Prosumers
(renewable
production and
storage)

Self-reported BL
Low *

(* if historical data are
available to the user)

Medium Low n/a n/a

Polynomial
regression (PR)

High *
(* difficult to

determine the degree
of the polynomial)

Medium *
(* boundary effects) Low Industrial factories n/a

Neural networks
(NN)

High *
(* difficult to find an
architecture, requires
more data than other

methods)

Medium/High *
(* issues with

generalisation)

Low *
(* trained staff could

be required)
Industrial factories n/a

Other probabilistic
estimation
techniques

Medium High
Low *

(* trained staff could
be required)

- Residential
users

- Prosumers
(renewable
production)

n/a

Unsupervised
learning (UL)

techniques

Medium/High *
(* difficult to find an

architecture)
High

Low *
(* trained staff could

be required)

- Residential
users

- Prosumers
(renewable
production)

n/a

Regarding the more traditional methodologies, if historical data are available, previous
research shows that, for day-matching, complexity of implementation is low. For the
regression methods, it is medium or high, depending on the complexity of the evaluation
of the variables. However, day matching is lower in accuracy compared to regression. If
smart meters are available, both have a small estimated cost. For the same reason, PR and
control require a relatively low budget. It has a medium accuracy but quite high complexity,
due to the difficulties of evaluating the polynomial degree. Self-reported BL shows to be
interesting for DR evaluation if combined with a random method of recruitment from a
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pool of participants. NNs have medium to high results in accuracy, with the drawback
of having a more sophisticated implementation, especially regarding their architecture.
Considering the big family of other probabilistic estimation techniques, they tend to have
a high accuracy in results and medium complexity. The UL techniques have also a high
accuracy and the same downside of being quite complex to implement. For all the ML and
probabilistic estimation techniques, the cost estimation assessment is not straightforward.
It should consider, for example, the presence of trained staff for implementation.

The last two columns of Table 11 focus on the target groups suitable for each method. It is
clear that large C&I users, having a more predictable load profile, can have acceptable results
from profiles calculated using relatively simple BL, such as DM. The most critical groups
are the weather-sensitive consumers and the prosumers, especially where renewable energy
production is involved, due to the uncertainty of weather forecasts and outdoor environment
variables. This is where the more innovative techniques can help, where UL and probabilistic
estimation techniques prove to be more flexible and to have a wider range of applications.

In line with DR engagement in practice, large consumers can participate with large
controllable loads but have strong constraints. Thus, they need a customised BL and the
possibility of influencing the DR participation in real-time. The choice of BL calculation
principles depends on the customisation needs, and the choice of tools to carry it out in
a cost-efficient and rapid way. Small residential consumers pose different challenges and
opportunities for DR engagement. The participation in the system is small by nature, but
stable, therefore a more generalised BL can be used. For this segment, low-complexity BL
calculation principles are appropriate, such as day matching, but it comes with a trade-off in
accuracy. In this case, the cost savings achieved through a low-complexity implementation
are challenged by the possible unrealised gains due to inaccurate results in BL calculation.
However, residential consumers have another particularity: due to scale effects, this sector
offers the possibility of novel methods development for BL calculation that are based on
machine learning and require large amounts of data to achieve performance.

Table 12 identifies the adjustment methods used to improve the first estimation of
the BL.

Table 12. Comparison of adjustment methods applied to BL.

Adjustment Method Description Complexity Accuracy

Pre-curtailment hours
adjustments

Additive Low Low/Medium

Scalar Low Low/Medium

last 2 h before
curtailment period Low Medium

3rd and 4th hour before
curtailment period Low Medium

Weather-based adjustment Any Medium/High Medium/High

Structural changes-based
adjustments

Update of the BL based
on energy source,

operational, business,
energy management

systems changes

Low Medium/High

7. Conclusions

Although consumer engagement in demand response has documented benefits for
the electricity system and the consumers alike, the correct measurement of the benefits is
essential in order to provide a convincing business case and reward participation. For the
determination of a reference value (BL), the challenge is not the calculation itself, but the
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identification of the most suitable method for the application considered most accurate and
most cost-efficient, while also fair. Current methods rely on one of two general standardised
principles, each addressed with one out of several mathematical approaches, which in turn
can be carried out with one of many computational tools, pertaining to different levels
of accuracy and bias, as well as costs and requirements. Thus, the outcome is heavily
case-specific, and the emergence of one definitive BL calculation method is improbable.

In support of DR stakeholders from policymakers, academia, and practitioners, this
work reviews existing methods for the calculation of BL load profiles of electricity con-
sumers, knowing that they are expected to strike an adequate balance among desirable
criteria, such as accuracy, simplicity, and integrity. For this reason, we review numerous
articles found in the literature that propose novel methods for calculating the baseline,
along with reports from business initiatives or consultancy firms, as well as standardisa-
tion efforts. We analyse the methods proposed by each literature source by summarising
the methodologies proposed, listing their pros and cons with respect to complexity, cost,
and customer groups issues. This way, the reader can have a clear picture of the existing
methodologies together with a fair comparison of them. The aim is to provide clarity by
identifying core principles, influencing factors, and appropriate algorithms to carry out
the computation. The assessment of baselining in European real project applications has
supported the validation of results.

In general, eight methodologies have been identified for defining the baseline: day-
matching (DM); regression; control group; self-reported BL; polynomial regression (PR);
neural networks (NN); other probabilistic estimation techniques; unsupervised learning
techniques. Each of these methodologies has been analysed and a fair comparison of
them is presented in terms of their advantages and disadvantages. We found that the
choice of the best methodology among the several available depends on factors such as
the function the DR product performs in the system, the broader regulatory framework
for DR participation in wholesale markets, and the characteristics of the DR providers.
From the experience collected from real-life projects, the best practice appears to be the use
of more than one robust validation method, whenever possible. Another finding is that
personalised approaches could be successfully implemented.

The evaluation shows that the BL methodology choice presents a trade-off among
complexity, accuracy, and cost. This review pairs the most promising approaches with
different real applications, according to user characteristics and load profile. We also
evaluate adjustment methods used to adjust different BLs. This comparison shows that, at
this stage, for certain applications, complexity may not be justified with a proper increase
in accuracy. A raw classification suggests that low-complexity, traditional approaches are
cost-efficient for BL calculation for large consumers, probably due to the predictability of
their load characteristics. For residential users, due to the comparatively lower benefit
margins and a more variable load, there is the need to assess the benefits from more accurate
BL calculation principles with the costs of computational tools and their services. The
final decision for the baseline calculation methods, with respect to the objective of the
load evaluation and resources available, remains to be taken by the DR provider (user,
aggregator, or third-party provider) based on the parameters discussed above.

Limitations and Future Work

This paper has focused on the explicit demand response, which relies on the accurate
computation of the customer baseline load. However, demand response is expected to
develop towards integrated demand response in the future, to include multiple energy
carriers, and to bundle diverse types of customers [155]. Research and modelling for
integrated DR are ongoing. It is unclear in what form the methods summarised in this
paper and applied currently in electricity markets will continue to be used in the future.

Seeing as the selection of a BL calculation method relies on a cost–benefit analysis,
demand response participation would profit from a closer investigation of the trade-offs
involved in each decision. Guidelines for carrying out the cost–benefit analysis would lead
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to selection of the most suitable calculation methods, thus narrowing the range of options.
In particular, at the level of residential consumers, where the more stable load profile
suggests the opportunity of a more generalised BL calculation method, more investigation
is necessary. Similarly, novel applications for DR as a resource, such as the local electricity
markets, will in turn influence the selection criteria for BL methods.

Energy communities are a phenomenon that has been rising in recent years. Research
about BL in this context should be conducted in view of their extremely fluctuating energy
generation.

Consolidation and a comparison of results on both aggregated and disaggregated
levels should be carried out. An interesting insight is to investigate the effectiveness of
each BL method per type of service. It is suggested as a further step to explore baselining
accuracy. With respect to aggregation issues, in particular, it is planned to examine them in
future research. Such research could explore the complexity of aggregated baselines and
the non-equal incentive problem, although this list is not exclusive.

Standardisation of the calculation methods for the BL load profile stops at the defini-
tion of principles and does not take into account the added variation from the choice of
methods and algorithms. Further, the novel emerging methods based on machine learning
techniques will need to be further investigated in order to facilitate their adoption beyond
the experimental stage.
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funding from the European Union’s Horizon 2020 research and innovation programme, under grant
agreement No 768559.

Conflicts of Interest: The authors declare no conflict of interest.

Nomenclature
The following abbreviations have been used in this text:
BL Baseline
BLP Baseline load profile
CBL Customer base load
C&I Commercial and institutional
CPUC California Public Utilities Commission
DM Day matching
DPVS Distributed photovoltaic systems
DR Demand response
DSF Demand side flexibility
DSM Demand side management
EED Energy efficiency directive
EnB Energy baseline
EnPI Energy performance indicator
EU European Union
GNE Governmental, non-profit and educational
GP Genetic programming
H2020 Horizon 2020
IPMVP International Performance Measurement and Verification Protocol
LMP Locational marginal price
LR Linear regression
ML Machine learning
M&V Measurement and verification
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NAPDR National Action Plan for Demand Response
NN Neural network(s)
PR Polynomial regression
RES Renewable energy sources
SVR Support vector regression
UL Unsupervised learning

Appendix A

Table A1 summarises and compares the main methods identified in this review. They
are categorised by Citing documents and with a brief Description. Further details, such as
Data used and Complexity of implementation, are listed. The Pros and Cons of each BL
estimation method are discussed in a dedicated column. Table A2 identifies adjustment
methods used to improve the first estimation of the BL.

Table A1. Comparison of main existing methodologies used for BL calculation.

Name/Ref. Description/Data Adjustments Complexity Pros Cons

Day-Matching (DM)

[55–57,59,60,68]

Average:

- high X of last Y
days

yes/partial Low
- simple, easy to use and

understand
- low cost

- tends to understate BL for
weather-sensitive loads,
especially if unadjusted

- can allow windfall load
reduction credit on
cool days

[58–60,66–68],

Representative days:

- previous X
days

- previous Y
similar days

yes Medium/Low

- simple, easy to use and
understand

- low cost
- good results on large

C&I customers [60]

- in some cases, getting
10 similar pre-event days
(excluding weekends,
holidays, and other event
days) required going back
almost a month in time
[58]

- biased, potential spillover
effects on BL [67]

Regression

[61,62] Statistical analysis:
Five months no Medium

- weather data are
included in the model

- time scale shorter than
15 min has minor effect
on model prediction

- estimation is sensitive to
weather and local climate
variations

- requires added resources
for having optimal
weather data

[55,57] Statistical analysis:
full season

no [55]
yes [57] Medium

- adequate data and range
of variation to particular
weather conditions of
curtailment day

operating conditions from the
period data are taken from may
be different from curtailment day

[68]

Statistical analysis:
- full year
- previous 20

non-holiday
days

yes Medium Have slightly superior
accuracy

Administrative costs and
complexity are
significantly higher than those of
the X of Y approaches, there is no
reason to pursue this method
based on the results of the
analysis

[55,57] Statistical analysis:
recent 10 days

no [55]
yes [57] Medium

- operating conditions
more likely to be similar
to curtailment day

model based on limited data
may be inaccurate
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Table A1. Cont.

Name/Ref. Description/Data Adjustments Complexity Pros Cons

[26]

Statistical analysis:
Time-of-week

(except holidays,
weekends and days

of outages)

no Medium
- performs similarly to or

better than most BL
models commonly used

- tend to under-predict
maximum values (i.e.,
outliers)

- error associated with DR
parameters estimates is
often large

[55]

Statistical analysis:
lag

temperature/degree-
day

- Medium
- tends to reduce bias for

weather-sensitive
accounts

increased variability of BL
estimate

[55] Statistical analysis:
conditional - High

- allows the same general
form and procedure to
be used for
weather-sensitive and
non-weather-sensitive
accounts, without
pre-screening

- doesn’t add much error
for non-weather-
sensitive accounts

- may give less consistent
results across events for an
account if weather terms
are sometimes retained
and sometimes not

[58–60,66,70,109]

Statistical analysis:
various methods for
finding independent

and dependent
variables

- High

- can be used to examine
impacts outside the
event period and to
quantify the influence of
event characteristics
(e.g., heat build up,
multi-day events,
weather, and customer
characteristics on DR)

- most robust and flexible
approach

- not as transparent as most
DM methods

Control method

[122–125]

Statistical analysis:
Uses available data
from a control group,
with similar
characteristics of the
user analysed

- Low

- Useful when poor or no
data are available

- load profiles can be
generalised

- requires the SO to recruit
an additional set of
consumers [125]

- not suitable for prosumers
[122] energy storage
technology, and
distributed photovoltaic
loads [123]

Self-reported BL

[129–132]

Statistical analysis:
Users self report-
their BL. The method
is combined with a
calling probability
mechanism of
participation

no Low

- reduces the cost of
implementation

- reduce the issues of bias
and inflation [130]

- limits the gaming
opportunities [132]

- requires a direct technical
user participation

Polynomial Regression (PR)

[109]
15-min interval meter
data for a year (2016
as training set)

- Medium -

Difficult to find an accurate
drawbacks analysis. Usually
problems of the technique are:
- deciding the degree of the

polynomial: low degree =
low accuracy, higher
degree = poor
generalisation

- often visible boundary
effects (poor
generalisation out of
distribution new samples)
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Table A1. Cont.

Name/Ref. Description/Data Adjustments Complexity Pros Cons

Neural Network (NN)

[105,108,109]

- 15-min interval
meter data

- for a year of
2016 as the
training set
[109]

- days selection
based on the
labour activity
parameter
(LAP) [105]

- High

- Levenberg–Marquardt
algorithm outperformed
LR and PR in terms of
reliability of prediction
[109]

- long short-term memory
recurrent neural
network method proved
to be more accurate than
various day-matching
techniques [109]

Difficult to find an accurate
drawbacks analysis. Usually typical
problems of the technique are:

- difficult to find an
architecture and deciding
parameters for the
training. Too much
training often gives a poor
generalisation

- require more data than
other methods

Other Probabilistic techniques

[110–112,114,118]

- Gaussian
process based
approach
[110,111]

- Bayesian linear
regression
(BLR)
approach [112]

- support vector
regression
(SVR) for
DPVSs [114]

- data depends
on the
technique

- Medium

- simulation with
Gaussian-based
approach shows to
produce a highly
accurate estimate of data
[110]

Difficult to find an accurate
drawbacks analysis.

Unsupervised learning techniques

[113,115,117,119,
120]

- associated with
PV-load
decoupling,
shows to
improve
accuracy [115]

- Data mining
framework,
self organising
maps (SOM)
and k-means
clustering
[119,120]

- 12 months
electricity
consumption
data (instant
power
consumption
for each day is
collected at
intervals of
15 min)

Yes Medium/High

- significantly improves
the accuracy of the load
estimation compared to
the DM methods

Difficult to find an accurate
drawbacks analysis. Typical
problems of the techniques are:
- k-means clustering is

highly dependent on the
initial position of the
centroids

- finding the appropriate
value for k can be
challenging unless it is
clear in advance the
number of unknown
clusters

- different starting position
brings to very different
final results (require many
repetitions)

- SOM suffer from
limitations similar to NN
approaches [119]
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Table A2. Comparison of adjustment methods applied to BL.

Adjustment Method Ref. Description Complexity Pros Cons

Pre-curtailment
hours adjustments

[55,66,68] Additive Low

Adjust well for load
change that is constant
throughout the day (e.g.,
industrial processes)
- Applied to High 4

of 5 BL is the most
accurate [68]

may not be appropriate if load
changes during the curtailment
period (ratio adjustment may be
better suited)

[57,58,66,68] Scalar Low

Adjust well for load
change that is a function
of exogenous factor
throughout the day (e.g.,
higher levels of
occupancy)

may not be appropriate if the
day-to-day load variation is
constant over the day (additive
adjustment may be better
suited)

[55,57,66] to last 2 h before
curtailment period Low

if the load in these hours
is unaffected by,
anticipated or initiated
curtailment, provides the
best accuracy

if substantial curtailment
initiate in these hours severely
understates BLs

[55,56,66]
to 3rd and 4th hour
before curtailment

Period
Low

less potential for
understated BL due to
pre-curtailment-period
DR

more variability than an
adjustment to last 2 h

Weather-based
adjustment [55,57,66,68,119] any Medium/High

- explicitly takes into
account weather
conditions

- no opportunity for
gaming as with
adjustment to
pre-curtailment
hours

- adjustment may not be
known to the customer
until after the curtailment
period (i.e., until after
weather conditions are
known for the day)

- if no observations are
available for extreme
conditions, estimates
used for adjustment may
be outside the range of
model

- badly prediction of
reductions if the
buildings are dominated
by internal loads

- less accurate than
alternative adjustments
or weather model for
both weather-sensitive
and
non-weather-sensitive
accounts

- additional cost and
complexity

Structural
changes-based

adjustments
[84]

Energy source,
operational,

business, energy
management

systems changes

Low
- adapt the BL to

structural changes

- the organisation may not
be able to adjust BL due
to stakeholders’
requirements or from
programs to which the
organisation subscribes

- could need stakeholder
input and approval
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