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Abstract: Many researchers spent much effort on the online power management strategies for plug-in
hybrid vehicles (PHEVs) and hybrid electric vehicles (HEVs). Nowadays, artificial neural networks
(ANNs), one of the machine learning techniques, have also been applied to this problem due to
their good performance in learning non-linear and complicated multi-inputs multi-outputs (MIMO)
dynamic systems. In this paper, an ANN is applied to the online power management for a plug-in
hybrid electric vehicle (PHEV) by predicting the torque split between an internal combustion engine
(ICE) and an electric motor (e-Motor) to optimize the greenhouse gas (GHG) emissions by using
dynamic programming (DP) results as training data. Dynamic programming can achieve a global
minimum solution while it is computationally intensive and requires prior knowledge of the entire
drive cycle. As such, this method cannot be implemented in real-time. The DP-based ANN controller
can get the benefit of using an ANN to fit the DP solution so that it can be implemented in real-
time for an arbitrary drive cycle. We studied the hyper-parameters’ effects on the ANN model and
different structures of ANN models are compared. The minimum training mean square error (MSE)
models in each comparison set are selected for comparison with DP and equivalent consumption
minimization strategy (ECMS). The total GHG emissions and state of charge (SOC) are the metrics
used for the analysis and comparison. All the selected ANNs provide results that are comparable to
the optimal DP solution, which indicates that ANNs are almost as good as the DP solution. It is found
that the multiple hidden-layer ANN shows more efficiency in the training process than the single
hidden-layer ANN. By comparing the results with ECMS, the ANN shows great potential in real-time
application with the smallest deviation from the results of DP. In addition, our approach does not
require any additional trip information, and its output (torque split) is more directly implementable
on real vehicles.

Keywords: artificial neural network (ANN); dynamic programming (DP); equivalent consumption
minimization strategy (ECMS); greenhouse gas (GHG) emissions; plug-in hybrid electric vehicle
(PHEV); power management strategy

1. Introduction

Gases that trap heat in the atmosphere are called greenhouse gas (GHG), which lead
to global warming. Based on data published by the US EPA, carbon dioxide is the main
component of GHG, accounting for 79%. Human activities are responsible for almost all of
the increase in greenhouse gases in the atmosphere over the last 150 years. Transportation
is the primary source of greenhouse gas emissions in the US [1]. Based on the data in 2020,
over 90% of the fuel used for transportation is petroleum based, which includes primarily
gasoline and diesel. Therefore, the fuel economy of the vehicle is critical to help to reduce
GHG emissions and mitigate global warming.

Nowadays, electric vehicles are one of the promising solutions to reduce GHG emis-
sions [2–5]. In general, electric vehicles can be classified into three types [2,6,7]: (1) battery
electric vehicles (BEVs), which use the battery to store energy; (2) fuel cell electric vehicles
(FCEVs), which use hydrogen and oxygen to generate electricity; (3) hybrid and plug-in
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hybrid electric vehicles (HEVs/PHEVs), which have two powertrains, one is driven by the
internal combustion engine, and the other one is driven by the electric motor (e-Motor). In
this paper, we focus on PHEVs.

Due to the flexibility of the two powertrains, a PHEV can have four different operating
modes: (1) engine-only mode, (2) e-Motor-only mode, (3) combined power or blended
mode, and (4) regenerative braking mode. The blended mode generally involves a control
strategy to distribute torque between the ICE and e-Motor so that each of them can operate
in its optimal performance region. In addition, this mode can be further classified into
two modes, which are charge-depletion (CD) mode and charge-sustaining (CS) mode [8].
During the CD mode, the vehicle is driven mostly by the e-Motor until the battery is
discharged to the pre-set value. In CS mode, however, there are constraints on the bat-
tery state of charge (SOC) and SOC needs to be maintained within a certain range. An
appropriate optimal power management strategy between different operating modes and
real-time torque distribution between the ICE and the e-Motor is a key to optimizing fuel
consumption or fuel economy.

In the past decades, extensive research on power management strategies [9–11] has
been conducted by many researchers. Some researchers have focused on optimizing the
fuel consumption and GHG emissions for a PHEV with different methods, and these
methods have been classified and summarized by many researchers [11–13]. In general,
these methods can be classified into two categories: offline power management strategies
and online power management strategies.

The offline power management strategies require prior knowledge of the global
information to calculate the optimal solution. Consequently, these methods cannot be
implemented in real-time. Dynamic programming (DP) is one of the optimal methods
in this area and has been widely used for the analysis of sequential decision-making
problems [14–16]. In general, DP solves a global optimization problem by breaking it into
several sub-problems, then it will search different control inputs from the final state, and
examine the control sets to get the minimum cost as the optimal final solution. However,
DP is very computationally intensive and it requires prior knowledge of the entire drive
cycle information which means this method cannot be implemented in real-time on a
vehicle. Hence, DP simulation results will be used as an optimal reference control strategy
for comparison in this paper.

As opposed to offline power management strategies, online power management
strategies can be applied to real-time problems, and many methods have been studied and
developed. These methods can be further classified into two categories: rule-based methods
and optimization-based methods [11–13]. Fuzzy logic belongs to the rule-based methods.
Besides fuzzy logic, meta-heuristic methods have been applied to many mechanical design
problems and readers can find some comprehensive reviews in [17,18]. Model predictive
control (MPC) and equivalent consumption minimization strategy (ECMS) belong to the
optimization-based methods. In this paper, NN belongs to the rule-based controller since it
learns the control policy of DP.

MPC relies on prediction models to obtain a control action by solving an online
optimization problem over a finite horizon. The main advantage of the MPC strategy is
its ability to handle constraints on states, inputs, and outputs, and thereby take system
limitations into account. This allows for operating a system closer to the input and state-
space boundaries, a property that could be exploited to enhance profitability [19,20]. With
these advantages, the MPC algorithm is widely used in industry. The main disadvantage
of MPC is that it is often too slow to apply to systems with rapid dynamics [19,20].

ECMS was presented by Paganelli and tries for instantaneous optimization, taking
battery SOC into account [21–23]. Additionally, it has been further developed by many
researchers in recent years. ECMS is a common strategy in this area, and it can be imple-
mented for real-time problems. However, ECMS suffers from the lack of generality in the
cost function and strongly depends on the equivalence factor [24–26]. Since we will only
compare the performance of two city drive cycles, it is easy for us to tune the equivalence
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factor and take the benefits from ECMS. Therefore, the ECMS strategy is applied in this
paper to compare with DP and ANNs.

Nowadays, machine learning is studied by many researchers in different research
fields, and various machine learning-based controllers have been developed, such as
the deep learning-based inverse model for internal combustion engine fuel economy
control [27,28] and the PHEV power management strategy [29,30]. ANNs are used in this
paper to learn the DP solution so as to generate a real-time solution for torque split without
requiring knowledge of the drive cycle. The main idea of the ANN supervisory controller
in this paper is that an ANN controller is trained from optimized torque splits obtained
from offline techniques applied to the existing drive cycles, then it can generate a control
policy so that the controller can obtain the solutions for arbitrary drive cycles in real-time
to mimic the offline control algorithms. It has lots of advantages, such as the controller
not being limited by the specific driving conditions which means the ANN controller can
be used for different countries or different driving habits, and the training set can also be
modified to retrain the model, which makes the ANN model more adaptable.

In [29], two ANN models were developed for two input conditions, with or without
trip information, under the CD-CS mode. However, the performance of their controller in
CD-CS mode is not significant compared to the default mode. Similar results were found
in our previous study [31]. Furthermore, we found that for highway drive conditions,
there are few benefits to using the blended-CD mode and blended-CS mode since very few
start-stops will occur in this drive condition and the vehicle mostly operates in an almost
constant-velocity region. So the ICE-only mode for CS or e-Motor-only mode for CD is
likely to be more beneficial to highway conditions. However, urban driving conditions
can potentially benefit from the blended-CS mode. In the blended-CS mode, the battery
SOC is maintained and the PHEV acts like a normal HEV. In addition, we found 20% SOC
threshold to switch from CD mode to CS mode under the city drive conditions has great
potential benefits for the total GHG emissions with 10% SOC as the lower boundary to
protect the battery [31].

So, in this paper, we continued and extended our previous study to focus on urban
driving conditions with a low initial SOC condition of 20%. The lower and upper SOC
boundaries are 10% and 30%, respectively. The main motivation for using ANN in this
research is to leverage machine learning to replicate the DP algorithm under urban city
drive conditions for online real-time problems. Compared to [29], fewer inputs and a
different output are selected in our research presented here. The ANN inputs and output
selection will be introduced in Section 3.3. Furthermore, our ANN controller does not
require any trip information which means there is only one controller needed for the
whole power management instead of two separate controllers based on different inputs. In
addition, our ANNs’ output (torque split) is more directly implementable on real vehicles
since the torque split is straightforward to obtain the desired engine torque and e-Motor
torque, which can be sent to the engine controller and e-Motor controller to convert them
into fuel injection and current output signals. We applied and set the DP controller as the
baseline and several ANN controllers were developed. Two completely different urban
driving conditions were used for the comparison with the DP solution as well as the
ECMS method. Our results show that ANN can mimic DP very well, even under different
urban conditions.

On the other hand, ANN also has some apparent disadvantages, such as its black-box
nature. Therefore, finding an efficient method to train artificial neural networks is very
important for researchers in this field, which is one of the motivations and contributions of
this study. In this paper, we developed several ANN supervisory controllers with different
hyper-parameters to replicate DP results. A total of 31 city drive cycles with over 30,000
data points are used to train and validate the ANN controllers. We studied the effects of
hyper-parameters of the ANN on the results for the city drive conditions and observed a
general rule that more than two hidden layers in the ANN is a more efficient way to obtain
an ANN model that has better training MSE.
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2. Vehicle Modeling

As part of the EcoCAR2 competition, a traditional fuel-powered vehicle, a Chevrolet
Malibu 2013, was modified into a PHEV with parallel through-the-road (PTTR) architecture
in which the internal combustion engine drives the front wheels, and the rear wheels
are driven by an electric motor. The two powertrains can work independently of each
other but are connected in parallel, through the road, as the front and rear wheels rotate
at the same speed (in no-slip conditions). Since our vehicle model simply combines the
torques from the two powertrains (ICE and e-Motor), the results are independent of specific
vehicle architecture, as long as the vehicle is set up as a parallel hybrid vehicle. The vehicle
specifications are listed in Table 1.

Table 1. Vehicle specifications.

Parameters Value

Vehicle mass 2041 kg
Wheel radius 0.336 m

ICE 1.7 L diesel engine with EGR (Opel Astra),
rated 96 kW at 2500 RPM

Transmission GM 6T40 6-speed AT
Differential (ICE) Gear ratio 2.89
Fuel tank capacity 37.85 L

e-Motor 100 kW Magna
Reduction gearbox (e-Motor) gear ratio 7.82

Energy storage system (ESS) 16.2 kWh A123 Li-ion battery with 6S15P3
configuration

Since the test vehicle has two parallel powertrains, ICE and e-Motor, the total GHG
emissions can be expressed as the sum of fuel GHG emissions and electricity GHG emissions:

GHGtotal = GHG f uel + GHGelectricity (1)

In a PHEV, GHG emissions are generated during the burning of fossil fuel in the
ICE, the creation of the fuel, and the production of electricity. Thus, the well-to-wheel
(WTW) GHG emissions, which include the emissions during the creation of the energy
and its application process, make more sense to be used as the metric for GHG emissions
evaluation instead of the ICE exhaust GHG emissions. Taking that into consideration, the
fuel GHG emissions and electricity GHG emissions can be expressed as:

GHG f uel = C1 ∗ m f uel (2)

GHGelectricity = C2 ∗ Eelectricity (3)

where m f uel is the fuel consumption, Eelectricity is the electricity energy consumption, and
C1 and C2 are the coefficients of diesel WTW GHG emissions and electricity WTW GHG
emissions, respectively. The values are taken from the Argonne National Laboratory’s
Greet Model [32].

Based on the vehicle speed which is given by the drive cycle, the traction load required
at the wheel can be modeled as:

Ftraction = Fload + Finertia (4)

Fload = A + B ∗ v + C ∗ v2 (5)

Finertia = Mveh ∗
dv
dt

(6)

where Ftraction is the total traction force required at the wheel, Fload is the resistance force,
v is the vehicle velocity, A, B, and C are the loss coefficients that are taken from EPA dy-
namometer testing data [33], Finertia is the inertia force, and Mveh is the mass of the vehicle.
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Since both ICE and e-Motor contribute to the traction force, the equation can be further
expressed as:

Treq =
Ftraction

rw
= Ticew + Temw (7)

where Ticew is the engine torque at the wheels, Temw is the e-Motor torque at the wheels, rw
is the radius of the wheel, and Treq is the required torque at the wheels.

The torque split ratio between the ICE and e-Motor will determine the GHG f uel and
GHGelectricity. It is defined as Equation (8). The torque split is constrained within the range
from −1 to 1. The torque split and its corresponding operation mode are shown in Table 2.
A negative torque split value means that the engine is providing more torque than the
vehicle required, and the e-Motor is charging the battery pack. At regeneration mode, the
required torque is negative, and the e-Motor will absorb energy from braking.

split =
Ticew
Treq

=
Ticew

Ticew + Temw
(8)

Table 2. Operation modes and torque split value.

Operation Mode Torque Split Value

Charging only −1
Charging (−1, 0)
ICE only 0
Blended (0, 1)

e-Motor only 1, (Ticew+Temw) > 0
Regeneration 1, (Ticew+Temw) < 0

The angular velocities of the wheel, the ICE, and the e-Motor can be obtained from:

ωw =
v

rw
(9)

ωice = ωw ∗ χiced ∗ χiceg (10)

ωem = ωw ∗ χemd (11)

where ωw, ωice, ωem are the angular velocities of the vehicle wheels, ICE, and e-Motor,
respectively. χiced, χiceg, χemd are the engine differential gear ratio, transmission gear ratio,
and e-Motor differential gear ratio, respectively.

The transmission gear number can be calculated from the transmission model based
on the transmission shift map for the 6T40 GM transmission [34]. Additionally, ICE torque
and e-Motor torque can be expressed as:

Tice =
Ticew

χiced ∗ χiceg
(12)

Tem =
Temw

χemd
(13)

min(Ti) ≤ Ti ≤ max(Ti) (14)

where Tice and Tem are the ICE output torque and e-Motor output torque, i = ice or em, and
min(Ti), max(Ti) are the minimum and maximum output torques due to the mechanical
limitations of the ICE and the e-Motor which are obtained from tests under various speeds
of the ICE and e-Motor.

To calculate the fuel GHG emissions, it is first necessary to model the fuel consumption.
Based on dynamometer tests, the fuel consumption is approximated as a second-order
polynomial function of the engine speed and engine torque [31]:

m f uel = A0 + A1 ∗ ωice + A2 ∗ Tice + A3 ∗ ω2
ice + A4 ∗ ωice ∗ Tice + A5 ∗ T2

ice (15)
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where the units of m f uel , ωice, and Tice are mm3/stroke, rpm, and Nm, respectively; Ai are
tuned parameters as listed in Table 3.

Table 3. Values of fuel consumption coefficients

Coefficient Value

A0 32.47
A1 −0.014
A2 0.86
A3 3.6 × 106

A4 −4 × 105

A5 9.8 × 105

The e-Motor GHG emissions are calculated from the energy consumption of electricity,
Eelectricity:

Eelectricity = ∑
t
(Tem ∗ ωem) (16)

Besides GHG emissions, SOC is the other metric used for the analysis and comparison
of each power management strategy. The SOC of the battery can be expressed as:

SOC(t + ∆t) = SOC(t) +
Ibatt
Qn

∗ ∆t (17)

where SOC(t) is the estimated SOC value at time t, Ibatt is the battery current, Qn is the
nominal battery capacity and ∆t is the time step.

The discharging current Ibatt and previously determined SOC values, SOC(t), are
used to estimate current SOC, SOC(t + ∆t).

To calculate the Ibatt, it is assumed that the energy transfer efficiency from battery
electrical energy to e-Motor mechanical energy or vice versa is constant. Thus,

Ibatt = η ∗ Tem ∗ ωem

Vbatt
(18)

where η is the energy transfer efficiency and a 10% loss is modeled for the accessory losses,
Vbatt is the voltage of the battery with 300 V at all times for simplicity.

3. Supervisory Control Algorithms

In this section, each control strategy’s problem setup will be introduced. The DP is set
as the baseline for the control strategies comparison in the results comparison section since
its solution optimality is guaranteed. We applied the ECMS to match the same constraints
to DP. For the ANN, the training set is from DP’s simulation results with the 31 city drive
cycles in the Appendix A Table A1 and different hyper-parameters have been investigated.
In the end, the training results of the ANNs are summarized and compared.

3.1. Dynamic Programming

For the power management strategy, the torque split is the argument to be optimized
with total GHG emissions as the cost function given a certain drive cycle. In our previous
research [31], we found city drive conditions can obtain potential benefits from the blended-
CS mode. Furthermore, we found 20% SOC threshold to switch from CD mode to CS mode
under the city drive conditions has great potential benefits for the total GHG emissions
with 10% SOC as the lower boundary to protect the battery. Moreover, 20% of SOC is also
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practical for real driving conditions. Based on these findings, the open-source code for the
DP algorithm is applied [35] and the following constraints on SOC are applied to DP:

min
split

J = GHG f uel

s.t. 10% ≤SOC(t) ≤ 30%

SOC(t f ) =SOC(0) = 20%

min(Ti) ≤Ti ≤ max(Ti)

(19)

In general, by backward calculation, the DP algorithm will evaluate the optimal cost to
go at each node in the discretized state-time space and terminal cost will also be calculated.
The terminal cost and intermediate costs will format a control map which will be used to
search and obtain the optimal control policy in the forward calculation for a given initial
state. In addition, the DP algorithm’s complexity grows exponentially with the number of
input and state variables. Although DP can only be applied offline with the prior global
information, DP can give the optimal solutions. So we ran the DP with the selected 31 city
drive cycles and set the torque split output results as the training set for ANN. Furthermore,
we used DP as the baseline for the comparison drive cycles in Section 4.

3.2. Equivalent Consumption Minimization Strategy

The ECMS has been studied by many researchers and applied in real-time as a power
management strategy by solving an instantaneous minimization problem [21–23,31]. It
shows great potential in this problem, so we also developed an ECMS controller in our
study. The cost function takes into account both fuel consumption and electrical energy
consumption and is defined as:

J = GHG f uel + ζ ∗ pen ∗ GHGelectricity (20)

where ζ is the equivalence factor, and pen is the penalty function of SOC.
An equivalence factor and penalty function are introduced in the cost function to solve

the issue that the SOC constraint cannot be easily applied to the ECMS algorithm directly
because SOC is a cumulative result of all the previous steps while ECMS calculates the
optimal result based on only the instantaneous information. So we selected the equivalence
factor value through trial. To decide the value of the equivalence factor of the ECMS
algorithm, different values were tried with the UDDS and NYCC-LD drive cycles. As
shown in Figures 1 and 2, the equivalence factor is set as 2.2531, which is the best to sustain
final SOC around 20% for both UDDS and NYCC-LD overall. Additionally, this value
is utilized for all following simulations. The results show that the ECMS controller is
sensitive to equivalence factors by comparing the three SOC curves. Since different SOC
behavior will influence the overall GHG emissions, so in real-time application it needs to
be calibrated carefully before application.

In Equation (20), the constant equivalence factor is multiplied by the penalty function
which can artificially increase or decrease the value around the boundary of the desired
SOC. In order to allow for asymmetric penalization of the state of energy and maintain
the average value at a level closer to one of the boundaries, the penalty value is modified
depending on whether the current SOC is above or below the desired SOC as Equation (21)
shows [36]. If the present SOC is lower than the target SOC, it uses the engine to drive the
vehicle and charge the battery, and if the present SOC is higher than the target SOC, it uses
the e-Motor to drive the vehicle.

pen =

1 + (
SOCre f −SOC(t)
SOCre f −SOCmin

)2np1+1, if SOC(t) ≤ SOCre f

1 + ( SOC(t)−SOC(re f )
SOCmax−SOCre f

)2np2+1, if SOC(t) ≥ SOCre f
(21)

where SOCre f is the desired nominal value of SOC, SOCmin and SOCmax are the minimum
and maximum values of SOC, respectively, np1 and np2 are integers.
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Figure 1. ECMS equivalence factor comparison for UDDS.

Figure 2. ECMS equivalence factor comparison for NYCC-LD.

In this paper, ECMS is implemented by repeating the following steps at each time
instant until the end of the drive cycle:

1. Calculate the torque limits of the e-Motor (Tem,min, Tem,max) and the engine (Tice,min,
Tice,max) based on the state of the vehicle at a given instant of time.

2. Find all possible Tem and Tice that satisfy Equation (7).
3. Calculate all the torque combinations in step 2 based on Equation (20).
4. Find the optimal Tem and Tice combination that minimizes the cost subject to the

torque limits.

3.3. Artificial Neural Networks

Artificial neural networks can learn the complicated nonlinear relationships and
generate the rule for the controller. In this paper, we applied an ANN to learn the torque
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split ratio between the ICE and the e-Motor based on the selected inputs and the optimal
torque split outputs from the DP algorithm. The ANN model is developed by using the
MATLAB DEEP LEARNING toolbox. There are nine observable physical variables in our
study which are the required torque by the vehicle (Treq), engine torque (Tice), engine speed
(ωice), e-Motor torque (Tem), e-Motor speed (ωem), vehicle speed (v), vehicle acceleration,
battery SOC (SOC), and gear number (Ng). Based on these observable variables, we
performed the correlation analysis (more detailed information can be found in [31]). In
general, if two of the observable variables have a very high correlation, just one of them
will be utilized to eliminate multicollinearity. From the correlation analysis, a total of six
input variables are selected for the ANN controller [31]. The torque split value is the output
that targets the DP optimal results. The schematic is shown in Figure 3.

Figure 3. ANN supervisory controller.

A total of 31 city cycles with over 30,000 data points are used to train and validate the
ANN models which are listed in Appendix A Table A1. The training set is used to train the
ANN model and generate the control law for the controller; the validation set is used to
check the ANN controller’s performance and determine when to stop training.

The ANN model topology schematic example is shown in Figure 4. This is a two
hidden-layer ANN model which consists of an input normalization layer, two hidden
layers, an output layer, and an output denormalization layer.

Figure 4. ANN model topology illustration.

Here, the input normalization layer will map the inputs from the actual value to the
per-unit value, while the output denormalization layer does the opposite. To constrain the
torque split value in the range from −1 to +1, the tanh activation function is set for all the
hidden layers and the output layer. The activation functions can be expressed as:

Z1 = tanh(W1 ∗ x + b1) (22)

Z2 = tanh(W2 ∗ Z1 + b2) (23)

Ypredict = tanh(W3 ∗ Z2 + b3) (24)

where x is the normalized input; Z1, Z2, and Ypredict are the outputs of the first hidden
layer, the second hidden layer, and the output layer, respectively; W1, W2, W3, b1, b2, and b2
are the weight matrices and bias vectors, and the subscript of the number corresponds to
each layer.

Different combinations of hidden layers and nodes are utilized, and their results are
compared and analyzed. Deciding the best ANN models is challenging and many different
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measurements can be used to evaluate the training performance of the ANN model [37–39].
In this paper, we used the training mean square error (MSE) to evaluate the ANN models.
Based on the training MSE of torque split value, the best ones are selected among all the
ANN controllers.

First, we trained and compared five ANNs models which use different hidden layers
but the same number of hidden nodes in each hidden layer, with detailed information
shown in Appendix Table A2. Figure 5 shows the training results. Since the computer
is binary based, the number of hidden nodes is set based on the nth power of 2. The
number following “ANN” represents the number of hidden layers. For example, ANN3
represents the ANN controller with three hidden layers and eight hidden nodes in each
hidden layer. ANN1-8 represents a single hidden layer with eight hidden nodes. ANN2-8-8
represents two hidden-layer ANNs, and eight hidden nodes in the first and second hidden
layer, respectively.

Figure 5. Training results of multi-hidden-layer ANN with 8 hidden nodes.

Figure 5 shows the trend that with the same number of hidden nodes in each hidden
layer, the more hidden layers, the smaller the training MSE will be. The potential reason
can be that with the same number of hidden nodes, more hidden layers can help it to
learn the data relationships. However, more hidden layers will increase the number of
parameters which will slow down the computation time for some computation time-critical
applications. ANN5 has the minimum training MSE and it will be used to compare with
DP and ECMS in the results comparison section. The single hidden-layer ANN1-8 shows
the worst training results compared to the others. The potential reason can be that with
multiple input variables, a single hidden layer with a small number of hidden nodes may
not be able to learn the non-linear relationships well. However, it may be optimized by
increasing the number of hidden nodes for the single hidden-layer structure. Therefore, nine
single hidden-layer ANN models with different numbers of hidden nodes are developed
and investigated. Appendix A Table A3 shows the detailed information. The training
results are shown in Figure 6. Additionally, the naming rule is similar to the previous,
ANN1 represents the single-hidden-layer ANN and the following number represents the
number of hidden nodes. For example, ANN1-32 represents a single hidden layer with
32 hidden nodes.
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Figure 6. Training results for single-hidden-layer ANN.

In Figure 6, the results matched our conclusion about the single hidden-layer ANN.
It shows that increasing the number of hidden nodes can efficiently improve the training
performance. The ANN1-32 with minimum training MSE will be used for the comparison
of the results with DP and ECMS. However, ANN1-32 training MSE is 4.64 times that of
ANN5. However, if the 10−4 MSE magnitude is acceptable, we can take more benefit from
the fewer number of parameters of ANN1-32, which is 27.2% less than ANN5, when it
comes to training time. However, ANN1-32 is still worse than ANN2-8-8 overall. Therefore,
we further investigated the hyper-parameters effects with two hidden-layer ANNs.

We developed 11 two-hidden-layer ANN models. First, we fixed the number of
hidden nodes in the second hidden layer, then changed the number of hidden nodes in
the first hidden layer. After that, we used the same method to investigate the effects of the
number of hidden nodes in the second hidden layer. The detailed information is listed in
Appendix A Table A4.

Figure 7 shows the training results of two hidden-layer ANNs. The naming rule is
similar to before, ANN2 represents ANN with two hidden layers and the following number
indicates the number of hidden nodes in the first hidden layer, and the third number
indicates the number of hidden nodes in the second hidden layer. For example, ANN2-8-32
indicates 2 hidden layers, 8 hidden nodes in the first hidden layer, and 32 hidden nodes
in the second hidden layer. ANN2-2-32 has the minimum training MSE and is followed
by ANN2-8-8. Although ANN2-8-8 training MSE is 66.1% larger than ANN2-2-32 and
1.51 times that ANN5, with the 10−4 training MSE magnitude, ANN2-8-8 has 63.67% fewer
parameters than ANN2-2-32 and 61.19% than ANN5. In addition, it shows that for a
two-hidden-layer ANN, it is more efficient to change the number of hidden nodes in the
second hidden layer than in the first hidden layer. Figure 7 also shows the trend that it is
more efficient to modify the number of hidden layers to get better training MSE results
than increase the number of nodes in the single hidden-layer structure. This finding is also
consistent with the conclusion in [28].
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Figure 7. Training results for two-hidden-layer ANNs.

ANN2-8-8, ANN5, ANN1-32, and ANN2-8-32 controllers will be used for comparison
with DP and ECMS in the following section.

4. Results Comparison

The UDDS and NYCC-LD urban drive cycles, which are not included in the training set,
are used for validation by comparing the results with DP and ECMS. The UDDS drive cycle
simulates an urban route of 12.07 km (7.5 miles) with frequent stops, and the maximum
speed is 91.25 km/h (56.7 mph). Additionally, the average speed of UDDS is 31.5 km/h
(19.6 mph). The NYCC-LD also simulates low-speed urban driving with frequent stops, but
with a shorter total distance of 1.89 km (1.18 miles), a lower maximum speed of 44.6 km/h
(27.7 mph), and a lower average speed of 11.4 km/h (7.1 mph) compared to UDDS drive
cycle. The drive cycles’ speed profiles are shown in Figure 8.

Figure 8. Speed profiles of UDDS and NYCC-LD.

There are five metrics for the comparison: fuel consumption (liter), fuel GHG emis-
sions (gram), electricity GHG emissions (gram), total GHG emissions which is the sum of
fuel and electricity GHG emissions, and the terminal SOC status. DP is the baseline for
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the result comparison. In general, the closer the controller’s result is to DP’s, the better
the controller is. Figure 9 shows SOC results of the UDDS drive cycle for each control
strategy. Fuel consumption, fuel GHG emissions, electricity GHG emissions, and total
GHG emissions are summarized in Table 4.

Figure 9. SOC results for UDDS drive cycle.

Table 4. UDDS results comparison.

Control Strategy Fuel Consumption
(Liter)

Fuel GHG
Emissions (g)

Electricity GHG
Emissions (g)

Total GHG
Emissions (g) SOCt f

DP 0.5100 1.81 × 103 0 1.81 × 103 0.2000
ECMS 0.5444 1.93 × 103 1.569 1.93 × 103 0.1998

ANN2-8-8 0.5103 1.81 × 103 1.282 1.81 × 103 0.1998
ANN5 0.5101 1.81 × 103 0.140 1.81 × 103 0.2000

ANN1-32 0.5106 1.81 × 103 −0.678 1.81 × 103 0.2001
ANN2-8-32 0.5097 1.81 × 103 0.902 1.81 × 103 0.1999

Since we set the DP’s terminal SOC to the same 20% as the initial SOC, ANNs replicate
DP’s under urban driving conditions. Therefore, the electricity GHG emissions of ANNs
should be virtually zero. The very small negative or positive GHG emissions value will
only occur when the terminal SOC is slightly higher or lower than the preset 20% SOC. If
the terminal SOC is slightly lower than 20%, which means the battery slightly discharges
and the electrical energy is consumed, it will cause a very small positive electrical GHG
emission. While in the case of terminal SOC slightly higher than 20%, which means the
battery is slightly charged, it will have a very small negative electrical GHG emissions
value since it stores the electricity energy instead of consuming it.

From Figure 9, all the ANN controllers show a similar SOC behavior to DP. ECMS has
a slightly higher average SOC value compared to DP and ANNs. ANN controllers generate
6.22% less total GHG emissions than that of ECMS, as shown in Table 4. In addition, all the
controllers’ SOCs are within 0.1% deviation compared to DP.

Figure 10 shows the SOC comparison results of NYCC-LD. Fuel consumption, fuel
GHG emissions, electricity GHG emissions, and total GHG emissions are listed in Table 5.
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Figure 10. SOC results for NYCC-LD drive cycle.

Table 5. NYCC-LD results comparison.

Control Strategy Fuel Consumption
(Liter)

Fuel GHG
Emissions (g)

Electricity GHG
Emissions (g)

Total GHG
Emissions (g) SOCt f

DP 0.1139 404 −0.045 404 0.2000
ECMS 0.1609 572 −108.180 463 0.2131

ANN2-8-8 0.1146 407 0.020 407 0.2000
ANN5 0.1140 405 −0.960 404 0.2001

ANN1-32 0.1139 405 −0.453 404 0.2001
ANN2-8-32 0.1139 405 −0.264 404 0.2000

From Figure 10, ANN controllers show similar results to UDDS and all the ANN
controllers show similar SOC behavior compared to DP. However, ECMS shows a different
SOC behavior compared to DP and ANNs, with a 6.6% deviation. Moreover, ANN con-
trollers have 12.1% less total GHG emissions than ECMS at least under this drive cycle, as
shown in Table 5.

In order to check the robustness of each control strategy, UDDS and NYCC-LD drive
cycles are repeated 10 times. Figures 11 and 12 are the SOC results of UDDS and NYCC-LD,
respectively. Additionally, the results are listed in Tables 6 and 7, respectively. In Figure 12,
ECMS shows a different SOC to DP and ANNs, and its total GHG emission is 10.06% higher
than the other controllers under the UDDS 10 times drive cycle. This shows similar trends
in UDDS and NYCC-LD which illustrates the significance of the equivalence factor value
selection. In Table 7, ANN2-8-8, ANN5, and ANN1-32 have lower total GHG emissions
because of the higher final SOC at the end of the drive cycle which means they stored
more electrical energy for future use. Overall, the ANN controllers still show similar SOC
behavior and total GHG emissions to DP which is consistent with the UDDS and NYCC-LD
performance. Furthermore, all ANN controllers have the same sum of total GHG emissions
in all four driving cycles in this section compared to DP. However, ANN5 has the best
performance among the ANN controllers if we take SOC constraints into consideration.
ANN2-8-32 comes next, then ANN2-8-8. This also indicates that multiple hidden layers
may help to improve the ANN’s performance.
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Figure 11. SOC results for UDDS repeated 10 times.

Figure 12. SOC results for NYCC-LD repeated 10 times.

Table 6. Results comparison for UDDS repeated 10 times.

Control Strategy Fuel Consumption
(Liter)

Fuel GHG
Emissions (g)

Electricity GHG
Emissions (g)

Total GHG
Emissions (g) SOCt f

DP 5.0306 1.79 × 104 0 1.79 × 104 0.2000
ECMS 5.4503 1.94 × 104 9.910 1.94 × 104 0.1988

ANN2-8-8 5.0328 1.79 × 104 13.919 1.79 × 104 0.1983
ANN5 5.0320 1.79 × 104 0.854 1.79 × 104 0.1999

ANN1-32 5.0359 1.79 × 104 −2.904 1.79 × 104 0.2004
ANN2-8-32 5.0275 1.79 × 104 8.320 1.79 × 104 0.1990
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Table 7. Results comparison for NYCC-LD repeated 10 times.

Control Strategy Fuel Consumption
(Liter)

Fuel GHG
Emissions (g)

Electricity GHG
Emissions (g)

Total GHG
Emissions (g) SOCt f

DP 1.1367 4.04 × 103 0 4.04 × 103 0.2000
ECMS 1.2065 4.28 × 103 −246 4.04 × 103 0.2298

ANN2-8-8 1.1447 4.06 × 103 −67.266 4.00 × 103 0.2081
ANN5 1.1379 4.04 × 103 −20.479 4.02 × 103 0.2025

ANN1-32 1.1373 4.04 × 103 −64.891 3.97 × 103 0.2079
ANN2-8-32 1.1372 4.04 × 103 −0.859 4.04 × 103 0.2001

5. Conclusions and Future Works

In this paper, we further investigated and extended our previous study, and we
focused on urban driving conditions with a low initial SOC condition of 20%. We applied
the DP controller and set it as the baseline for the comparison. ANNs are developed and
analyzed, and then compared against the DP solution as well as ECMS. The effects of ANN
hyper-parameters were investigated. We concluded that:

1. ECMS showed sensitivity to equivalence factor values as shown in UDDS and NYCC-
LD drive cycles.

2. Compared with the multi-hidden-layer ANN structure, the MSE training results of
the single-hidden-layer ANN controller are poor. During artificial neural network
training, changing the number of hidden layers may be a more efficient way.

3. The single-hidden-layer ANN’s training MSE performance can be optimized by
increasing the number of hidden nodes. However, the training MSE may not be more
competitive than multiple hidden-layer structures.

4. All the selected ANNs are within 0.2% GHG emissions and 1.1% SOC error compared
to DP which indicates that ANNs are almost as good as the DP solutions, and it is
implementable in real-time.

Our future works will be:

1. Set up the controllers for implementation on the MicroAutoBox in the vehicle.
2. Run them on our real test vehicle with city drive cycle conditions.
3. Evaluate the results and optimize the controllers based on the tests.
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Appendix A

There are 31 drive cycles used to train the ANN controllers.
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Table A1. Training set.

No. Drive Cycle

1 Air Resource Board Drive Cycle No. 2

2 Assessment and Reliability of Transport Emission Models and Inventory Systems
(ARTEMIS) Drive Cycle

3 ARTEMIS Extra Urban
4 ARTEMIS Urban
5 The Central Business District Cycle (included 14 Repetitions)
6 Combined International Local and Commuter Cycle
7 Extra Urban Drive Cycle HYRROUT
8 Urban Drive Cycle HYZROUT
9 City Suburban Heavy Vehicle Route

10 Composite Urban Emissions Drive Cycle
11 Composite Urban Emissions Drive Cycle-Arterial
12 Composite Urban Emissions Drive Cycle-Congested
13 Composite Urban Emissions Drive Cycle-Residential
14 Economic Commission of Europe Drive Cycle
15 EPA LA92
16 Urban Dynamometer Driving Schedule (Cold-Start, 505secs)
17 Heavy-Heavy-Duty Diesel Truck Transient
18 Hybrid Truck Users Forum Class 4Parcel Delivery Cycle
19 Hybrid Truck Users Forum Refuse Truck cycle
20 India Urban Drive Sample
21 INRETS Urban
22 INRETS Urban1
23 INRETS Urban3
24 INRETS Road1
25 INRETS Road2
26 Japanese JC08 Cycle
27 Nuremberg R36 City Bus Drive Cycle
28 New York Garbage Truck Cycle
29 US EPA Air Conditioning Drive Cycle (SC03)
30 West Virginia University City Drive Cycle
31 West Virginia University Suburban Driving Cycle

Table A2. Multi-layer ANN training results comparison.

ANN L1 L2 L3 L4 L5 Training MSE #Parameters

ANN1-8 8 - - - - 3.88 × 10−3 65
ANN2-8-8 8 8 - - - 2.94 × 10−4 137

ANN3 8 8 8 - - 3.34 × 10−4 209
ANN4 8 8 8 8 - 1.53 × 10−4 281
ANN5 8 8 8 8 8 1.17 × 10−4 353

Table A3. Single-layer ANN training results comparison.

ANN L1 Training MSE #Parameters

ANN1-1 1 1.69 × 10−1 9
ANN1-2 2 6.14 × 10−2 17
ANN1-4 4 1.21 × 10−2 33
ANN1-8 8 3.88 × 10−3 65
ANN1-16 16 2.56 × 10−3 129
ANN1-32 32 6.60 × 10−4 257
ANN1-64 64 2.88 × 10−3 513

ANN1-128 128 5.67 × 10−3 1025
ANN1-256 256 4.54 × 10−3 2049
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Table A4. Two-hidden-layer ANN training results comparison.

ANN L1 L2 Training MSE #Parameters

ANN2-1-8 1 8 6.20 × 10−2 32
ANN2-2-8 2 8 7.86 × 10−4 47
ANN2-4-8 4 8 7.45 × 10−4 77
ANN2-8-8 8 8 2.94 × 10−4 137

ANN2-16-8 16 8 4.22 × 10−4 257
ANN2-32-8 32 8 4.52 × 10−4 497
ANN2-8-1 8 1 5.34 × 10−3 67
ANN2-8-2 8 2 3.22 × 10−3 77
ANN2-8-4 8 4 1.94 × 10−3 97

ANN2-8-16 8 16 1.96 × 10−4 217
ANN2-8-32 8 32 1.77 × 10−4 377
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