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Abstract: Realizing the dynamic redundancy of sensors is of great significance to ensure the energy
saving and normal operation of the heating, ventilation, and air-conditioning (HVAC) system. Build-
ing a virtual sensor model is an effective method of redundancy and fault tolerance for hardware
sensors. In this paper, a virtual sensor modeling method combining the maximum information coeffi-
cient (MIC) and the spatial-temporal attention long short-term memory (STA-LSTM) is proposed,
which is named MIC-STALSTM, to achieve the dynamic and nonlinear modeling of the supply and
return water temperature at both ends of the chiller. First, MIC can extract the influencing factors
highly related to the target variables. Then, the extracted impact factors via MIC are used as the
input variables of the STA-LSTM algorithm in order to construct an accurate virtual sensor model.
The STA-LSTM algorithm not only makes full use of the LSTM algorithm’s advantages in handling
historical data series information, but also achieves adaptive estimation of different input variable
feature weights and different hidden layer temporal correlations through the attention mechanism.
Finally, the effectiveness and feasibility of the proposed method are verified by establishing two
virtual sensors for different temperature variables in the HVAC system.

Keywords: virtual sensor; HVAC; spatio-temporal; long short-term memory (LSTM); maximal
information coefficient (MIC)

1. Introduction

Heating, ventilation, and air-conditioning (HVAC) systems, which ensure a good
indoor environment and air quality, are frequently used in commercial, residential, and
industrial buildings. HVAC systems can be thought of as a complex network of several
interrelated subsystems, each of which includes several mechanical components and a large
number of sensors. Common sensors used in HVAC systems include humidity sensors,
CO, sensors, temperature sensors, and particulate matter (PM) sensors, etc. [1]. These
sensors are constantly monitoring the real-time operation of the system and feeding the
monitored information back to the control system. Correct sensor values are the basis
for the control system to be capable of making appropriate decisions. However, sensors
used in HVAC systems are inevitably prone to different types of faults (e.g., bias, drift, and
abrupt failures). Errors generated by faulty sensors have considerable effects on the control
behavior of HVAC systems, and lead to increased energy consumption and reduced thermal
comfort [2]. Therefore, it is essential to construct virtual sensors as effective alternatives to
faulty sensors in HVAC systems.

Generally, the modeling methods of virtual sensors are divided into two categories,
including model-based methods and data-driven methods. Model-based methods require
mathematical equations to define the relationship between input and output variables.
However, due to the complexity of modern HVAC systems, it is difficult to use mathe-
matical equations to establish an accurate virtual sensor model. In contrast, data-driven
methods do not need to establish an accurate mathematical model, and only need to obtain
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a decision function through the processing of historical observation data. The accuracy
of the final results is ensured by adjusting the decision function continuously. Plenty of
multivariate statistical methods and machine learning methods based on data-driven are
widely used in the development of virtual sensors, such as principal component regression
(PCR) [3], partial least squares regression (PLSR) [4], support vector regression (SVR) [5],
and multilayer perceptron (MLP) [6]. However, multivariate statistical methods for virtual
sensor modeling have significant limitations in dealing with non-linear data. Moreover,
MLP frequently suffers from gradient explosion, which may lead to poor modeling per-
formance when the network structure becomes too large and complex. In response to the
many problems in multivariate statistical methods and machine learning methods, deep
learning has been gradually developed over the past decade and has been very successful in
a variety of areas [7-10], including the modeling of virtual sensors. For example, the gated
stacked target-related autoencoder (GSTAE) for virtual sensor modeling was proposed
and applied to an industrial case to measure the butane concentration at the bottom of a
de-butane tower [11]. An adaptive deep belief network (OAFDBN) was used to build a
virtual sensor for the sake of estimating the cetane content in diesel [12].

Among the vast range of deep learning algorithms, the long short-term memory
(LSTM), with its unique storage unit and gate structure, can effectively avoid the gradient
vanishing in neural networks and better capture the non-linear and dynamic correlations
of data in industrial processes. There is no doubt that the superiority shown by LSTM
has attracted countless researchers working in the field of virtual sensors. For example,
a virtual sensor based on LSTM has been put forward and used in sulfur recovery units
(SRU) [13]. As sensors in SRU are highly susceptible to corrosion, the virtual sensor built
is an effective alternative to the hardware sensor for estimating the concentration of SO,
and HjS in the output gas stream. At the same time, improved algorithms based on LSTM
are constantly being proposed. A supervised long short-term memory (SLSTM) capable of
dynamically learning hidden states using target and input variables was proposed and the
effectiveness of the virtual sensor model built by SLSTM was demonstrated on the penicillin
fermentation process [14]. A variable attention-based long short-term memory (VA-LSTM)
was proposed for virtual sensor modeling, which focuses on capturing correlations between
input variables and the target variable [15]. In the proposed model, different weights are
assigned to each input variable depending on the magnitude of the correlation. Ultimately,
satisfactory performance for the final distillation point prediction of the heavy naphtha in
the hydrocracking process has been achieved.

However, to the best of our knowledge, few studies have been carried out on virtual
sensor modeling for HVAC systems. This is because there are still some problems that
need to be overcome. For instance, a large amount of sensor data are stored during the
operation of HVAC systems, but not all of them contribute to the modeling of virtual
sensors. Furthermore, HVAC systems are always in switching operating states. This
switching between operating conditions will lead to sudden changes in some sensor data,
which have a great impact on the subsequent predictions of virtual sensors. Therefore, this
paper proposes an MIC-STALSTM method for handling the two problems described above
and frequently encountered in the operation of HVAC systems. The method combines the
maximal information coefficient (MIC) and the spatio-temporal attention long short-term
memory (STA-LSTM). According to the data collected by the HVAC system, the method
uses the MIC to explore the correlation between the remaining variables and the target
variables, which are the supply and return water temperature variable at both ends of
the chiller. Moreover, the highly correlated impact factors filtered by the MIC are used as
the input variables of the subsequent STA-LSTM algorithm to construct a virtual sensor.
Finally, the MIC-STALSTM algorithm is validated on a real HVAC system and compared
with the LSTM, TA-LSTM, and STA-LSTM for analysis.

The remainder of this paper is organized as follows. In Section 2, the relevant funda-
mentals of the maximal information coefficient (MIC) and the spatio-temporal attention
long short-term memory (STA-LSTM) are briefly summarized. In Section 3, the MIC-
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STALSTM model combining MIC and STA-LSTM is proposed, and a virtual sensor mod-
eling framework based on MIC-STALSTM is presented. In Section 4, the effectiveness
and feasibility of the proposed method are verified in a case study of an HVAC system by
constructing virtual sensors for two target temperature variables. Finally, conclusions are
drawn in the last section, Section 5.

2. Methodology

In this section, the deep learning framework and some basic algorithms that make up
the MIC-STALSTM method are presented in detail.

2.1. Maximal Information Coefficient

When exploring relationships in datasets, traditional correlation coefficient-based
methods can only effectively estimate the linear relationships between variables. In
contrast, non-linear relationships are more common in actual industrial datasets. MIC
is a powerful method to measure the correlation between two variables, which can
not only discover linear correlations in datasets, but also explore potential non-linear
and non-functional correlations between variables [16,17]. For two variables X and Y,
their correlation is calculated via MIC. The first step is to draw a scatter plot of the
dataset D = {(x1,v¥1), (x2,y2), -+, (xn,yn)} (Where n is the number of samples) on a
two-dimensional space. Along the x-axis and y-axis directions, i grids and j grids are,
respectively, divided, and the two-dimensional space is divided into i X j small grids. The
scatter plot formed by the dataset D has a corresponding probability distribution D|G on
each small grid G [18]. Since there is more than one way to divide the dataset by grid,
all existing grid possibilities can be explored through different partitioning schemes. An
optimal discretization method can be found and the maximum mutual information (MI)
corresponding to the optimal discretization method can be obtained.

MI*(D,i,j) = max MI(D|G) 1)

where MI(D|G) represents the mutual information when the probability distribution is

D|G. The maximum mutual information value is normalized to the interval [0, 1], which

can be expressed as:

MI*(D,i,j)

logomin(i, )
Then, we select the largest mutual information value after normalization as the MIC

value. The calculation of MIC can be expressed as:

M(D)ixj = (2)

MIC(D);xj = maxi, j<p(uyM(D)ix; ®)
where the resolution of the grid is restricted toi x j < B(n) and B(n) = n°®.

The variables X and Y are independent of each other when the value of MIC equals 0;
when the MIC is equal to 1, there is a functional relationship that can be described between
the variables X and Y. A prominent feature of MIC is that when MIC is used to detect the
correlation between variables, the value measured by MIC will be more concentrated at
either ends of the range [0, 1]. Such characteristics allow MIC to better explore the potential
relationships between variables than traditional feature selection methods such as the
Pearson or Spearman correlation coefficient.

2.2. Spatio-Temporal Attention Long Short-Term Memory

The encoder—decoder (Seq2Seq) is a deep learning framework that is widely used
to process time series, which provides a powerful solution for the problem processing of
dynamic sequences, and its basic structure is shown in Figure 1a. The encoder—decoder
structure firstly needs to compress all the information of the input data sequence into
an intermediate vector ¢ with a fixed length through an encoder unit, and then decode
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the intermediate vector c through a decoder unit to obtain the desired output sequence:
{y1,Y2,- -+ ,yn}. The encoder unit and decoder unit in the framework can use any basic
neural network framework, such as RNN, GRU, LSTM, and so on.

The encoder-decoder framework has distinct advantages in some areas, such as
machine translation, in that this framework can handle the problem of unequal lengths of
input and output sequences. However, as the length of the processing sequence increases,
the intermediate vector ¢ may lose some key valid information, resulting in a decrease
in the accuracy of subsequent decoding. Therefore, for the purpose of addressing the
challenge of information loss in the encoder-decoder framework, the attention mechanism
was introduced to the basic encoder-decoder framework structure [19]. In this attention-
based structure, shown in Figure 1b, the original fixed-length vector c is replaced by a
changing vector ¢; determined by the current desired output y;.

Y
Encoder

(a) (b)
Figure 1. Some basic structures. (a) Structure of an encoder-decoder. (b) Structure of an attention-
based encoder—decoder.

This paper adopts the spatio-temporal attention long short-term memory (STA-LSTM)
model; its structure is shown in Figure 2, which introduces the spatial attention mechanism
and the temporal attention mechanism on the basic encoder-decoder framework. Firstly,
STA-LSTM introduces a spatial attention mechanism on the encoder side, which can assign
different spatial attention weights to input variables at different time steps. Its calculation
process is as follows.

In time step #, there are samples of k variables: x; = [x},x7,- -, x|, where xf € R3,
the spatial weight corresponding to k variables y; = ['ytl, ')/%, cee, 'y]t‘], where the formula for
calculating the spatial weight corresponding to the ith variable is as follows:

7t = Uitanh(W¥' xp + WHs, 1 +by) ®)

where i € [1,k], U}, W*1, WM are the parameters that the network needs to learn through
training, by is the bias, s;_1 is the hidden variable from the LSTM hidden layer, and tanh is
the double curve activation function. We normalize the spatial attention weight of the ith
variable by Equation (6) in order to ensure that the sum of the spatial attention weight of
all input variables is 1 at time step t.

wi— P
i exp(r})

The spatial weights assigned to different inputs finally determine the amount of
information flowing to the encoder part of the LSTM network. The larger the spatial
weight, the more important the corresponding input features are for predicting the output.

(6)
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Then, we assign their corresponding weights to the input variables, [x},x7,- -, xf], and
obtain a new input sequence by weighting, as shown in Equation (7).

~ T 1.1 .22 k k
X=X 0p = X505 + X705 + -+ X0 (7)
e [sea
e Pl : T j
| e— - —o——«
k| Do ; b ‘
Y e -
Dol A
; P ; T
M T T : /"1
o i e
: B

Spatial Temporal
Attention Attention

Encoder Decoder

Figure 2. Structure of STA-LSTM.

The new input sequence finally enters the LSTM network of the encoder part with
different input variable information, and obtains the hidden state at time step ¢. The
structure of LSTM is shown in Figure 3, and its definition can be expressed as:

fr=o(wglhi_1, %] + by)
it O'(Zl)l[ht 1,X,}] +b )
Ot O’(ZUO [l’lt 1,Xt] + b )

= tanh(w¢[h;_1, %] + be) ®
cf =frociqFir-G
hy = Oy - tanh(ct)
Moreover, the hidden state of the encoder part can be expressed as:
he = frstmy (%6, he-1) )
___________________________________ &
1 tanh

he

Figure 3. Structure of the LSTM unit.

Subsequently, a temporal attention mechanism is introduced after the LSTM network
of the encoder, which assigns a temporal attention weight to the hidden state in each
LSTM network, as shown in Equation (10), and is weighted by the latter hidden states that
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adaptively determine the hidden states generated instantaneously by the encoder LSTM at
all moments.
gl = Ultanh(W*2hy + W"2s,_1 + by) (10)

wheren € [1, T], Uf, W*2, Wh2 are the parameters that the network needs to learn through
training, and the assignment of the temporal attention weight depends on the current input
hy and the LSTM hidden variable s;_; from time step f — 1. The non-linear function tanh
is used as the activation function due to its good convergence performance. Then, B} is
obtained after normalizing g}
n__ explgr)
t= &7 ‘ (11)
Yi—1exp(B)

Calculating the hidden sequence and the temporal attention weight can finally obtain

the changing intermediate vector c,:

T
=Y Bih (12)
t=1
The LSTM hidden layer of the decoder part can be represented as:

Sn = fLsT™M, (Yn—1,CnsSn—1) (13)

Finally, the predicted output y, is obtained from the intermediate vector ¢, and the
hidden layer output s, updated by the decoder at moment ¢ = n:

Yn = US (W (s, cu) + b3) (14)
where u§>, W®l and b3 are the model parameters that the neural network can learn.

3. Virtual Sensor Modeling Based on MIC-STALSTM

This section introduces the virtual sensor modeling process based on the MIC-STALSTM
algorithm, and its framework is shown in Figure 4. In the following subsections, we will
introduce the process of using the virtual sensor model to predict the temperature variables.
The process includes offline training, online prediction, and evaluation of the prediction
performance of the virtual sensors through three different indicators.

3.1. Offline Training

The dataset collected in an industrial process is divided into a training dataset {x; }
and test dataset {x, }. The detailed steps of the offline model training of MIC-STALSTM
are shown below.

Step 1: Through Algorithm 1, perform feature selection on the training dataset {x;} to
obtain the dataset {x; s};

Step 2: Normalize the dataset {x; ;};

Step 3: Input the pre-processed training dataset and the network hyperparameter set
in advance into the model to train the STA-LSTM model.

3.2. Online Prediction

When the training dataset obtains relatively satisfactory results and performance on
the model MIC-STALSTM, the network parameters are saved and used for the online
prediction of target variables. The steps are described as follows.

Step 1: Through the MIC value obtained from the training dataset, perform the
same feature selection on the test dataset {x,} to obtain the dimension-reduced test
dataset {x, s},

Step 2: Use the normalization parameter of {x; s} to normalize the test dataset {x, s};

Step 3: Place the test dataset after preprocessing into the trained STA-LSTM model to
obtain the final prediction outputs.
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Industry Process
Training
dataset {x; }
!
Feature se;lechon Test dataset
ACCOhing 10 otttk i ettt > (%)}
Algorithm 1(MIC) ?
Training dataset after feature Test dataset after feature
selection {x¢ s} selection {Xo.s}
Calculate the mean and the standard
deviation of the training dataset, and | __[ | Use the same mean and standard
use them to standardize the training deviation to standardize the test dataset
dataset
Random
Initialization
of Network
Parameters
Training STA-LSTM | _ _ _ _ 14____ .| Trained STA-LSTM
model model
The predicted value of

the target variable

Off-line Training On-line Prediction

Figure 4. Framework of MIC-STALSTM-based virtual sensor modeling.

Algorithm 1 Feature selection through maximal information coefficient

Input: Discrete variables
Output: Variables after feature selection

1:
2:
3:

11:
12:
13:
14:

R B A

Stepl:Maximum mutual information
for each grid G do
Explore the scatter plot for each grid
Compute mutual information MI(D|G)
MI*(D,i,j) + MI(D|G)
end for
Step2:Normalization
Normalization of MI*(D,i,j),0 < MI*(D,i,j) < logy(min(i,j))
Step3:MIC
Calculate MIC with limits : i x j < B(n) N B(n) = n%®
Step4:Feature selection
for each MIC do
MIC > A threshold

end for
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3.3. Performance Indicators

The prediction performance of the model is evaluated by three indicators: root mean
square error (RMSE), mean absolute value error (MAE), and coefficient of determination
(R?). The root mean square error (RMSE) and mean absolute value error (MAE) are defined
as follows:

RMSE = | =y ¥i— Vi (15)
N= v
1 N
MAE = < ) lvi = ¥il (16)
N i=1

In the above two equations, N is the total number of training samples, y; is the true
value of the test data, and ¥j; is the predicted value of the data output by the model. Among
them, RMSE focuses on calculating the prediction error of the entire test dataset according
to the above definition. Furthermore, MAE can also better reflect the real situation of
the predicted value error. This is because the errors are absolute values, and there is no
situation where positive and negative errors cancel each other out. It can be seen from
the definitions of RMSE and MAE that the smaller the values of RMSE and MAE, the
smaller the model prediction error and the more accurate the prediction. Moreover, another
indicator that is widely used in forecasting problems is the coefficient of determination R?,
which is defined as follows:

R (vi — 5:)
le\il (yi —7)?

where § represents the average of all training samples. R? represents the squared correlation
between the true and predicted outputs. With R? being closer to 1, better predictive
performance of the model is indicated.

R?=1- (17)

4. Case Study

In this section, the working principle of the HVAC system and the dataset used for the
algorithm performance comparison are described in detail. Moreover, the performance of
the proposed MIC-STALSTM algorithm is validated for the prediction of two temperature
variables in the HVAC system. The two temperature variables are the chilled water return
temperature variable T, and the chilled water supply temperature variable T,j,,s. For
T.nwr, we aim at demonstrating the effectiveness of the MIC-STALSTM when there are
switches in operating conditions in the HVAC system. For T, the superiority of MIC-
STALSTM is verified when there is no work switching in the HVAC system.

4.1. Description of HVAC Systems
4.1.1. The Working Principles of HVAC Systems

Figure 5 gives the basic working principle of a heating, ventilation, and air-conditioning
(HVAC) system that contains two heat exchange circulation systems, internal and external
circulation. In the internal circulation (bottom half of Figure 5), chilled water pumps push
T.nws cold water cooled by a chiller into the building to cool and dehumidify the air inside
the building through heat exchange. The circulating water, which has absorbed the heat of
the air inside the building and increased in temperature to T, is returned to the chiller
for cooling, and its heat is transferred to the external circulation via the condenser. In the
external circulation (top half of Figure 5), the condenser water pumps drive the water in
the condenser to absorb the heat generated by the evaporator to the cooling tower, which
discharges the heat from the water to the outdoor air, where it flows back to the condenser
and so on. The evaporator in the internal circulation and the condenser in the external
circulation are encapsulated together, and this whole is known as the chiller. The HVAC
system absorbs the heat from the indoor environment and transports it to the outdoors
through energy conversion, so as to achieve air exchange and cooling.
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Figure 5. Working principle diagram of HVAC systems.

4.1.2. Data Description

The HVAC system selected for analysis is applied to the space cooling of a high-rise
office building located in a city in the tropical region of China. The city’s annual average
temperature is in the range of 25-32 °C, and the average humidity is around 85%. Figure 6
presents the schematic of the HVAC system, which employs three chillers, two cooling
towers, three condenser water pumps, and four chilled water pumps. The three chillers
are rated at 550 RT, 550 RT, and 235 RT, respectively (RT is the cooling tonne, i.e., a unit of
power indicating cooling capacity, 1RT = 3.517 kW).

CHWR TEMP
FEEURM cHwr FLow

592.2 gpm

5
CHILLED WATER PUMPS L

CHILLER2
RA 0%

CONDENSER WATER PUMPS o4

CWS TEMP CHILLER1

27.160 °C Lo (D

Figure 6. Schematic of the HVAC system (Reprinted from Ref. [20]. 2017, Official of TipDM Cup).

The overall dataset was sampled from the operational data of the HVAC system at
the actual site from 0:00 on 30 January 2017 to 23:13 on 14 February 2017, with a total
sampling duration of 16 days. The sampling interval was 1 min and data were collected for
a total of 50 parameters, with detailed parameters’ descriptions shown in Table 1. Emphasis
needs to be placed on the fact that the values taken for all HVAC parameters are point
data and not the averaged data over 1 min. A total of 18,292 samples were stored during
the sampling process and the overall sample dataset was divided into two separate data
subsets, a training dataset containing 5000 sample points and a test dataset containing
13,292 sample points. At the same time, the HVAC system has the characteristic of operating
under variable conditions over a long period of time, and this characteristic is reflected
in the dataset. At sample point 6125, the change in state of variables S¢;p1 and Sepwp2
triggers a change in condition from chilled water pump No. 1 to chilled water pump No. 2,
which continues until sample point 9965. At sample point 9665, chilled water pump No. 2
switches to chilled water pump No. 1 again. Similarly, at sample points 12,885 and 14,910,
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the increase in the state variables ncyp_pe and Meyqp_pe leads to a change in the flow rate
and an increase in the head of the condenser and chilled water pumps.

Table 1. The description of the HVAC system parameters

No. Variables Descriptions Unit
1 RH Relative humidity %
2 Taryp Dry bulb temperature °C
3 Toeth Wet bulb temperature °C
4 Sem Status of the chiller No. 1
5 Secin Status of the chiller No. 2
6 Sen3 Status of the chiller No. 3
7 Pn Power of the chiller No. 1 kW
8 Ppn Power of the chiller No. 2 kW
9 Pys Power of the chiller No. 3 kW
10 Hehiller_ef f Efﬁciency of the chiller kW/RT
11 Schwp1 Status of chilled water pump No. 1
12 Schwp2 Status of chilled water pump No. 2
13 Schwps Status of chilled water pump No. 3
14 Schwp4 Status of chilled water pump No. 4
15 Penwpt Power of chilled water pump No. 1 kW
16 Petop2 Power of chilled water pump No. 2 kW
17 Petwps Power of chilled water pump No. 3 kW
18 Pepapa Power of chilled water pump No. 4 kW
19 Mehwp_pe Speed of chilled water pump Y%
20 T hws The temperature of water flowing out of the chiller °C
21 Tacn Cooling effect: temperature difference between T, and Ty, °C
22 Uchaws fhdr The flow rate of cooling water in internal circulation gal/min
23 Ochwgpmrt Load flow rate: vcpys uar/ Lsys gal/min-RT
24 Petwgpmrt Setting point of v jyepmrt gal/min-RT
25 Scwpl Status of condenser water pump No. 1
26 Scwp2 Status of condenser water pump No. 2
27 Scwp3 Status of condenser water pump No. 3
28 Pewpt Power of condenser water pump No. 1 kW
29 Pewp2 Power of condenser water pump No. 2 kW
30 Pewps Power of condenser water pump No. 3 kW
31 Newp_pe Rate of condenser water pump %
32 Newp_ef f Average efficiency of condenser water pump kW/RT
33 cwr The temperature of the water flowing out of the condenser °C
34 Tews The temperature of the water flowing into the condenser °C
35 Vcws fhdr The flow rate of chilled water in external circulation gal/min
36 Vcwgpmrt Load flow rate: v, Fhdr / Lsys gal/min-RT
37 SPewgpmrt Setting point of vcwgpmrt gal/min-RT
38 Serl Status of cooling tower No. 1
39 Sei2 Status of cooling tower No. 2
40 Py Power of cooling tower 1 kW
41 Py Power of cooling tower 2 kW
42 Met_pe Speed of cooling tower fans %
43 Net_eff Average efficiency of cooling tower kW/RT
44 SPet_efy Setting point of #7¢; ¢ kW/RT
45 Qsystp Power consumption of the total system kW
46 Lsys The cooling load of the total system RT
47 Hef fsys Efficiency of the total system kW/RT
48 HBsys Thermal balance of the total system %
49 Nehwp_ef f Average efficiency of chilled water pumps kW/RT
50 chwr The temperature of the water flowing into the chiller °C
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4.2. MIC-STALSTM for Temperature Prediction
4.2.1. Pre-Processing of Variables in the HVAC System by MIC

Due to the complex coupling between variables in the HVAC system, inputting all
variables into the prediction model at the same time can easily lead to problems such as
duplication of information and invalid features. These problems may have a negative
impact on the accuracy of the virtual sensor model. Moreover, the 50 variables involved in
the HVAC system are frequently faced with switching conditions, which can lead to drastic
changes in sensor values. Sudden changes in sensor values can also have a significant
impact on model accuracy. For the purpose of solving the above two problems and further
improving the prediction accuracy of the virtual sensors, MIC values were calculated in
order to prepare for subsequent variable selection. Figure 7 shows the coefficient matrix
calculated by MIC, and the values in the coefficient matrix represent the MIC metric
between the variables two by two in the HVAC system.

P_chwp2 s
P_cwpl s

P_cwp2 foory
P_cwp3
P_ctl fanfosr
P_ct2 fosn

RH
T_dryb
n_chillereff
n_cwpeff fizls
n_chwpeff oo
n_cteff
v_chwgpmrt 4o
v_cwgpmrt
Q_systp{a
L_sys i
n_effsys Joafsos
HB_sys
T_wetb
S_chl

S_ch2
s_ch3
s_chwpl
S_chwp2 s
S_cwpl o
S_cwp2
S_cwp3
S_ct1 Jalsaed
S_ct2 fiaufsaefozsso ool
SP_cwgpmirt
SP_chgpmrt
n_cwp_pc o [asa sl
M_chwppc . =
M_ctpc fracefose s
SP_cteff Jaafoa| Joard
P_ch3
P_chwp3
P_chwpa o [im] B

= 0.8

6132 (888 -= IR e s [ = Joossoedar]

S_chwp3
S_chwpd

T_dch Jaof

T_chwr {iss

R b 3D D
BRI O

Figure 7. Coefficient matrix between variables of the HVAC system.

In order to verify that the relationships between the variables corresponding to dif-
ferent MIC values are significantly different, Figure 8 shows the scatter plots between the
dry bulb temperature T, and the return water temperature T;,,,; the cooling effect Ty,
and the return water temperature Ty, As can be seen in Figure 8, Ty, and Ty, whose
MIC vaule is equal to 0.262, are independent of each other. Moreover, there is a linear
correlation between T, and Ty, for an MIC value equal to 0.853, although there are
a few outliers due to variations in operating conditions and loads. The larger the MIC
value, the higher the correlation between the variable and the target variable, and the
more information about the target variable it contains. Therefore, by choosing an MIC
value greater than a certain threshold, it is ensured that the feature variables selected for
prediction remain highly correlated with the target variables. Ultimately, the threshold for
MIC was determined to be 0.7 based on empirical selection [21]. For T, 11 variables
with MIC values greater than 0.7 were selected as the input feature variables, as shown in
Equation (18). For T,jys, 10 variables were selected as the input feature variables, as shown
in Equation (19).
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Figure 8. Scatter plots of Toyr and Tyryp, Tepr, and Tyep,.

4.2.2. The Selection of Hyperparameters of STA-LSTM

After pre-processing the variables in the HVAC system by MIC, the filtered variables
are used as feature variables for the training and prediction of the STA-LSTM network.
Then, for STA-LSTM, several hyperparameters in the algorithm need to be determined
rationally in order to achieve high accuracy. Some of the most commonly used methods
for determining hyperparameters include trial and error, grid search, random search, and
Bayesian optimization. For the STA-LSTM studied in this paper, the hyperparameters
to be optimized include batch size, the number of neurons, and iterations, etc. In this
paper, the optimal set of parameters is confirmed by a combination of random search and
trial and error. Firstly, by randomly generating several different sets of hyperparameters
to obtain different experimental results, the approximate optimal interval is gradually
found. Subsequently, the detailed optimal parameter set is found by the trial and error
method. For T, different batches in the range [30, 60, 90, 120, 150, 180, 210] show the
performance trend of the STA-LSTM-based virtual sensor model. As shown in Figure 9a,
with the increase in the batch size, the general trend of RMSE first decreases and then moves
upwards, and remains relatively stable. The appropriate batch size should preferably be
set between 30 and 90. In this paper, it is set to 64. As another important hyperparameter,
the number of iterations is set to 50. At this number of iterations, the loss function of the
STA-LSTM network converges on the training dataset, as shown in Figure 9b.
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Figure 9. The training curve of the neural networks: (a) Description of the relationship between
RMSE and batch size for Ty, based on STA-LSTM. (b) Convergence curve of STA-LSTM.

All of the neural network models used in this paper have approximately the same

structure. Therefore, the neural network models were all placed under the same hyperpa-
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rameters for training, which helps to compare the differences between the different models.
Similar to the method for determining the batch size, the hyperparameters used for all
algorithms were finally determined, as shown in Table 2.

Table 2. The final values of the hyperparameters corresponding to different target variables

Method Learning Rate Hidden Unit  Batch Size Time Step Iterations
Tonwr 0.001 60 64 4 50
Totns 0.003 60 64 3 50

4.2.3. Performance Comparison

To demonstrate the effectiveness of combining MIC with STA-LSTM, the algorithm
of MIC-STALSTM is used with LSTM, TA-LSTM, and STA-LSTM for the predictions of
the temperature variable T, on the test dataset, as shown in Figure 10. Moreover, in
Figure 10, the model deviation corresponding to each model for the temperature prediction
is given. In the prediction images corresponding to the four algorithms, the red solid line
denotes the predicted value given by the virtual sensor, and the blue solid line denotes the
true value of the actual hardware sensor. It can be seen that large deviations exist between
the predicted and actual curves for LSTM. The predicted curve of the TA-LSTM-based
model can roughly track the trend of the actual curve. Then, the prediction curve of the
virtual sensor based on the STA-LSTM algorithm is more closely aligned with the blue
curve of the actual sensor value compared with the previous two algorithms. However,
from the area circled by the red dotted line in Figure 10f, it can be seen that the predictions
of the STA-LSTM-based model at some fixed sampling points still have large prediction
errors, such as at sample point 1125, at sample point 4665, at sample point 7885, and
at sample point 9910 in the test data. These coarse prediction errors are caused by the
switching among different operating conditions in the HVAC system.

In general, the attention-based TA-LSTM and STA-LSTM are able to adjust the influ-
ence of different input variables on the target variable by adaptively adjusting the weights
to ensure the accuracy of prediction. However, due to the abruptness of the HVAC system’s
operating condition transitions, the attention-based TA-LSTM and STA-LSTM are unable
to adjust the weights to accurately predict the target temperature variable Ty, in a timely
manner. Therefore, the predicted values of the virtual sensors are inaccurate compared to
the measured values of the actual sensors. In contrast, the improved MIC-STALSTM algo-
rithm first extracts the influences highly correlated with T, by MIC before proceeding
with the virtual sensor modeling. As can be seen in Equation (18), the variables that have
an impact on the operating conditions at the four sampling points, Sciwp1, Schwp2, Memp_pe,
and Mpyp_pe, are not among the filtered feature variables. Thus, by displaying the area
outlined by the red dotted line in Figure 10h, the MIC-STALSTM algorithm is more accurate
in predicting the variable T, at the four sampling points of the work condition switch.

The MAE, RMSE, and R? of the four different algorithms for the variable T, on the
test dataset are given in Table 3. As can be seen from Table 3, LSTM has the worst prediction
performance, with the largest MAE and RMSE and the smallest R?> metrics among the four
algorithms. With the feature selection of the dataset by MIC and the introduction of the
spatial-temporal attention mechanism, MIC-STALSTM is able to capture the data features
and information in the industrial time series more effectively. It provides the best prediction
accuracy of the four algorithms, as evidenced by the smallest values of the MAE and RMSE
metrics and the largest values of the R?.
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Figure 10. Predicted performance of four algorithms : (a) Prediction result of LSTM. (b) Prediction
residual of LSTM. (c) Prediction result of TA-LSTM. (d) Prediction residual of TA-LSTM. (e) Prediction
result of STA-LSTM. (f) Prediction residual of STA-LSTM. (g) Prediction result of MIC-STALSTM.
(h) Prediction residual of MIC-STALSTM.

Table 3. Prediction performance indicators of the four algorithms for the variable T,

Method MAE RMSE R?
LSTM 0.9029 1.3146 0.3185
TA-LSTM 0.2951 0.3940 0.9387
STA-LSTM 0.0969 0.2340 0.9784
MIC-STALSTM 0.0415 0.0758 0.9977

At the same time, as there are 50 variables involved in the HVAC system, too many
input variables or the presence of covariance may have a negative impact on the model
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accuracy. Since MIC-STALSTM is capable of filtering highly correlated characteristic
variables by MIC, its prediction performance is better than the LSTM, TA-LSTM, and
STA-LSTM algorithms even without the conditional switching problem. To further validate
the superior performance of MIC-STALSTM, the states of the variables are modified in
the dataset. The four sample points for the switching of operating conditions described
before no longer switch, and continue to maintain the original state at the previous moment.
For example, at sample point 1125 of the test data, instead of switching from chilled
water pump No. 1 to chilled water pump No. 2, the condition of chilled water pump
No. 1 is maintained.

For T, the prediction results of the four different algorithms without frequent
switching of operating conditions are shown in Figure 11. In Figure 11, the horizontal axis
is the labeled value and the vertical axis is the predicted value. The closer the scatter is to
the main diagonal (red reference line), the better the prediction performance. Thus, the
MIC-STALSTM shows the best prediction for T,j,,,s compared to the other three algorithms,
because the scatter distribution of MIC-STALSTM is more concentrated near the main
diagonal line throughout the prediction interval [6, 11].
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Figure 11. The scatter plots of predicted and labeled values for T,,s with LSTM, TA-LSTM, STA-LSTM,
MIC-STALSTM. (a) Prediction of T,,,s based on LSTM. (b) Prediction of T,,,s based on TA-LSTM.
(c) Prediction of T, based on STA-LSTM. (d) Prediction of T,,,s based on MIC-STALSTM.

In order to show more intuitively the prediction performance of the four different
algorithms for the target variable 1,5, box plots of the absolute prediction errors for the
four methods are given in Figure 12, which can effectively reflect the data distribution
characteristics of the absolute errors. In each box plot, the medians of the absolute prediction
errors are indicated by the orange markers in the boxes. Moreover, the bottom and top
of the box, respectively, represent the lower and upper quartiles of the absolute error
of the different algorithms. In addition, the normal distribution parameters for the four
algorithms and the y £ 3¢ intervals corresponding to the different normal distribution
parameters are presented in Table 4. From Figure 12 as well as from Table 4, it can be seen
that the prediction errors of MIC-STALSTM are more densely distributed around 0 and
have the narrowest confidence intervals [u — 30, y + 307].
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Therefore, when there is no frequent switching of operating conditions in the HVAC
system, MIC-STALSTM still achieves a further improvement in prediction accuracy for the
temperature variable T,,s compared to the remaining three algorithms.

Rectangular Box Plot
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N
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Figure 12. Rectangular box plot of absolute prediction error.

Table 4. Confidence intervals’ prediction error.

Parameter LSTM TA-LSTM STA-LSTM  MIC-STALSTM

u 22743 1.1471 03319 0.0299

v 1.1468 1.2216 0.3500 0.0445
[4—30,u+30] [-1.1661,57147] [—-2.5177,4.8119] [—0.7181,1.3819] [—0.1036,0.1634]

5. Conclusions

This paper mainly presents a virtual sensor modeling method for the temperature of
supply and return water at both ends of the chiller in an HVAC system. The traditional
STA-LSTM algorithm can adaptively adjust spatial attention to change the corresponding
weights of different input variables at different time steps. Moreover, it is capable of
adjusting the temporal attention to change the temporal correlation of the hidden state
of the neural network. However, the model based on STA-LSTM is not suitable for the
target variable prediction of the HVAC system, which is due to the following problems
in virtual sensor modeling in HVAC systems: (1) not all variables contribute positively to
the modeling of virtual sensors, due to the complex coupling between variables; (2) the
total HVAC system is constantly faced with changes in system conditions and operating
loads, which will lead to sudden changes in different variables. The weight adaptive
adjustment of STA-LSTM cannot work well under a sudden change in working conditions.
At the sample points with sudden changes in operating conditions, the virtual sensor
model established by the STA-LSTM algorithm has a large prediction error. Therefore,
based on the deficiency of the STA-LSTM algorithm and the operational characteristics of
HVAC systems, this paper proposes an MIC-STALSTM algorithm that combines MIC and
STA-LSTM, which screens out the influence factors with low correlations with the target
temperature variable by MIC. When the filtered influence factor is used as the main variable
leading to the change in working conditions, the prediction of the temperature variable by
the MIC-STALSTM algorithm will no longer be affected by the auxiliary variable. Using the
MIC-STALSTM-based virtual sensor to accurately model the Ty, temperature shows that
the MIC-STALSTM is a suitable modeling method when the system is faced with a change
in operating conditions. At the same time, since MIC performs feature extraction on a
large number of features in the original dataset, the input variables involved in subsequent
prediction are highly correlated with the target variables. By establishing a virtual sensor for
the supply water temperature variable T,j,,; of the chiller, it is verified that the prediction
performance of MIC-STALSTM is more precise and effective than the other three algorithms
without facing frequent switching conditions in the HVAC system.

This paper provides a comprehensive overview of the MIC-STALSTM-based approach
to virtual sensor modeling. However, it has a limitation in which the modeling framework
does not depart from the basic virtual sensor framework (i.e., offline training and online
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prediction), which makes the model completely fixed in the process of online prediction.
The completely fixed model may suffer from a degradation in predictive performance
for time-varying HVAC systems. For further work, more attention will be paid to online
adaptive modeling for virtual sensors.
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