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Abstract: Accurate simulation of the VAPEX process relies heavily on precise modeling of the sol-
vent chamber propagation. In the previously developed models, the solvent chamber possesses
either a linear, circular, or parabolic shape. In this study, an exponential solvent chamber model
was considered to represent the propagation of the chamber throughout the spreading and falling
stages of the VAPEX process. The tuning parameters of the proposed model include the exponential
function coefficient and the transition region thickness. These parameters are altered by employing a
MATLAB-based Genetic Algorithm (GA) to minimize the error between determined and measured
cumulative produced oil in four experimental case studies presented in the literature. According
to the outcomes, the proposed method can accurately adjust the cumulative produced oil to the
measured values in both spreading and falling stages. Additionally, the thickness of the transition
region obtained by this model is in reasonable agreement with the laboratory measurements. Accord-
ingly, the average relative errors of all four cases for cumulative produced oil and transition region
thickness are 7.73% and 5.12%, respectively. Consequently, the model estimates the oil production
rate with reasonable precision and the predicted solvent chamber shapes are well-aligned with the
experimentally observed chambers.

Keywords: VAPEX process; solvent chamber propagation; exponential model; transition region
thickness; oil production prediction

1. Introduction

Vapor-Assisted Petroleum Extraction (VAPEX) is among the most effective solvent-
based Enhanced Heavy Oil Recovery (EHOR) techniques when applied at the laboratory
scale. In this method, vapor solvent is introduced into the reservoir via a horizontal injector.
Due to the occurrence of molecular diffusion and convective dispersion, the introduced
solvent dissolves into the heavy oil, primarily in the transition region, thereby reducing
its viscosity. Finally, gravity helps the less viscous oil to travel through the transition
region from the top of the solvent chamber towards a horizontal producer beneath the
injector [1,2]. At the same time, the injected solvent propagates in both axial and lateral
directions, replacing the produced oil to expand the solvent chamber. In this process,
the solvent chamber propagates in three stages: rising, spreading, and falling. After
establishing a connection between the well pair, the rising stage begins. This stage ends
after the solvent chamber touches the peak of the experimental model. The spreading
stage takes place when the solvent chamber expands sideways to reach two top corners at
either end. The final stage expresses the movement of the solvent chamber alongside the
sidewalls of the model [3].

The VAPEX process offers several benefits to the petroleum industry, making it at-
tractive. In heavy oil reservoirs that possess thin and extra thin heights, VAPEX has
demonstrated superior performance in comparison with other thermal-based techniques,
mainly Steam Assisted Gravity Drainage (SAGD) and Cyclic Steam Stimulation (CSS) [4].

Energies 2022, 15, 5874. https://doi.org/10.3390/en15165874 https://www.mdpi.com/journal/energies

https://doi.org/10.3390/en15165874
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/energies
https://www.mdpi.com
https://doi.org/10.3390/en15165874
https://www.mdpi.com/journal/energies
https://www.mdpi.com/article/10.3390/en15165874?type=check_update&version=2


Energies 2022, 15, 5874 2 of 25

This is due to the fact that when the thermal methods are applied to the reservoirs with
thin pay zones, a significant amount of steam energy is lost to the overburden and under-
burden formations. Consequently, these reservoirs are less suitable for thermal methods.
Furthermore, this method consumes less energy than thermal methods since it takes place
at reservoir temperature, rendering a more environmentally friendly process [5]. Moreover,
in this process, asphaltene precipitation in the vicinity of the production well leads to in
situ upgrading of the diluted oil [6], allowing higher quality oil to be produced. It should
not be left unmentioned that the slow production of oil in VAPEX hampers its application
in the field. However, a higher temperature solvent vapor injection can improve the field
performance of VAPEX [7]. Additionally, similar to SAGD [8,9], VAPEX may be adversely
affected by heterogeneities such as the presence of shale layers and porosity, in addition
to permeability variations throughout the porous media. Consequently, these parameters
may limit the growth of the chamber.

The simulation of the VAPEX process can be carried out through numerical approaches
and analytical modeling. The numerical simulators require detailed sets of data which are
both expensive and time-consuming. By comparison, analytical approaches with reason-
able assumptions can provide reliable results with minimum input data. The following
paragraphs discuss both previously developed theoretical models and some numerical
studies conducted in the past.

In order to determine the heavy oil production rate during the VAPEX process, several
theoretical models have been proposed. The first analytical model for estimating the
constant heavy oil rate during the spreading stage of the VAPEX process was proposed
by Butler and Mokrys [10]. According to their model, only the transition region can drain
diluted heavy oil into the producer. Additionally, oil saturation within the transition region
rapidly falls to its lowest level of residual oil saturation. Using cementation factors, Das and
Butler [2] extended the Butler and Mokrys model to capture the influence of porous media.
A correlation was developed by Yazdani and Maini [11] to translate laboratory-measured
heavy oil production rates to field-scale production rates. As opposed to the Butler and
Mokrys estimate of 0.5, their findings indicate that heavy oil drainage is directly related
to drainage height by a power of around 1.15. It should be noted that these models can
only be used to estimate the heavy oil production at the spreading stage of the VAPEX
process. However, they are not able to evaluate the propagation of the solvent throughout
the process [12].

Using a linear solvent chamber, Moghadam et al. [13] developed the first model to
express how the solvent chamber propagates in the spreading and falling stages of the
VAPEX process. According to their model, the solvent–bitumen transition region would
be bounded by two straight lines of constant thickness. Moreover, they considered a
constant velocity profile for the altered heavy oil within the transition region. The model is
fairly accurate in estimating heavy oil production rates and solvent chamber propagation
throughout the falling stage.

Later, Lin et al. [14] introduced the circular propagation of the chamber to anticipate
the oil production rate. They assumed a constant thickness for the transition region and a
constant velocity profile for the diluted heavy oil within the transition region. Their model
showed a greater performance throughout the rising stage.

In a more recent work, Ma et al. [3] developed a model assuming the solvent chamber
propagates in a parabolic shape. Their suggested model ignored the rising stage and
assumed a fixed thickness for the transition region. Moreover, the diluted heavy oil was
assumed to maintain a constant profile throughout the transition region.

In a subsequent study, Wang et al. [12] suggested a semi-analytical model to predict
VAPEX. In this model, a piecewise linear profile is used to estimate the transition region,
which is modified over time. Furthermore, they considered the major mechanisms active
during VAPEX, including mass transfer, gravity drainage, surface renewal, and multiple
phase flow. They stated that the concentration of solvent within the transition region
increases at a slower rate at the bottom compared to the top. In the middle, however, the
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concentration remains fairly stable. Moreover, it was demonstrated that a stable heavy oil
production rate would be dependent on the square root of the diffusion coefficient of the
solvent in the heavy oil.

In addition to the theoretical models, several numerical simulators have been used
to analyze the VAEPX processes. As part of their investigation into the mechanism of
miscible solvents dissolving heavy oil, Cuthiell et al. [15] used CMG. With the inclusion of
random variations in permeability and physical dispersion, their numerical simulations
matched fingering features and the later displacement stage similar to VAPEX. In their
numerical study, Nghiem et al. [16] reviewed the key characteristics of an equation-of-
state compositional simulation needed to simulate VAPEX. In addition to the molecular
diffusion and convective dispersion, this simulation includes asphaltene precipitation and
fluid mixing. The effect of different dispersivity coefficients on fluid mixing and chamber
growth was also examined. Nourozieh et al. [17] proposed a three-phase flow within an
individual grid block for VAPEX. A new phase for the solvent was added to the simulator
to ensure a more accurate simulation of this process. Their model incorporates two separate
spaces within one grid to simulate diluted bitumen and bitumen in separate grids. Since
the boundary layer can be captured within a grid block, small grid blocks are not required
for the transition zone. A study by Yazdani et al. [18] found some inherent pitfalls in the
numerical modeling of VAPEX experiments. They mentioned that two sets of challenges
must be overcome: one dealing with the limitations of simulators in modeling the lab-scale
experiments and the other dealing with numerical methods.

This study sought to establish a novel theoretical model that is able to accurately
evaluate solvent chamber propagation. In this newly developed model, the solvent chamber
maintains an exponential geometry throughout the whole process. The proposed model
also predicts heavy oil drainage within the spreading and falling stages of the VAPEX
process. This model assumes a constant thickness for the transition region of the solvent
and heavy oil during the whole process. By minimizing the discrepancies between the
measured and determined cumulative produced oil, the thickness of the transition region
can be determined. In addition to estimating cumulative oil production and solvent
chamber propagation, the proposed model can estimate oil production throughout the
entire process. Additionally, the performance of the proposed model was evaluated by
comparing the results with those from four experimental cases conducted by Ma et al. [3],
in addition to their theoretical model.

2. Materials and Methods

Based on a previously developed model by Ma et al. [3], the equations of the proposed
model were derived using the following assumptions:

1. Solvent chamber possesses an exponential geometry throughout the process. Figures 1
and 2 illustrate exponential propagation of the solvent chamber in concave and convex
shapes, respectively.

2. The transition region is constant in thickness during the whole process.
3. Oil saturation within the transition region rapidly falls to its minimum value of

residual oil saturation.
4. The physical model is homogenous and isotropic.
5. The diluted heavy oil within the transition region moves at its maximum velocity.
6. Temperature and pressure remain constant throughout the process.
7. There is no driving force for moving oil inside the transition region other than the

gravity drainage.
8. The rising stage is ignored as it was mentioned in the literature that this stage

would contribute only 3% and 5% of the VAPEX process time and oil recovery,
respectively [3,14].
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falling stages.

2.1. Mathematical Modeling of the Rising Stage

In order to describe the solvent chamber propagation during the spreading stage, and
with the producer at the origin, Equations (1) and (2) can be used for concave and convex
cases, respectively:

y = a× (enx − 1) (1)

y = a×
(
1− e−nx) (2)

where a is the time-dependent parameter showing the lateral spreading of the chamber and
n is an adjustment parameter. In addition, y and x are the vertical and horizontal distances
of the top of the solvent chamber form the producer, respectively.

Optimized values of a and n leads to an accurate simulation of the chamber prop-
agation. It is therefore imperative to develop a formula that is capable of obtaining the
values of a at any time in both concave and convex cases. Moreover, by minimizing the
discrepancy between calculated and measured values for total oil production, the optimum
values of n can be determined for these two cases.
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Figure 3 illustrates the interstitial velocity pertaining to the most diluted heavy oil
within the transition region in both concave and convex cases. Utilizing Darcy’s law, in
both cases, the maximum velocity of the diluted heavy oil is calculated as follows:

vo(Cmax) =
ko

φµo(Cmax)

(
∆P
∆y

+ ρo(Cmax)gsin(θ)
)

(3)

where, ko shows the effective permeability of the oil phase is the porosity of the porous
media in the physical model, ρo(Cmax); and µo(Cmax) are the most-diluted heavy oil density
and viscosity at the maximum concentration of the solvent, respectively; g is the gravita-
tional acceleration; and ∆P

∆y is the pressure gradient. In addition, sin(θ) will be is estimated
as follows:

sin(θ) ≈ H
Ls

(4)

where H is the height of the physical model and Ls is the length of the exponential curve
from the model’s top to the producer.
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Thus, given the constant pressure assumption, the most-diluted heavy oil velocity can
be obtained as follows:

vmax =
koρo(Cmax)gH
φµo(Cmax)Ls

(5)

Moreover, Ls, which is the length of the exponential curve, can be found via
Equations (6) and (7) in concave and convex cases, respectively:

Ls = − 1
n

[
1
2 ln(

√
1 + n2(H + a)2 + 1)− 1

2 ln(
√

1 + n2(H + a)2 − 1)

− 1
2 ln(
√

1 + a2n2 + 1) + 1
2 ln(
√

1 + a2n2 − 1)−
√

1 + n2(H + a)2 +
√

1 + a2n2
] (6)

Ls = − 1
n

[
1
2 ln(

√
1 + n2(a− H)2 + 1)− 1

2 ln(
√

1 + n2(a− H)2 − 1)

− 1
2 ln(
√

1 + a2n2 + 1) + 1
2 ln(
√

1 + a2n2 − 1)−
√

1 + n2(a− H)2 +
√

1 + a2n2
] (7)

Furthermore, the average draining time for the diluted heavy oil alongside the ex-
ponential interface from S1 to the production well in both cases (Figure 4) is given by
Equation (8):
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∆t =
Ls

vmax
=

φµo(max)L2
s

koρo(max)gH
(8)
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Following Figure 4, if the top of the physical model moves by ∆x from S1 to S2 during
the time interval ∆t, the lateral expanding velocity of the solvent chamber in both concave
and convex cases will be determined by Equation (9):

U ≈ ∆x
∆t

=
koρo(Cmax)gH∆x

φµo(Cmax)L2
s

(9)

The parameter ∆x, the horizontal distance between two exponential interfaces, is
determined by developing a curve with a constant distance from the exponential curve.
The resulting equation is an implicit function of transition region thickness (δ), a, and the
height of the physical model. For the concave case, the mentioned equation takes the
following form:

x1 = b +
δanenb

√
1 + a2n2e2nb

(10)

H = a(enb − 1)− δ√
1 + a2n2e2nb

(11)

∆x = x1 − x0 = x1 −
ln(H + a)− ln(a)

n
(12)

In the case of convex propagation, ∆x will be:

x1 = b +
δane−nb

√
1 + a2n−2e2nb

(13)

H = a(1− e−nb)− δ√
1 + a2n2e−2nb

(14)

∆x = x1 −
ln(a)− ln(a− H)

n
(15)
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where, x1 in Equations (12) and (15) are determined by numerically finding the value of b
that satisfies Equations (10) and (11) for the concave case and (13) and (14) for the convex
case. The Newton–Raphson method is employed in this study for this purpose [3,19].

Alternatively, the lateral expanding velocity of the solvent chamber throughout the
sideways spreading may be determined as:

U =
dx
dt

(16)

Applying the concave exponential equation and considering the peak of the physical model:

H = a(enx − 1)→ x =
ln(H + a)− ln(a)

n
(17)

U =
dx
dt

=
1
n

(
1

H + a
− 1

a

)
da
dt
→ da = −na(H + a)U

H
dt (18)

For the convex case:

H = a
(
1− e−nx)→ x =

ln(a)− ln(a− H)

n
(19)

U =
dx
dt

=
1
n

(
1
a
− 1

a− H

)
da
dt
→ da =

na(H − a)U
H

dt (20)

where U in Equations (18) and (20) is obtained from Equation (9).
In order to determine a at any given time, Equations (18) and (20) are numerically

solved for concave and convex cases, respectively. This study employs the fourth-order
Runge–Kutta method to achieve this purpose [3,19].

In addition, given that the top of the solvent chamber will reach the top corner of the phys-
ical model at the end of the spreading stage, the coordinates of (W, H), Equations (21) and (22),
are used to calculate as, the corresponding a at the end of the spreading stage, for concave and
convex cases, respectively. Furthermore, the time at which the exponential coefficient a reaches
as is considered to be the end of the spreading stage.

H = as(enW − 1)→ as =
H

enW − 1
(21)

H = as(1− e−nW)→ as =
H

1− e−nW (22)

where W represents half the length of the physical model.
Additionally, by determining the exponential coefficient a at any given time, an

expression for cumulative produced oil can be developed. According to Figure 5, this will be
achieved by calculating the volume of the solvent chamber. Equations (23) and (24) provide
the expression for cumulative produced oil for concave and convex cases, respectively.

Qo(t) = 2
(
(H + a)× (ln(H + a)− ln(a))− H

n

)
φ(Soi − Sor)d (23)

Qo(t) = 2
(
(a− H)× (ln(a− H)− ln(a)) + H

n

)
φ(Soi − Sor)d (24)

In Equations (23) and (24), Soi is the initial oil saturation within the transition region,
Sor is the residual oil saturation within the transition region, and d demonstrates the
thickness of the physical model.

Finally, in both cases, the oil production rate throughout the spreading stage can be
calculated using Equation (25):

qo(t) =
dQo(t)

dt
(25)
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Figure 5. Solvent chamber area for one side of the physical model in the (a) concave case and
(b) convex case.

2.2. Mathematical Modeling of the Falling Stage

As the VAPEX chamber touches the top corner of the physical model, it slides along
the sidewalls and the falling stage of the VAPEX process begins. Figure 6 illustrates the
falling stage of the VAPEX process on one side.
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Under Darcy’s law and the constant pressure assumption, the maximum interstitial
velocity of the most diluted heavy oil during the falling stage is given by Equation (26):

vmax =
koρo(Cmax)gy
φµo(Cmax)L f

(26)

where y represents the vertical distance from the producer to the top of the VAPEX chamber
and L f is the length of the interface of solvent and diluted heavy oil, which can be obtained
by Equations (27) and (28) in concave and convex cases, respectively:
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L f = − 1
n

[
1
2 ln
(√

1 + a2n2e2Wn + 1
)
− 1

2 ln
(√

1 + a2n2e2Wn − 1
)

− 1
2 ln
(√

1 + a2n2 + 1
)
+ 1

2 ln
(√

1 + a2n2 − 1
)
−
√

1 + a2n2e2Wn +
√

1 + a2n2
] (27)

L f =
1
n

[
1
2 ln
(√

1 + a2n2e−2Wn + 1
)
− 1

2 ln
(√

1 + a2n2e−2Wn − 1
)

− 1
2 ln
(√

1 + a2n2 + 1
)
+ 1

2 ln
(√

1 + a2n2 − 1
)
−
√

1 + a2n2e−2Wn +
√

1 + a2n2
] (28)

In addition, y in Equation (26), which is shown in Figure 6, can be replaced by
Equations (29) and (30) for the concave and convex cases, respectively:

y = a(enW − 1) (29)

y = a(1− e−nW) (30)

Thus, the time required by the diluted heavy oil to move from F1 to the producer at
the falling stage (Figure 7) can be formulated as Equations (31) and (32) for concave and
convex cases, respectively.

∆t =
L f

vmax
=

φµo(Cmax)L2
f

koρo(Cmax)ga(enW − 1)
(31)

∆t =
L f

vmax
=

φµo(Cmax)L2
f

koρo(Cmax)ga(1− e−nW)
(32)
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Following Figure 7, if the top of the physical model moves from F1 to F2 by ∆y during
the time interval ∆t, the axial falling velocity of the solvent chamber will be as shown in
Equations (33) and (34) in concave and convex cases, respectively:

V ≈ −∆y
∆t

= −
koρo(Cmax)ga

(
enW − 1

)
∆y

2φµo(Cmax)L2
f

(33)

V ≈ −∆y
∆t

= − koρo(Cmax)ga(1− e−nW)∆y
2φµo(Cmax)L2

f
(34)
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∆y, which is the vertical spacing between the two exponential curves at the sidewall
of the physical model, can be found as below for the concave case:

W = b +
δanenb

√
1 + a2n2e2nb

(35)

y1 = a(enb − 1)− δ√
1 + a2n2e2nb

(36)

∆y = a(enW − 1)− y1 (37)

For the convex case:

W = b +
δane−nb

√
1 + a2n2e−2nb

(38)

y1 = a(1− e−nb)− δ√
1 + a2n2e−2nb

(39)

∆y = a(1− e−nW)− y1 (40)

where, y1 in Equations (37) and (40) is determined by numerically finding the value of
b that satisfies Equations (35) and (36) for the concave case, and Equations (38) and (39)
for the convex case. The Newton–Raphson method is employed in this study for this
purpose [3,19].

Alternatively, the axial falling velocity of the solvent chamber may be found through
Equation (41):

U = −dy
dt

(41)

Applying the concave exponential equation and considering the sidewall of the physi-
cal model:

y = a(enW − 1) (42)

V = −dy
dt

= −da
dt

(enW − 1)→ da = − V
enW − 1

dt (43)

For the convex case:
y = a(1− e−nW) (44)

V = −dy
dt

= −da
dt

(1− e−nW)→ da = − V
1− e−nW dt (45)

where V in Equations (43) and (45) can be obtained from Equations (33) and (34), respectively.
Equations (43) and (45) are numerically solved to determine a at any given time for the

concave and convex cases, respectively. This study employs the fourth-order Runge–Kutta
method to achieve this purpose [3,19].

Additionally, by determining the exponential coefficient a at any given time, an
expression for total produced oil can be developed. According to Figure 8, this is carried
out by calculating the volume of the solvent chamber. Equations (46) and (47) provide the
expression for cumulative produced oil throughout the falling stage in concave and convex
cases, respectively.

Qo(t) = 2
(

HWn + aWn− aeWn + a
n

)
φ(Soi − Sor)d (46)

Qo(t) = 2
(

HWn− aW − ae−Wn + a
n

)
φ(Soi − Sor)d (47)



Energies 2022, 15, 5874 11 of 25Energies 2022, 15, 5874 11 of 25 
 

 

  
(a) (b) 

Figure 8. Solvent chamber area for one side of the physical model at the falling stage of the (a) 
concave case and (b) convex case. 

𝑄 (𝑡) = 2 𝐻𝑊𝑛 + 𝑎𝑊𝑛 − 𝑎𝑒 + 𝑎𝑛 𝜙(𝑆 − 𝑆 )𝑑 (46)

𝑄 (𝑡) = 2 𝐻𝑊𝑛 − 𝑎𝑊 − 𝑎𝑒 + 𝑎𝑛 𝜙(𝑆 − 𝑆 )𝑑 (47)

Finally, the oil production rate of the falling stage at any given time can be calculat-
ed using Equation (48), which is the derivative of the cumulative produced oil at the fall-
ing stage with respect to time: 𝑞 (𝑡) = 𝑑𝑄 (𝑡)𝑑𝑡  (48)

2.3. Problem Solving and Objective Function 
As mentioned in the previous sections, the proposed model includes two tuning 

parameters (exponential function coefficient n and the transition region thickness 𝛿), 
which are altered with the aid of Genetic Algorithm (GA) to minimize the error between 
calculated oil productions obtained from the developed equations (Equations (23), (24), 
(46), and (47)) and the experimentally measured data. For such purposes, the error func-
tion provided in Equation (49) is used in this study: 

𝐸(𝑛, 𝛿) = 𝐸(𝑛, 𝛿) = ∑ 𝑄 , − 𝑄 ,𝑄 ,𝑁𝑡  
(49)

where, 𝑄 ,  is the measured cumulative produced oil at 𝑡 = 𝑡 , 𝑄 ,  is the theoretical cu-
mulative produced oil using the exponential solvent chamber model at 𝑡 = 𝑡 , and 𝑁𝑡 is 
the total number of measured data by the end of the process.  

3. Results and Discussion 
The proposed model was analyzed by applying it to the four VAPEX cases present-

ed by Ma et al. [3]. Table 1 summarizes the heavy oil and the physical model properties 
used in their experiments. Furthermore, Figures 9–11 illustrate cumulative produced oil, 
the heavy oil production rate, and the transition region thickness for the experimental 
cases reported by Ma et al. [3], respectively. 

Figure 8. Solvent chamber area for one side of the physical model at the falling stage of the (a) concave
case and (b) convex case.

Finally, the oil production rate of the falling stage at any given time can be calculated
using Equation (48), which is the derivative of the cumulative produced oil at the falling
stage with respect to time:

qo(t) =
dQo(t)

dt
(48)

2.3. Problem Solving and Objective Function

As mentioned in the previous sections, the proposed model includes two tuning
parameters (exponential function coefficient n and the transition region thickness δ), which
are altered with the aid of Genetic Algorithm (GA) to minimize the error between calculated
oil productions obtained from the developed equations (Equations (23), (24), (46), and (47))
and the experimentally measured data. For such purposes, the error function provided in
Equation (49) is used in this study:

E(n, δ) = E(n, δ) =
∑Nt

i=1
|Qm, ti−Qc, ti |

Qm, ti

Nt
(49)

where, Qm, i is the measured cumulative produced oil at t = ti, Qc, i is the theoretical
cumulative produced oil using the exponential solvent chamber model at t = ti, and Nt is
the total number of measured data by the end of the process.

3. Results and Discussion

The proposed model was analyzed by applying it to the four VAPEX cases presented
by Ma et al. [3]. Table 1 summarizes the heavy oil and the physical model properties used
in their experiments. Furthermore, Figures 9–11 illustrate cumulative produced oil, the
heavy oil production rate, and the transition region thickness for the experimental cases
reported by Ma et al. [3], respectively.
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Table 1. Heavy oil and physical model properties for the experimental cases presented by Ma et al. [3].

Test No. φ (%) k (µm2) ρo (Cmax) ( g
cc ) µo (Cmax) (mPa.s) H (cm) W (cm) d (cm) So Sor

1 31.4 152 0.828 8.51 10 20 2 0.975 0.085

2 32.9 52 0.828 8.51 10 20 2 0.977 0.071

3 35.7 18 0.828 8.51 10 20 2 0.962 0.109

4 36.3 8 0.828 8.51 10 20 2 0.962 0.106
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To find the optimized values of δ and n, the objective function in Equation (45) was min-
imized using a MATLAB-based Genetic Algorithm (GA) [20] in the above-mentioned exper-
imental cases. Table 2 reveals those values. Moreover, Figures 12–15 visualize the discrep-
ancies in the error function at each iteration of the GA, for the first four tests, respectively.

Table 2. The determined values of the unknown parameters.

Test No. Solvent Chamber Shape n δ (cm)

1 Concave 0.1343 0.2567

2 Concave 0.0459 0.1905

3 Convex 0.0919 0.3867

4 Convex 0.0322 0.3972
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Furthermore, the minimum values obtained for the error function at each test are
provided in Table 3.

Table 3. Best values of error function at each test.

Test No. Minimum Value of Error Function

Test #1 0.0429

Test #2 0.0810

Test #3 0.0976

Test #4 0.0877

In addition, to further investigate the overall performance of the model, the following
sections compare the determined solvent chamber propagation at different stages, transition
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region thicknesses, and values of cumulative produced oil, along with the oil production
rate, to those measured by Ma et al. [3].
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3.1. Solvent Chamber Propagation

In this section, a comparison is conducted between the solvent chambers generated by
the newly proposed exponential model, those observed experimentally by Ma et al. [3], and
the solvent chambers calculated by their parabolic model in order to assess the accuracy
of the proposed model in predicting solvent chamber propagation. Results show that
the newly proposed exponential model is capable of accurately predicting the solvent
chamber propagation at both the spreading and falling stages. Figures 16–19 illustrate
the comparison of the newly proposed exponential model, the parabolic model, and the
experimentally measured solvent chambers for the first four tests, respectively.

Energies 2022, 15, 5874 15 of 25 
 

 

Furthermore, the minimum values obtained for the error function at each test are 
provided in Table 3. 

Table 3. Best values of error function at each test. 

Test No. Minimum Value of Error Function 
Test #1 0.0429 
Test #2 0.0810 
Test #3 0.0976 
Test #4 0.0877 

In addition, to further investigate the overall performance of the model, the follow-
ing sections compare the determined solvent chamber propagation at different stages, 
transition region thicknesses, and values of cumulative produced oil, along with the oil 
production rate, to those measured by Ma et al. [3]. 

3.1. Solvent Chamber Propagation 
In this section, a comparison is conducted between the solvent chambers generated 

by the newly proposed exponential model, those observed experimentally by Ma et al. 
[3], and the solvent chambers calculated by their parabolic model in order to assess the 
accuracy of the proposed model in predicting solvent chamber propagation. Results 
show that the newly proposed exponential model is capable of accurately predicting the 
solvent chamber propagation at both the spreading and falling stages. Figures 16–19 il-
lustrate the comparison of the newly proposed exponential model, the parabolic model, 
and the experimentally measured solvent chambers for the first four tests, respectively.  

 
(a) 

 
(b) 

Figure 16. Cont.



Energies 2022, 15, 5874 16 of 25Energies 2022, 15, 5874 16 of 25 
 

 

 
(c) 

 
(d) 

Figure 16. Comparison of the solvent chambers estimated by exponential model, solvent chambers 
estimated by parabolic model [3], and experimentally visualized [3] solvent chambers in test #1 at 
(a) t = 5 h, (b) t = 8 h, (c) t = 11 h, and (d) t = 14 h. 
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Figure 16. Comparison of the solvent chambers estimated by exponential model, solvent chambers
estimated by parabolic model [3], and experimentally visualized [3] solvent chambers in test #1 at
(a) t = 5 h, (b) t = 8 h, (c) t = 11 h, and (d) t = 14 h.
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Figure 17. Comparison of the solvent chambers estimated by exponential model, solvent chambers 
estimated by parabolic model [3], and experimentally visualized [3] solvent chambers in test #2 at 
(a) t = 17 h, (b) t = 25 h, (c) t = 33 h, and (d) t = 53 h. 
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Figure 17. Comparison of the solvent chambers estimated by exponential model, solvent chambers
estimated by parabolic model [3], and experimentally visualized [3] solvent chambers in test #2 at
(a) t = 17 h, (b) t = 25 h, (c) t = 33 h, and (d) t = 53 h.
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Figure 18. Comparison of the solvent chambers estimated by exponential model, solvent chambers 
estimated by parabolic model [3], and experimentally visualized [3] solvent chambers in test #3 at 
(a) t = 30 h, (b) t = 35 h, (c) t = 51 h. 
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Figure 18. Comparison of the solvent chambers estimated by exponential model, solvent chambers
estimated by parabolic model [3], and experimentally visualized [3] solvent chambers in test #3 at
(a) t = 30 h, (b) t = 35 h, (c) t = 51 h.
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Figure 19. Comparison of the solvent chambers estimated by exponential model, solvent chambers 
estimated by parabolic model [3], and experimentally visualized [3] solvent chambers in test #4 at 
(a) t = 18 h, (b) t = 27 h, (c) t = 38 h, and (d) t = 52 h. 
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Figure 19. Comparison of the solvent chambers estimated by exponential model, solvent chambers
estimated by parabolic model [3], and experimentally visualized [3] solvent chambers in test #4 at
(a) t = 18 h, (b) t = 27 h, (c) t = 38 h, and (d) t = 52 h.

3.2. Transition Region Thickness

The thickness of the transition regions determined by the proposed model and those
calculated and measured by Ma et al. [3] are shown in Figure 20. Based on the figure, it is
evident that the transition region thickness determined by the proposed method closely
matches the transition region thicknesses determined in the laboratory, and the average
relative error of all cases for this parameter was found to be 5.12%.
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3.3. Heavy Oil Production

Finally, the proposed model was employed to determine both the cumulative produced
oil and the heavy oil production rate. As shown in Figures 21–24, cumulative produced oil
from the newly proposed exponential model was juxtaposed with experimental data and
the cumulative produced oil from the parabolic model proposed by Ma et al. [3]. As can be
seen, the cumulative heavy oil production data estimated by the exponential model agree
well with the experimental results reported by Ma et al. [3], with the average relative errors
of all four cases for this parameter being between 7 and 8%. Additionally, the proposed
model is more accurate with regard to heavy oil production when compared with the
Ma et al. model [3], as they reported an average relative error of 14.8% for this parameter.
In addition, Figures 25–28 show the oil production rate estimated by the newly proposed
exponential model, the experimental data, and the oil production rate estimated by the
parabolic model proposed by Ma et al. Accordingly, the anticipated oil production rates are
in acceptable agreement with the experimental findings.



Energies 2022, 15, 5874 20 of 25Energies 2022, 15, 5874 20 of 25 
 

 

 
Figure 21. Comparison of the cumulative produced oil estimated by the newly proposed exponen-
tial model, experimentally measured cumulative produced oil [3], and cumulative produced oil 
estimated by the parabolic model proposed by Ma et al. [3] in test #1. 

 
Figure 22. Comparison of the cumulative produced oil estimated by the newly proposed exponen-
tial model, experimentally measured cumulative produced oil [3], and cumulative produced oil 
estimated by the parabolic model proposed by Ma et al. [3] in test #2. 

0

50

100

150

200

250

0 2 4 6 8 10 12 14 16

Cu
m

ul
at

iv
e 

Oi
l P

ro
du

ce
d 

(C
C)

Time (h)

Experimental Data (Ma et al., 2017) Parabolic Model (Ma et al., 2017)

Newly Proposed Exponential Model

0

50

100

150

200

250

0 10 20 30 40 50 60

Cu
m

ul
at

iv
e 

Oi
l P

ro
du

ce
d 

(C
C)

Time (h)

Experimental Data (Ma et al., 2017) Parabolic Model (Ma et al., 2017)

Newly Proposed Exponential Model

Figure 21. Comparison of the cumulative produced oil estimated by the newly proposed exponential
model, experimentally measured cumulative produced oil [3], and cumulative produced oil estimated
by the parabolic model proposed by Ma et al. [3] in test #1.
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Figure 22. Comparison of the cumulative produced oil estimated by the newly proposed exponential
model, experimentally measured cumulative produced oil [3], and cumulative produced oil estimated
by the parabolic model proposed by Ma et al. [3] in test #2.
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Figure 23. Comparison of the cumulative produced oil estimated by the newly proposed exponential
model, experimentally measured cumulative produced oil [3], and cumulative produced oil estimated
by the parabolic model proposed by Ma et al. [3] in test #3.
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Figure 24. Comparison of the cumulative produced oil estimated by the newly proposed exponential
model, experimentally measured cumulative produced oil [3], and cumulative produced oil estimated
by the parabolic model proposed by Ma et al. [3] in test #4.



Energies 2022, 15, 5874 22 of 25Energies 2022, 15, 5874 22 of 25 
 

 

 
Figure 25. Comparison of the oil production rate estimated by the newly proposed exponential 
model, experimentally measured oil production rate [3], and oil production rate estimated by the 
parabolic model proposed by Ma et al. [3] in test #1. 

 
Figure 26. Comparison of the oil production rate estimated by the newly proposed exponential 
model, experimentally measured oil production rate [3], and oil production rate estimated by the 
parabolic model proposed by Ma et al. [3] in test #2. 

0

5

10

15

20

25

30

35

0 2 4 6 8 10 12 14 16

Cu
m

ul
at

iv
e 

Oi
l P

ro
du

ce
d 

(C
C)

Time (hr)

Experimental Data (Ma et al., 2017) Parabolic Model (Ma et al., 2017)

Newly Proposed Exponential Model

0

1

2

3

4

5

6

7

8

9

10

0 10 20 30 40 50 60

Cu
m

ul
at

iv
e 

Oi
l P

ro
du

ce
d 

(C
C)

Time (hr)

Experimental Data (Ma et al., 2017) Parabolic Model (Ma et al., 2017)

Newly Proposed Exponential Model

Figure 25. Comparison of the oil production rate estimated by the newly proposed exponential
model, experimentally measured oil production rate [3], and oil production rate estimated by the
parabolic model proposed by Ma et al. [3] in test #1.
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Figure 26. Comparison of the oil production rate estimated by the newly proposed exponential
model, experimentally measured oil production rate [3], and oil production rate estimated by the
parabolic model proposed by Ma et al. [3] in test #2.
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Figure 27. Comparison of the oil production rate estimated by the newly proposed exponential
model, experimentally measured oil production rate [3], and oil production rate estimated by the
parabolic model proposed by Ma et al. [3] in test #3.
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Figure 28. Comparison of the oil production rate estimated by the newly proposed exponential
model, experimentally measured oil production rate [3], and oil production rate estimated by the
parabolic model proposed by Ma et al. [3] in test #4.

4. Conclusions

In this study, the spreading and falling stages of the solvent chamber were modeled
using an exponential solvent chamber geometry. In this newly proposed model, the
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total produced oil at both the spreading and falling stages can be accurately adjusted to
the measured values. A reasonable agreement was found between the thickness of the
transition region obtained by this model and the existing experimental measurements. As
a result, the suggested model is capable of accurately anticipating the heavy oil production
rate, and the evaluated solvent chamber shapes match well with those observed in the
four experimental cases used in this study for validation. The proposed model was also
compared to the parabolic model developed by Ma et al. [3]. The results reveal that
the newly proposed exponential model outperforms the parabolic model in terms of
heavy oil production estimation. Exponential model’s average relative error of 7.73%
for the cumulative oil production in all four experimental cases is more accurate than
the parabolic model value of 14.8%. It is also important to note that the performance of
the newly proposed model needs to be further analyzed by applying it to more complex
conditions. Sensitivity analysis should be conducted on the influencing parameters, such as
the solvent type, the heterogeneity of the porous media, and the physical model dimensions.
Furthermore, the application of the proposed model at a larger scale needs to be further
investigated. The five major findings of this study are as follows:

1. Using the proposed exponential model, the solvent chamber, heavy oil production
rate, and cumulative heavy oil production can be accurately predicted.

2. With a relative error of less than 5.12%, the newly proposed model closely matches
the measurements of transition region thickness.

3. The exponential model can accurately predict the transition region thicknesses, with
the average relative errors of all cases being around 7.73%.

4. The assumption of constant transition region thickness reduces the complexity of the
model and produces reliable results.

5. It seems reasonable to ignore the rising stage due to its insignificant impacts on the
overall performance of the model, which confirms the findings in the literature [3,14].

Author Contributions: Conceptualization, A.C. and A.R.; methodology, A.C.; software, A.C. and
M.S.; validation, A.C. and M.S.; formal analysis, F.T.; writing—original draft preparation, A.C. and
A.R.; writing—review and editing, F.T.; supervision, F.T. All authors have read and agreed to the
published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Some data that support the findings of this study are available in the
references mentioned in the manuscript and are readily available in the public domain. In addition,
the other generated data can be shared upon a reasonable request from the corresponding author.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Butler, R.M.; Mokrys, I.J. A new process (VAPEX) for recovering heavy oils using hot water and hydrocarbon vapour. J. Can. Pet.

Technol. 1991, 30, PETSOC-91-01-09. [CrossRef]
2. Das, S.K.; Butler, R.M. Mechanism of the vapor extraction process for heavy oil and bitumen. J. Pet. Sci. Eng. 1998, 21, 43–59.

[CrossRef]
3. Ma, H.; Yu, G.; She, Y.; Gu, Y. A parabolic solvent chamber model for simulating the solvent vapor extraction (VAPEX) heavy oil

recovery process. J. Pet. Sci. Eng. 2017, 149, 465–475. [CrossRef]
4. Karmaker, K.; Maini, B.B. Applicability of vapor extraction process to problematic viscous oil reservoirs. In Proceedings of the

SPE Annual Technical Conference and Exhibition, Denver, CO, USA, 5–8 October 2003; OnePetro: Richardson, TX, USA, 2003.
5. Singhal, A.; Das, S.; Leggitt, S.; Kasraie, M.; Ito, Y. Screening of reservoirs for exploitation by application of steam assisted gravity

drainage/vapex processes. In Proceedings of the International Conference on Horizontal Well Technology, Calgary, AB, Canada,
18–20 November 1996; OnePetro: Richardson, TX, USA, 1996.

6. Luo, P.; Gu, Y. Effects of asphaltene content and solvent concentration on heavy oil viscosity. In Proceedings of the SPE
International Thermal Operations and Heavy Oil Symposium, Calgary, AB, Canada, 1–3 November 2005; OnePetro: Richardson,
TX, USA, 2005.

http://doi.org/10.2118/91-01-09
http://doi.org/10.1016/S0920-4105(98)00002-3
http://doi.org/10.1016/j.petrol.2016.10.036


Energies 2022, 15, 5874 25 of 25

7. Qi, R. Simulation Study of Warm VAPEX Process Using Water-Soluble Solvent. Master’s Thesis, Schulich School of Engineering,
Calgary, AB, Canada, 2020.

8. Xu, J.; Chen, Z.; Dong, X.; Zhou, W. Effects of lean zones on steam-assisted gravity drainage performance. Energies 2017, 10, 471.
[CrossRef]

9. Xu, J.; Chen, Z.; Cao, J.; Li, R. Numerical study of the effects of lean zones on SAGD performance in periodically heterogeneous
media. In Proceedings of the SPE Heavy Oil Conference-Canada, Calgary, AB, Canada, 10–12 June 2014; OnePetro: Richardson,
TX, USA, 2014.

10. Butler, R.; Mokrys, I. Solvent Analog Model of Steam-Assisted Gravity Drainage. AOSTRA J. Res. 1989, 5, 17, (Reprint).
11. Yazdani, A.; Maini, B.B. Modeling of the VAPEX process in a very large physical model. Energy Fuels 2008, 22, 535–544. [CrossRef]
12. Wang, Q.; Jia, X.; Chen, Z. Mathematical modeling of the solvent chamber evolution in a vapor extraction heavy oil recovery

process. Fuel 2016, 186, 339–349. [CrossRef]
13. Moghadam, S.; Nobakht, M.; Gu, Y. Theoretical and physical modeling of a solvent vapour extraction (VAPEX) process for heavy

oil recovery. J. Pet. Sci. Eng. 2009, 65, 93–104. [CrossRef]
14. Lin, L.; Zeng, F.; Gu, Y. A circular solvent chamber model for simulating the VAPEX heavy oil recovery process. J. Pet. Sci. Eng.

2014, 118, 27–39. [CrossRef]
15. Cuthiell, D.; McCarthy, C.; Frauenfeld, T.; Cameron, S.; Kissel, G. Investigation of the VAPEX process using CT scanning and

numerical simulation. J. Can. Pet. Technol. 2003, 42, PETSOC-03-02-04. [CrossRef]
16. Nghiem, L.; Kohse, B.; Sammon, P. Compositional simulation of the VAPEX process. J. Can. Pet. Technol. 2001, 40, PETSOC-01-08-05.

[CrossRef]
17. Nourozieh, H.; Kariznovi, M.; Abedi, J.; Chen, Z.J. A new approach to simulate the boundary layer in the vapour extraction

process. J. Can. Pet. Technol. 2011, 50, 11–18. [CrossRef]
18. Yazdani, A.; Maini, B.B. Pitfalls and solutions in numerical simulation of VAPEX experiments. Energy Fuels 2009, 23, 3981–3988.

[CrossRef]
19. Chapra, S.C. Applied Numerical Methods with MATLAB for Engineers and Scientists; McGraw-Hill Higher Education: New York, NY,

USA, 2008.
20. McCall, J. Genetic algorithms for modelling and optimisation. J. Comput. Appl. Math. 2005, 184, 205–222. [CrossRef]

http://doi.org/10.3390/en10040471
http://doi.org/10.1021/ef700429h
http://doi.org/10.1016/j.fuel.2016.08.066
http://doi.org/10.1016/j.petrol.2008.12.029
http://doi.org/10.1016/j.petrol.2014.03.010
http://doi.org/10.2118/03-02-04
http://doi.org/10.2118/01-08-05
http://doi.org/10.2118/148055-PA
http://doi.org/10.1021/ef900200f
http://doi.org/10.1016/j.cam.2004.07.034

	Introduction 
	Materials and Methods 
	Mathematical Modeling of the Rising Stage 
	Mathematical Modeling of the Falling Stage 
	Problem Solving and Objective Function 

	Results and Discussion 
	Solvent Chamber Propagation 
	Transition Region Thickness 
	Heavy Oil Production 

	Conclusions 
	References

