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Abstract: Renewable energy sources (RESs) are generally connected to the grid through power
electronic interfaces, which generate electrical power instantaneously with little inertia. With the
increasing penetration of RESs, the grid will gradually develop into a low inertia and underdamped
power system, which results in serious grid frequency stabilization problems. The virtual synchronous
generator (VSG) is an emerging technology that mimics the operation characteristics of traditional
synchronous generators (SGs). Virtual inertia and damping are therefore introduced, which help to
stabilize grid frequency. This paper gives a comprehensive overview of the VSG. The basic operation
principle of VSG is introduced and analyzed in depth. The key issues related to VSG are summarized
and discussed, including hardware configuration, software control strategies, energy supporting
methods, and typical applications.

Keywords: virtual synchronous generator (VSG); virtual inertia; damp; frequency stabilization;
high permeability

1. Introduction

To solve the problem of environmental pollution caused by traditional fossil fuels,
renewable energy sources (RESs) have been developing rapidly in recent years. RESs
are connected to the electrical grid by inverters [1]. Since the power converter decouples
the sources from the grid and eliminates the frequency-dependent nature of the rotating
machine [2], the grid stability problem becomes more and more prominent. Synchronous
generators (SGs) are proved to have many inherent favorable features, such as large inertia
and damping that are beneficial for the stable operation of power systems [3]. Inspired
by that, virtual synchronous generator (VSG) technology emerged. By simulating the
mechanical and electrical transient characteristics of SGs, VSG enables grid-connected
inverters of RES to have the inertia response characteristic, damping, and frequency regula-
tion ability [4]. It provides an important way to solve the low inertia and underdamping
problems of the grid-connected inverter [5,6]. It has become a key technology for the future
development of RESs.

One significant superiority of VSG over SGs is its capability of changing virtual iner-
tia [7], which is unrealizable in an SG. Due to the advantages, scholars in many research
institutions and universities have carried out extensive research on the control technology
based on the idea of VSG up to now. In 1997, the concept of Static Synchronous Generator
(SSG) was first proposed by the FACTS (Flexible AC Transmission Systems) Committee in
the United States. SSG can provide controllable active and reactive power for the flexible
AC power transmission system, which was regarded as the earliest VSG [8]. In 2007, the
Europe Virtual Synchronous control (VSYNC) project team formally proposed the Virtual
Synchronous Generator (VSG) concept and its control strategy. So came the name Virtual
Synchronous Generator [9]. In the project, K. Visscher, a professor at the University of Leu-
ven in Belgium, proposed the “VSG” technology, which can realize the inertia and primary
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frequency regulation function of SGs [10]. However, the current inner loop control cannot
mimic the electromagnetic characteristic of SGs. Therefore, it cannot completely simulate
the behaviors of SGs. Professor Beck and R. Hesse of the Clausthal University of Technol-
ogy in Germany proposed the virtual synchronous machine (VISMA) technology, which
can simulate the electromagnetic behavior of SGs [11]. However, all of them are current-
controlled VSGs. Their external characteristics are equivalent to a current source, and it
is difficult to provide voltage support for the weak power grid. In 2009, a representative
voltage-controlled VSG which was labeled Synchronverter was proposed by Professor
Qingchang Zhong of the University of Liverpool. The electromagnetic transient behavior of
SGs was simulated. Therefore, its external characteristics are more approximate to the SG
than previous approaches [12]. H. Alatrash proposed Generator Emulation Controls (GEC)
in 2011 [13]. Unlike the aforementioned control methods, the impedance characteristics
of the SG are simulated in the GEC. The GEC scheme has two major parts: power flow
control and impedance emulation. The impedance emulation makes it more capable of
enhancing electrical power system stability compared with other VSG. The IEEE Standard
Project 2988 for VSGs was launched on 25 March 2021, and it is considered to be a new
technology that is nearly ready for practical use [14,15].

To clarify the basic concept and summarize the key technologies, this paper presents
a comprehensive overview of VSG. It is organized as follows: in Section 2, the basic op-
eration principle is introduced and analyzed in depth; in Section 3, various hardware
configurations are summarized; in Section 4, the software control strategies are discussed;
in Section 5, the energy supporting methods are elaborated; in Section 6, its applications in
power system are introduced. Finally, the conclusions are drawn in Section 7.

2. The Basic Operation Principle

VSG simulates the electromagnetic and mechanical behaviors of SGs so that the ex-
ternal characteristics of the grid-connected inverter are equivalent to SGs. The control of
VSG can be divided into two parts: the outer power loop that simulates the mechanical
characteristic, and the inner current/voltage loop that simulates the electromagnetic char-
acteristic. According to the controlled methods of the inner loop, VSG can be divided into
two types: current-controlled VSG (CC-VSG) and voltage-controlled VSG (VC-VSG).

2.1. The Voltage-Controlled VSG
2.1.1. Basic VC-VSC [16]

Professor M. Reza Iravani of the University of Toronto, Canada, proposed a control
strategy with a VC-VSC control scheme; its circuit diagram is shown in Figure 1, and its
control principle is shown in Figure 2.
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Figure 1. Circuit diagram of the grid-connected inverter. Figure 1. Circuit diagram of the grid-connected inverter.
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Figure 2. Block diagram of control principle. (a) Block diagram of the proposed frequency control. 
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Figure 2. Block diagram of control principle. (a) Block diagram of the proposed frequency control.
(b) Block diagram of voltage control.

The outer power loop is used to simulate the behavior of SG. The mechanical behavior
of the SG can be expressed as:

J
dw
dt

=
PT
w
− PE

w
− KD(w− wpcc) + Dp(w0 − wpcc) (1)

where PT is the mechanical input power, PE is the electromagnetic power of the SG, w is
the angular frequency, J is the moment of inertia, w0 is the rated angular frequency of the
generator, wpcc is the measured frequency at PCC. KD is the damping coefficient, and Dp is
the droop coefficient.

It can also be expressed in the per-unit form:

J
SB
w0

× dw
dt

=
PT

w× SB
w0

− PE

w× SB
w0

−
KD(w− wpcc)

SB
w0

+
Dp(w0 − wpcc)

SB
w0

(2)

That is:

Jw2
0

SB
× dw∗

dt
=

PT∗

w∗
− PE∗

w∗
−

KDw2
0(w

∗ − w∗pcc)

SB
+

Dpw2
0(1− w∗pcc)

SB
(3)

where SB is the rated power.
The inertia time constant is defined as: H = Jw2

0/(2SB). w∗ is the per unit angular
frequency of SG. Since angular frequency w∗ varies around the rated value, the w∗ in
Equation (3) of denominator is approximately equal to 1. We have:

2H
dw∗

dt
= PT∗ − PE∗ − KD∗(w∗ − w∗pcc) + Dp∗(1− w∗pcc) (4)

where KD∗ =
KDw2

0
SB

, Dp∗ =
Dpw2

0
SB

.
For the convenience of writing, all of * in Equation (4) are omitted. Equation (4) can

therefore be simplified as:

2H
dw
dt

= PT − PE − KD(w− wpcc) + Dp(1− wpcc) (5)

To mimic the power behavior of the SG, the basic control equation of the outer power
loop can be obtained as Figure 2a.

2H
dw
dt

= Pre f − Pout − KD
(
w− wpcc

)
+ Dp

(
wre f − wpcc

)
(6)

where Pre f and Pout are command power and output power respectively; wre f is the
reference frequency.
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The voltage controller can be operated in two modes: grid-connected mode and
autonomous mode. The controller can be expressed in (7).

E = Es − DqQ +
KQ(Qre f −Q)

s
(7)

where Qref is the reference reactive power, Q is the measured output reactive power of the
VSG at PCC, KQ is the integral controller coefficient, Dq is the voltage droop coefficient, E is
the inverter output voltage, and Es is the reference value of the VSC terminal voltage. In
a grid-connected mode, the voltage controller is used to set the output reactive power of
the VSC at PCC. The VSG is controlled to output reference reactive power by an integral
controller to ensure zero tracking error. In an autonomous mode, the RES unit has to
supply the load reactive power without depending on the grid. It is impossible to output
a reference reactive power that is not equal to the load reactive power. Therefore, the KQ is
set to zero during an autonomous mode. The droop controller is used to distribute reactive
power between different converters.

2.1.2. Synchronverter

The electromagnetic transient behavior is not simulated in basic VC-VSC. To overcome
this shortcoming, Synchronverter is proposed by Professor Qingchang Zhong of Liverpool
University [6]. Its control block diagram is shown in Figure 3. The control of the real power
has a nested structure, where the frequency inner loop is a droop loop (with feedback gain
Dp) and the power outer loop has more complex structure (with the feedback coming from
the current i via the torque Te).
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Its power loop equation is:  
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Its power loop equation is:
Te = PE/

.
θ = M f i f

〈
i,
→

sinθ

〉
→
E =

.
θM f i f

→
sinθ

Q = −
.
θM f i f

〈
i,
→

cosθ
〉 (8)
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where
→

sinθ =


sin θ

sin
(

θ − 2θ
3

)
sin
(

θ − 4θ
3

)
,
→

cosθ =


cos θ

cos
(

θ − 2θ
3

)
cos
(

θ − 4θ
3

)


〈·, ·〉 denotes the inner product, Tm is the input mechanical torque, Te is electromagnetic
torque, ω is the output angular frequency of VSG, Mf is the mutual inductance between
the excitation winding and the stator winding, If is the excitation current, θ is the electric
angle of the inverter output voltage. θg and θc are the angle of grid and VSG voltages,

respectively. If the LC filter is neglected, then v f b = vm ≈ E =
.
θM f i f .

The control of the reactive power also has a nested structure similar to active power
control. The inner loop is the reactive-power loop and the outer loop is the voltage loop.
The outer loop generates reference reactive power by a droop controller. The input of the
droop controller is the difference between the reference grid voltage Vr and the measured
grid voltage Vm. If Vr is larger than Vm, the droop controller generates a capacitive reference
reactive power to increase the grid voltage and vice versa. The inner loop generates VSG
output voltage magnitude to regulate that reactive power.

The time constant τv of inner loop can be estimated as: τv ≈ K/(
.
θnDq). Where

.
θn

is the nominal angular frequency of the grid. Therefore, K can be calculated when τv
and Dq have been determined. The advantage of synchronverter is that transient torque
characteristics are more precisely simulated. Furthermore, zero tracking error is realized
by the integrators in the active and reactive power control loop. The disadvantage of the
controller is that power coupling exists between the active and reactive power control loop.
The damping problem of the LCL filter was not taken into account, which may induce
resonance in some situations.

2.2. The Current-Controlled VSG
2.2.1. Basic CC-VSG Control Strategy [10]

Its main circuit is the same as that of VC-VSG, which is shown in Figure 1. The outer
power loop control equation is:

Pmech = Pinertia + Pdroop

Pinertia = 2H dw
dt

Pdroop = −Dp

(
w− wre f

) (9)

Thus, the command power of the VSG can be easily derived:

Pre f = Pinertia + Pdroop = 2H
dw
dt
− Dp

(
w− wre f

)
(10)

where Pinertia simulates the inertia characteristics of the rotor, H is the inertia constant.
Pinertia simulates the primary frequency modulation power.

After the reference active power value is obtained, the reference active power is needed
to be converted into reference current. According to the instantaneous power theory, the
instantaneous active power P and reactive power Q of the system are [17]:{

P = 3
2
(
udid + uqiq

)
Q = 3

2
(
udiq − uqid

) (11)

If synchronous reference frame is used, uq is equal to zero. Active and reactive
reference current can be calculated as:

i∗d =
2Pre f
3ud

i∗q =
2Qre f
3ud

(12)
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where i∗d and i∗q are active and reactive reference current, respectively. Frequency differ-
entiation is required to calculate the inertia reference power. To apply the control law,
the phase-locked loop (PLL) is conventionally used to measured grid frequency and its
differential value. However, a frequency-locked loop can reduce the high frequency noises
introduced by differential operators compared with the PLL [18]. So, it is more suitable for
basic CC-VSG. It cannot respond to the grid frequency variation instantaneously due to the
response time of inner current loop.

2.2.2. VISMA Control Strategy [19]

Since the electromagnetic equation of SGs is not used in the current inner loop, basic
CC-VSG cannot completely simulate the characteristics of SGs. To overcome this shortcom-
ing, the VISMA was proposed by Professor Beck and R. Hesse of the Clausthal University
of Technology in Germany. The electromagnetic characteristic of SG is further simulated.
Its main circuit is same as Figure 1, and its control principle is shown in Figure 4.
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Its outer power loop control equation is:

2H
dw
dt

+ Kd f (t)
dw
dt

= PT − PE (13)

where Kd is the damping coefficient. f (t) is the phase compensation, which realizes that the
virtual damping force counteracts any oscillating movement of the rotor in opposite phase.

f(t) can be selected to be a first-order low pass filter [20]. Combined with dw/dt, it is
effectively a high pass filter for w. The high pass filter reduces the gain at low frequency
range, which reduces the interference of the damping effect with the steady state operation
while maintaining transient damping effect.

The stator electrical equation of SGs is:

→
E abc =

→
u abc + Rs

→
i abc + Ls

d
→
i abc
dt

(14)

where
→
E abc is synchronous generator internal voltage;

→
u abc is the generator terminal volt-

ages;
→
i abc is the stator phase currents; Rs is the three-phase stator winding resistance; Ls is

the synchronous inductance.



Energies 2022, 15, 6148 7 of 29

According to the Equation (14), the command reference
→
i re f that simulates the dy-

namic characteristics of SGs stator
→
i abc can be obtained:

→
i re f (s) =

[→
E abc −

→
u abc

]
/(Rs + Lss) (15)

where
→
i re f is the output reference current, Rs and Ls are the virtual stator resistance and

inductance, respectively.
→
E abc = [ea eb ec]

T ,
→
u abc = [ua ub uc]

T

→
E abc =

 ea
eb
ec

 = Ep ·

 sin(θ)
sin
(
θ − 2

3 × π
)

sin
(
θ + 2

3 × π
)
 (16)

θ =
∫

wdt (17)

where θ is the angle of rotation, Ep is the adjustable amplitude of
→
E abc.

The VISMA generates a voltage control command similar to the VC-VSG. The magni-
tude of the voltage command can be obtained by the reactive power control loop, which
has been mentioned in the reference. The phase of the voltage command is obtained by the
active power control loop. The magnitude Ep and phase are combined together to generate
the reference voltage by Equation (16). The voltage command signal is further converted
into current command by Equation (15). It can be found that the excitation control of SGs
is not simulated in VISMA. Therefore, the sophisticated current control strategy widely
used in the grid following converter can be applied. Grid forming is the ability to form
a grid autonomously without the help of the main grid. Compared with grid following, it
establishes its own angle and voltage reference autonomously without relying on PLL. Grid
forming source functions as a controllable voltage source. It can achieve frequency and
voltage regulation, black start, islanding and guarantee AC power to critical infrastructure
when there is an outage in power grid. The disadvantage of VISMA is that it has no grid
forming ability due to the inner current loop.

2.3. Active and Reactive Power Coupling Analysis of VSG
2.3.1. Power Coupling Analysis of VC-VSG

Voltage-frequency (VF) control is used in the inner loop control of VC-VSG. It is
assumed that the active and reactive power can be independently controlled by the inverter
output voltage and frequency. The active power P and reactive power Q of VC-VSG can be
derived from Figure 1 as [21]:

P =
UcUgRg cos δ−Ug

2Rg+UcUgXg sin δ

R2
g+X2

g

Q =
UcUgXg cos δ−U2

g Xg−UcUgRg sin δ

R2
g+X2

g

(18)

where Uc is the VSG output voltage. Ug is grid voltage. Rg is grid resistance, Xg is grid
reactance. δ is power angle, it is defined as δ =

∫
∆ωdt, ∆ω is the angular frequency

difference value between VSG and grid.
Using small signal analysis method and assuming that the steady-state operational

points are Uc0 and δ0, we have:[
∆P
∆Q

]
=

 ∂P
∂δ

∂P
∂Uc

∂Q
∂δ

∂Q
∂Uc

[ ∆δ
∆Uc

]
(19)

where,
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

k11 = ∂P
∂δ = 1

R2
g+X2

g

(
−Uc0UgRg sin δ0 + Uc0UgXg cos δ0

)
k12 = ∂P

∂Uc
= 1

R2
g+X2

g

(
UgRg cos δ0 + UgXg sin δ0

)
k21 = ∂Q

∂δ = 1
R2

g+X2
g

(
−Uc0UgXg sin δ0 −Uc0UgRg cos δ0

)
k22 = ∂Q

∂Uc
= 1

R2
g+X2

g

(
UgXg cos δ0 −UgRg sin δ0

)
(20)

where k12 and k21 are the cross-coupling term, which are proportional to cos(δ). Since
Rg � Xg in most cases, P ≈ UcUg sin δ/Xg. Since Xg is usually less than 0.1 p.u., sin δ is
less than 0.1 when the VSG outputs rated power. VSG output power is usually less than
the rated power, therefore sin δ is usually very small, and sin δ ≈ δ. Since δ is very small,
k12 and k21 can be further simplified as:

k12 = ∂P
∂E =

UgRg

R2
g+X2

g
=

UgRg

(1+a2)R2
g

k21 = ∂Q
∂δ =

−Uc0UgRg

R2
g+X2

g
=
−Uc0UgRg

(1+a2)R2
g

(21)

where a = Xg/Rg. From Equation (21), it can be found out that the cross-coupling is very
small if Xg/Rg is large enough. It is well known that the Xg/Rg is relatively large in the
transmission grid and is relatively small in the distribution grid. Therefore, the VC-VSG
control method is more suitable to be applied in the transmission level.

2.3.2. Power Coupling Analysis of CC-VSG

It can be concluded from Equation (12) that the active and reactive power is inde-
pendently controlled by the dq-axis current, respectively. The active and reactive power
coupling are irrelevant to the grid impedance Therefore, the CC-VSG is suitable for both
transmission and distribution grids.

2.4. Influence of VSG on Frequency Stability Power System

If a VSG is installed in a weak grid with small inertial, the equivalent system inertia
constant is [22]:

Hsys =
HwgSwg + HVSGSVSG

Swg + SVSG
(22)

where Hwg and Swg are the inertia and rated capacity of the weak grid, HVSG and SVSG are
the inertia and capacity of the VSG.

From Equation (22), it can be found out that the equivalent inertia constant of the
grid is increased if the inertial constant of VSG is higher than that of the weak grid.
From Equation (4), it can be found that the rate of change in the grid frequency (ROCOF)
under power disturbance decreases as the inertia constant increases. The grid frequency
stability can therefore be improved. In [23], the simulation results show that virtual
inertia control can effectively suppress the frequency deviation of the interconnected power
system during severe contingencies. The virtual inertia control system provides the desired
stability and performance against serious load disturbances under high RES penetration
conditions. Therefore, instability and system collapses are avoided. In [24], It is proved
that connection stability issues of microgrids can be resolved by virtual inertia control
integrating damping properties.

2.5. The Comparison between CC-VSG and VC-VSG

The advantage of CC-VSG is that it is direct control of the converter output current,
which makes it easy to guarantee the current quality and prevent overcurrent. However,
CC-VSG behaves as a current source for the power grid, which makes it unable to provide
grid forming support for the power grid. VC-VSG operates as a voltage source. Therefore,
it is able to provide a black start and help to form the grid. It is therefore also called a grid
forming inverter. A comparison of the various VSGs is shown in Table 1.
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The VC-VSG has attracted more research interest than the CC-VSG during to its
inherent advantage. Various improved control strategies have been proposed. To improve
the control stability, voltage and current double closed-loop control were added into
VSG [25]. To improve power balancing and oscillation suppression ability, the virtual
impedance was added to the control loop [26].

Table 1. Comparison of current-controlled VSG and voltage-controlled VSG.

VSG Type Subtype Advantages Disadvantages

CC-VSG

Basic CC-VSG [10]

• The active and reactive power
are decoupled;

• Fast current response;
• with current limiting capability;

• Without grid forming ability.
• Weak stability under an ultraweak grid

or with multiple inverters condition
due to PLL [27].

VISMA [19] • Fast current response;
• Stability uninfluenced by the PLL [27].

• Without grid forming ability.
• The excitation control of SGs is

not simulated.

VC-VSG

Basic VC-VSG [16]
• Fast frequency response;
• Providing a smooth transition between

grid-connected and autonomous modes
• Without current limiting capability.

Synchronverter [6]

• The electromagnetic characteristics of
SG are more explicitly simulated
compared with basic VC-VSG;

• Fast frequency response;

• Complex and uneasy to apply;
• Weak anti-interference ability due to

voltage open-loop control;
• Active and reactive power control

are coupled.

3. Hardware Configuration of VSG
3.1. Topology of VSG

Multiple converter topologies can be used to realize VSG. It can be classified as
Figure 5 [28]. The basic topologies are current source inverters (CSI) and voltage source
inverters (VSI) topologies shown in Figure 6, which are based on the output characteristics
and the difference of DC side energy storage components. The comparison of performance
and structure between VSI and CSI is shown in Table 2 [29].

VSI utilizes a capacitor as a DC side energy storage device to ensure stable DC link
voltage. CSI utilizes an inductor as a DC side energy storage device to ensure stable DC side
current. Compared with the inductor of CSI, the capacitor of VSI has obvious advantages of
its small size, low cost, and high energy storage efficiency. In addition, CSI requires the use
of reverse-blocking semiconductor devices, which usually have higher conduction losses
than reverse-conducting semiconductor devices used in the VSI [30]. The VSI voltage DC
bus also allows direct connection to voltage source energy storage devices (ESDs) such as
batteries and supercapacitors [31,32]. Therefore, the VSI is more commonly used [33].

Although two-level converters are usually in the VSG, multilevel converters have
more advantages. The voltage on each switching device is less than the output voltage.
Moreover, they can provide high quality power with less harmonic distortion. The three-
level neutral point clamped (NPC) converters are used in [34]. Compared with three level
NPC converters, three level active NPC shown in Figure 7a have more advantages. It
can further reduce switching loss. In [35], the VSG is proposed to control the multi-level
cascaded H-bridge converter to improve the frequency stability in island operation of the
microgrid. Modular multi-level converter (MMC) shown in Figure 7b based multi-terminal
high voltage direct current system (MTDC) has many advantages, such as multi-source
point, multi-infeed power supply, and flexible power flow regulation. The VSG control
is applied to the MMC-MTDC system, which makes it able to suppress low-frequency
oscillation and improve the damping performance [36,37].
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Table 2. The comparison of performance and structure between VSI and CSI.

Category VSI CSI

DC link energy storage device Capacitor Inductor
Output form square wave High-frequency voltage square wave High-frequency current

Diode position Antiparallel Series
Output voltage characteristics Buck Boost
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3.2. Power Conversion Stages of VSG

According to the difference in power conversion stages, there are two main kinds of
VSG circuit configurations: single-stage VSG and dual-stage VSG. As shown in Figure 8a,
the single-stage VSG connects the RESs or ESDs directly to the DC link of DC/AC converter,
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which outputs the power directly to the AC grid. Since only one energy conversion stage is
needed, it has higher energy conversion efficiency than the dual-stage VSG. As shown in
Figure 8b, the dual-stage VSG connects the RESs or ESDs to the grid through DC/DC and
DC/AC converters. The advantage of this configuration is that it has a larger DC voltage
regulation range. Therefore, it has higher energy and power utilization rate.
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3.3. Integration of RES and ESD in a VSG

The RES and ESD can directly form VSGs by proper control. However, they can also
be integrated together to form a VSG so as to improve the cooperation between each other.
They can be integrated at DC or AC buses.

3.3.1. Common DC Bus Single-Stage VSG

The topology is shown in Figure 9a. The RES is directly connected to the DC/AC
converter while the ESD is connected to the DC/AC converter through a DC/DC converter.
The DC link voltage is controlled by the DC/DC converter variably to make the RES operate
on its maximum power point (MPP). The RES output power is usually fluctuating, the
DC/AC converter outputs the smoothed RES power with the help of the ESD. The DC/AC
converter is also used to provide inertia support and frequency regulation to the grid. The
advantage of this topology is that it has only one conversion stage to the RES, which makes
it have high efficiency.
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3.3.2. Common DC Bus Dual-Stage VSG

The topology is shown in Figure 9b. Both RES and ESD are connected to DC link
through independent DC/DC converters, which enable independent control of RES and
ESD. RESs are operated at the MPPT by the DC/DC converter connected to the RES.
Frequency regulation power is supplied by the other DC/DC converter connected to ESD.
The DC link voltage is controlled to be constant by the DC/DC converter connected to the
ESD. The DC/AC converter is also used to smooth the RES power, provide inertia support
and frequency regulation to the grid [38]. The advantage of this topology is that it has
a wider MPPT range compared to that of the single stage VSG.

3.3.3. Common AC Bus VSG

The topology is shown in Figure 9c,d. For common AC bus VSG, both single and
dual-stage topologies can be used. Since the RES and ESD are independently connected to
the grid, decoupling power control can be realized in both topologies. The MPPT control is
implemented in the RES converter. The VSG control is implemented in the energy storage
converter [39,40]. Grid frequency fluctuations can be suppressed by the ESD immediately.
RES power fluctuations are also suppressed by the ESD.

4. Software Control Method of VSG

Due to its independent active and reactive power control ability, the control of VSG
can be classified into the following two types: active power frequency stability control and
reactive power voltage stability control.

4.1. Frequency Stability Control of VSG

Droop control is usually used for primary frequency regulation. The advantage of
droop control is its simplicity and good power sharing capability. However, it does not
consider the transient frequency response and cannot provide inertia support to the grid.
To provide inertial support, controllers are designed based on the swing equation to imitate
both static and dynamic characteristics of the SG [41]. However, the introduction of inertia
support makes the VSG prone to inducing power oscillation [42]. Compared with SG,
parameters of VSG, such as inertia and damping coefficients, can be adjusted on line, which
makes it flexible for control performance optimization. The basic active power control
block diagram is shown in Figure 2a.

In the inner current/voltage loop, a PI controller is commonly used [43]. In the outer
power loop, to suppress the frequency and power fluctuations of the VSG, advanced
solutions are proposed. The basic idea of the solutions is to adaptively change the in-
ertia and damping ratio of VSG during large disturbances so as to improve the control
performance [44–46].

4.1.1. Adaptive Virtual Inertial Control

Larger virtual inertia value H enables the distributed generator (DG) to supply more
power to reduce frequency deviations during transient events [47]. The undesired over
df/dt fault triggering could be avoided if adequate inertia is provided. Therefore, the inertia
coefficient can be modified as a function of df/dt. The control can be expressed as:{

H = H0, |d f /dt| < M

H = Hmax, |d f /dt| ≥ M
(23)

where H0 is the inertia value in steady-state operation, M is the threshold of the frequency
change rate. Under normal operation, the measured frequency change rate value is below
the threshold M and the value of the inertia coefficient remains at H0. On occurrence of
a large disturbance, |df/dt| exceeds the threshold value M, and the inertia coefficient is
switched to a maximum value. The proposed control switches the virtual inertia between
a small and a large value, which induces oscillation during the virtual inertia transition.
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Considering the frequency recovery process, an improved adaptive control strategy
with varying moments of inertia is proposed in [45,48]. When prime mover power com-
mand changes from one value to another, the output power will oscillate and converge
to a new command value. The oscillation modes are summarized in Table 3. The sign of
dw/dt and ∆w determine the power acceleration or deceleration. In order to damp power
oscillation, a large value of J is selected to restrain frequency acceleration; a small value of J
is selected to boost the deceleration.

Table 3. Power oscillation modes.

∆w dw/dt Mode Alternating J

∆w > 0 dw/dt > 0 Accelerating Big value of J

∆w > 0 dw/dt < 0 Decelerating Small value of J

∆w < 0 dw/dt < 0 Accelerating Big value of J

∆w < 0 dw/dt > 0 Decelerating Small value of J

Another adaptive power-angle control method is proposed in [49], which prevents
VSGs from crossing over the unstable equilibrium point along the power-angle curve after
the disturbance. It is shown in Figure 10, Where Gδ−P(s) is transfer function from δ to Pe,
i.e., Pe = UcUg sin δ/Xg.
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Figure 10. (a) feedback modes of the power-angle control of the VSG; (b) Block diagram of mode-
adaptive control of the VSG.

According to the swing equation 2Hdw/dt = Pre f − Pe, w increases from b to c due
to Pref> Pe. δ also increases according to δ =

∫
∆wdt. From the point c to e, w decreases
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due to Pref < Pe. Before w decreases to wg, ∆w remains positive. δ continues to increase. If
w fails to recover to wg, ω increases again due to Pref > Pe, and δ keeps increasing. Since
Pe ≈ UcUg sin δ/Xg and δ > π/2, Pe will further decrease due to the increasing δ, which
causes the power control error ∆P = Pre f − Pe to be enlarged. A positive-power-angle
feedback mode therefore occurs, and the synchronization between VSG and the grid is
lost. So, e represents the critical stability point. In order to avoid the positive-feedback
mode, a variable k is introduced, which is set as 1 in the negative-feedback mode and −1 in
positive-feedback mode as shown in Figure 10b. It prevents positive-feedback operation
of the power-angle control of the VSG. Thus, the risk of loss of synchronization can be
avoided [49].

The power change rate is further taken into account to change the moment of inertia
so as to limit the frequency change rate [50]. Since the ROCOF is mainly related to the
output power and inertia, the output power deviation is used to change the moment of
virtual inertia. The larger the power deviation, the larger moment of virtual inertia is used.
The output frequency change rate is therefore limited. The control block diagram is shown
in Figure 11. Where kω is the adaptive inertia coefficient, Dp is the damping coefficient.
The active power transfer function is second order due to the existence of an inertia loop,
whose dynamic performance is less smooth than first order one. In [51], proportional power
feedforward control is used, which adds a zero in the transfer function to cancel one pole
in the active power loop. The order of the active power control loop is therefore reduced
from two to one.
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4.1.2. Adaptive Power Damping Control

Not only inertia, but also damping influences VSG frequency stability. In [6,52], the
damping coefficient is equivalent to the droop coefficient, which makes the model simple
by eliminating governor. The function of the droop coefficient is to provide the frequency-
supporting, whereas the function of the damping factor is to suppress the oscillation modes
of the control system [53]. The optimal ranges of the droop coefficient and the damping
factor usually do not overlap. In order to eliminate the interactions between the droop
and the damping control, a phase feedforward damping control (PFD) method for VSG
is proposed to decouple the damping control from the droop control, which is shown in
Figure 12 [53], where kω is the phase feedforward gain.

The closed-loop transfer functions of conventional VSG(C-VSG) and phase feedfor-
ward damping VSG (PFD-VSG) from the grid frequency disturbance to the output active
power can be expressed as:

GC−VSG =
∆P

∆ωg
=

Kp(2Hs + KD + Dp)

2Hs2 + (KD + Dp)s + Kp
(24)

GPFD−VSG =
∆P

∆ωg
=

Kp(2Hs + Dp)

2Hs2 + (Dp + KωDPKp)s + Kp
(25)
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In steady state, the output power to suppress frequency change is:

∆P = lim
s→0

GC−VSG∆ωg =
(
KD + Dp

)
∆ωg (26)

∆P = lim
s→0

GPFD−VSG∆ωg = Dp∆ωg (27)

where Kp = UcUg/Xg, comparing (26) and (27), it can be seen that the equivalent droop
coefficient of C-VSG changes from Dp to KD + Dp due to the effect of the damping control.
Whereas the droop coefficient of PFD-VSG is always Dp and free from the influence of the
damping control.

However, the above-mentioned methods do not co-operate inertia and damping
control effectively. A self-adaptive inertia and damping co-operational control method
to improve the frequency stability with an interleaving control technique was proposed
in [46,54]. It decreases the frequency deviation while reduces the stable settling time
compared to the conventional methods.
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4.2. Reactive Power Control of VSG

In addition to active power frequency control loop, reactive power voltage control loop
is also a key issue. For the VSG, the reactive regulation methods are more flexible compared
with SG. The reference voltage is generated by reactive power droop control [55], as shown
in Figure 13. The droop control realizes the reactive power sharing among different VSGs.
The Eref is can be expressed as:

Ere f =
1

Tf s + 1
[
Vset + Dq(Qset −Q)

]
(28)

where Eref is output voltage reference of VSG. Tf is the time constant of the power filter.
Qset is reactive power setting value. Vset is nominal voltage setting value.
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In [56], another voltage control strategy was proposed, which combines the Q-droop
control with an integrator (defined as droop-I). It is shown in Figure 14. The droop-I control
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takes both the reactive power and terminal voltage as the feedback signals. Then the Eref
can be expressed as:

Ere f =
kq

s
[
Vset −Uc + Dq(Qset −Q)

]
(29)

where kq is an integral gain.
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Both voltage control methods are commonly used [57]. They are compared in [56]. It is
concluded that the Q-droop control has better robustness subjected to Vset variations. The
droop-I control has a better steady-state regulation characteristics and is not easily affected
by the inner loop and virtual impedance. Based on droop-I control, PI controlled is used to
regulate the amplitude of Eref in [58].

Different from reference [56], another control strategy is proposed as shown in
Figure 15 [59], where kq and kE are the droop coefficient and the integral coefficient of
reactive voltage, respectively. The Q–V droop mechanism is introduced by making
Qref = Qset + kq(Vref − Uc). Since Uc ≈ Ug, the VSG can automatically change its output
reactive power according to the grid voltage.
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Fixed droop coefficients are usually used for regulation of voltage, which has draw-
backs such as slow dynamic response and poor voltage regulation. The virtual impedance
loop-based droop method was designed to improve the dynamic response and reac-
tive power-sharing capability in [54]. In [60], voltage regulator is redesigned based on
a sliding-mode control technique, the voltage deviation rate is reduced greatly by the feed-
back structures.

4.3. Power Decoupling Control of VSG

The above-mentioned controller methods are designed under the assumption that
there is no coupling between active and reactive power control loop. However, under weak
grid conditions, the coupling between active and the reactive power cannot be neglected
for the VC-VSG. The virtual impedance method is most commonly decoupling method.
In [61], a virtual complex impedance method is proposed. The control block diagram is
shown in Figure 16a. The virtual impedance control is implemented through modifying
reference output voltage. The final VSG output reference voltage is the reactive power



Energies 2022, 15, 6148 18 of 29

control loop generated reference voltage minus the virtual impedance voltage, which is
expressed as:

Uc_re f (s) = Er(s)− (Rv + sLv)I(s) (30)

where Er is the voltage reference generated by the reactive power control loop, Uc_re f is the
final VSG output voltage reference.Rv and Lv are virtual resistance and virtual inductance,
respectively. Uc is controlled by voltage and current dual closed-loop. The fundamental
equivalent circuit with virtual impedance is shown in Figure 16b. The grid equivalent
impedance Zeq is Req + jXeq = Rg + RV + j(Xg + XV). Req and Xeq are equivalent grid
resistance and inductance, respectively. The virtual complex impedance Zv(s) is composed
of Rv with a negative value and Xv with a positive value. The Lv is designed to increase the
equivalent grid inductance, and Rv is designed to reduce the equivalent grid resistance. It
makes the equivalent a = Xeq/Req larger. k12 and k21 are reduced according to Equation (21).
As a result, the power decoupling was reduced. In [62], it is pointed out that the decoupling
capability of the virtual inductor is limited by the d-axis voltage drop across the virtual
inductor. A q-axis voltage-drop-based power decoupling control is proposed to further
reduce the power coupling.

Energies 2022, 15, x FOR PEER REVIEW 19 of 30 
 

 

Where 
r

E  is the voltage reference generated by the reactive power control loop, c_ref  
U is 

the final VSG output voltage reference.
v

R  and 
v

L  are virtual resistance and virtual in-

ductance, respectively. 
c 

U  is controlled by voltage and current dual closed-loop. The 

fundamental equivalent circuit with virtual impedance is shown in Figure 16b. The grid 

equivalent impedance 
eqZ  is eq eq g V g V

R + jX = R + R + j(X + X ) .
eqR  and 

eqX  are equiva-

lent grid resistance and inductance, respectively. The virtual complex impedance Zv(s) is 

composed of Rv with a negative value and Xv with a positive value. The Lv is designed to 

increase the equivalent grid inductance, and Rv is designed to reduce the equivalent grid 

resistance. It makes the equivalent 
eq eq

a X R larger. k12 and k21 are reduced according to 

Equation (21). As a result, the power decoupling was reduced. In [62], it is pointed out 

that the decoupling capability of the virtual inductor is limited by the d-axis voltage drop 

across the virtual inductor. A q-axis voltage-drop-based power decoupling control is pro-

posed to further reduce the power coupling.  

id

Rv

sLv

ωLv 

ωLv 

Rv

sLv

Voltage and 
current 

control loop
iq

Er

Er

+

-
+-

+

-
-

-

Ucd_ref

Ucq_ref

dq/abc
Uc

 
(a) 

Xg RgXV RV

Ug

VSG

Er

Zeq

Uc

 

(b) 

Figure 16. (a) Virtual impedance control; (b) Fundamental equivalent circuit. 

However, the active power sharing performance during the transient state is still eas-

ily influenced by the line impedance. An adaptive Fuzzy-Neural-Network Power decou-

pling method is proposed in [63], which not only realizes the power decoupling but also 

avoid dynamic response deterioration by the variations of virtual inductors. In [64], the 

low inductance-to-resistance ratio (X/R) of the grid impedance is fully considered. A co-

ordinated voltage–frequency support scheme for VSGs connected to LVDGs is proposed. 

5. Energy Supporting Ways 

Inertia support and primary frequency regulation need energy supplied either from 

the ESDs or the RESs. Without ESDs, The RESs operate below the MPP, so as to provide 

active power reservation (PR) to support the grid. The characteristic comparison between 

the two methods is shown in Table 4 [65]. From the perspective of initial investment, the 

PR method is more economical compared with the energy storage method. However, the 

Figure 16. (a) Virtual impedance control; (b) Fundamental equivalent circuit.

However, the active power sharing performance during the transient state is still
easily influenced by the line impedance. An adaptive Fuzzy-Neural-Network Power
decoupling method is proposed in [63], which not only realizes the power decoupling
but also avoid dynamic response deterioration by the variations of virtual inductors.
In [64], the low inductance-to-resistance ratio (X/R) of the grid impedance is fully con-
sidered. A coordinated voltage–frequency support scheme for VSGs connected to LVDGs
is proposed.
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5. Energy Supporting Ways

Inertia support and primary frequency regulation need energy supplied either from
the ESDs or the RESs. Without ESDs, The RESs operate below the MPP, so as to provide
active power reservation (PR) to support the grid. The characteristic comparison between
the two methods is shown in Table 4 [65]. From the perspective of initial investment, the
PR method is more economical compared with the energy storage method. However,
the RES cannot operate in MPPT mode with the PR method; the RES power generation
efficiency cannot be maximized. Furthermore, the frequency regulation capability of the
PR method is very dependent on weather conditions. When RES output power is low, the
frequency regulation capability is also weak. For example, the PV cannot output power at
night. Therefore, it is impossible to regulate the grid frequency with the PR method under
this condition.

Table 4. The comparison of power reserve and energy storage.

Characters Energy Storage Power Reservation

Investment cost high low
RES power generation

efficiency high low

Weather dependency low high
Control difficulty low high

The difference between inertia support and primary frequency regulation is shown
in Table 5. The role of inertia support is to delay the frequency change rate caused by the
power imbalance of the grid, so as to gain time for primary frequency regulation. The
inertia support delaying frequency change rate is a transient power support with very short
time, which requires high power but very limited energy. So, the high-power density ESDs
with fast responding speed is needed during the inertia support. The function of frequency
regulation is to provide continuous active power support in response to the grid frequency
deviation. Since the frequency change rate during this process is low, it does not need fast
response and high power to adapt this situation. So, the low power density high energy
density ESDs are needed during frequency regulation.

Table 5. The difference between inertia support and primary frequency regulation.

Object Functional Localization Requirements to ESDs

Inertia support Slowing down the rate of change in frequency.
Fast power response;

High power requirement;
Low energy requirement.

Primary frequency regulation Providing continuous active power support in
response to the frequency deviation of the grid.

Slow power response;
Low power requirement;

High energy requirement.

Several kinds of energy storage devices can be used to provide energy support for
inertia and primary frequency regulation of VSG, including supercapacitor energy storage,
flywheel energy storage, battery energy storage, superconducting magnetic energy storage,
etc. The characteristics of these energy storage devices are shown in Table 6. Detailed
characteristics about all these types of energy storage are summarized as following.
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Table 6. Summary of technical characteristic of typical energy storage [66].

The Type of Energy
Storage

Supercapacitor Energy
Storage Flywheel Energy Storage Lithium Battery Energy

Storage

Superconducting
Magnetic

Energy Storage

Power capability (MW) 0.05–0.1 0.1–20 0.015–50 1–10
Efficiency (%) 65–80 85–96 90–95 >95
Cost (¥/kWh) 1500–2000 400–800 260–800 1000–7000

Life time 500 k times >15 years 3–15 k times >30 years
Power density 800–11,000 W/kg 5000–11,900 W/kg 150–2000 W/kg 500–2000 W/kg [67]
Energy density 1–8 Wh/kg 5–100 Wh/kg 80–150 Wh/kg 1–10 Wh/kg
Response time <1 millisecond <2 millisecond <100 millisecond <2 millisecond
Charge time Second Minute Hour Second

Technical maturity Commercial application Demonstration to
Commercial application Commercial application Demonstration

5.1. Superconducting Magnetic Energy Storage

The superconducting magnetic energy storage (SMES) stores energy in a supercon-
ducting coil in the form of magnetic field. This magnetic field is created by the flow of
a direct current (DC) in the coil. During a magnetic field formation in superconducting
coil, the resistive loss is negligible. The energy conversion process in the SMES system is
only from AC to DC, there are none of the inherent thermodynamic losses associated with
conversion of one form of energy to another [68]. Therefore, it has the fastest response and
longest lifetime features compared with other energy storage. Due to the above advantages,
it is promising to provide inertia support to the grid [69]. A robust decentralized frequency
stabilizer integrated with the SMES is proposed in [70]. To optimally utilize the energy
capability of the SMES while keeping the state of charge (SOC) within a safe range, a novel
multi-input multi-output fuzzy logic controller (FLC) is proposed in [71]. In [72], the SMES
connected in the DC link of VSG- High Voltage Direct current (HVDC) system was used for
compensation of power fluctuation caused by the RESs.

5.2. Flywheel Energy Storage

Flywheel energy storage (FESS) is an advanced physical energy storage technology. It
stores the energy in the form of kinetic energy. It has good properties of a low maintenance
cost, free from depth of discharge effects, high efficiency, and long operation life [73]. The
kinetic energy is proportional to the flywheel mass and square of the rotational speed. To
increase in kinetic energy, increasing rotational speed is more effective method compared
with increasing the flywheel mass. Initially, steel was used to make the flywheel. However,
it is not able to operate at high speed. Later, composite materials were applied. The use of
composite materials significantly increases the rotational speed and power density [74]. By
regulating the speed of the flywheel in proportion to the grid frequency, the flywheel serves
as an energy buffer that absorbs and releases its kinetic energy to provide inertia support
or frequency regulation [75]. In [76], RESs and flywheel energy storage are integrated to
participate in frequency regulation, which effectively improves the inertial response to the
power systems.

5.3. Supercapacitor Energy Storage

A supercapacitor has the characteristics of high-power density, long life, fast response.
The terminal voltage of supercapacitor can vary widely, which ensures a high energy
utilization rate. It is a promising candidate for providing inertia support [77]. However,
due to low energy density, it is not suitable for frequency regulation support. In [78], with
the help of supercapacitor energy storage, the type-IV wind turbine (WT) is controlled as
VSG. The calculation of the supercapacitor capacity regarding the grid frequency support
capability is presented. It is suggested that supercapacitor is a good candidate to sup-
ply virtual inertia to the grid. A new control strategy to provide virtual inertia through
a supercapacitors-based isolated ESS with a grid-forming inverter was proposed in [79].
The control strategy includes a synchronization controller, that ensures a soft grid connec-
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tion, and a SOC controller to ensure that the supercapacitor energy level is always within
an acceptable range.

5.4. Battery Energy Storage

Compared with other energy storage technology, battery energy storage (BES) is
another technology that has been commercialized for grid application. Its energy density
is higher than the other candidates. Whereas, its power density is smaller than the other
candidates. In addition, its lifetime will be significantly shortened under the high-frequent
charging and discharging operation, so it is not a good choice for inertia support. To extend
the service life, batteries are connected to the DC-link capacitor via a converter for buffering
the power imbalance between grid side and renewable energy side. The DC-link capacitor is
used to provide inertial support for the power grid. The power for the frequency regulation
is provided by BES [80]. However, the DC-link voltage stability margin is not considered in
the paper. In [81], when the DC-link voltage is within the predefined safe range, the PV
source operates at MPPT mode and the DC-link capacitor provides the power for inertia
support. Meanwhile, droop control is implemented to associate the battery power with the
DC-link voltage. When the DC-link voltage goes beyond the safety margin, PV de-loading
and inverter rectification will be adaptively activated to restore DC-link voltage to the
predefined range.

5.5. Hybrid Energy Storage

The ideal energy storage for VSG needs high power density and long cycling life for
inertial support and high energy density for primary frequency regulation [82]. Although
supercapacitor, low speed FESS, and SMES have a lot of advantages for inertia support,
they are unable to provide enough energy for primary frequency regulation due to their
low energy density. In order to fulfill the requirement of VSG, it is usually recommended
to combine high-power density ESDs with BES. Therefore, high-power density ESDs such
as ultracapacitors and flywheels are suggested to be integrated with battery, which is
called hybrid energy storage systems (HESS), for providing inertial response and primary
frequency response simultaneously [83,84]. In [85], the battery is used for compensation
of low-frequency power fluctuations, and the ultracapacitor is used for compensation of
high-frequency power fluctuations.

6. Applications of VSG in Power Systems

According to different application scenarios, VSGs are classified into renewable energy
VSG, HVDC transmission VSG, and energy storage VSG. Renewable energy VSG includes
wind VSG, photovoltaic VSG. The various applications are shown in Figure 17.

6.1. Application of VSG in Photovoltaic Power Generation

The photovoltaic (PV) is intermittent in nature, and does not match the load profile. As
a result, large-scale integration of distributed PV challenges the quality and stability of the
grid [13]. Photovoltaic synchronous generators (PVSG) are a promising solution [86]. Many
PVSG topologies have been proposed. The most typical one is shown in Figure 18. PV and
ESD are connected to the common DC link through independent DC/DC converters. PV is
controlled in MPPT mode to maximize power output. The energy storage system is used to
smooth the active power output and reduce the negative impact on the grid [87].

Considering the time varying characteristics of photovoltaic power supply, a PVSG
which takes the dynamic characteristics of PV power supply into account is proposed
in [88]. A robust VSG control method is proposed in [89]. The voltage stability of a stand-
alone PV station is enhanced by reactive power control of VSG. A test method for rotating
inertia and damping of PVSG based on power frequency transfer function is proposed
and verified by a hardware in the loop simulation platform [90]. The challenge for PVSG
control is the coordination strategy of PV, ESD and grid-connected inverter [91].
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6.2. Application of VSG in Wind Power Generation

The wind turbines (WTs) are controlled by converter, which are usually controlled
under MPPT mode and its rotating speed is decoupled from grid frequency variation.
Therefore, the WTs cannot provide frequency support to the grid, and the power fluctuation
is balanced by conventional SGs [92,93]. With the increase in WTs penetration, the grid
inertia decreases consequently, degrading the stability of the grid. Recent research shows
that grid-connected converters with VSG controller have strong self-regulation ability
of frequency and voltage [94]. Figure 19 shows a schematic diagram of wind power
generation VSG.

So far, frequency control methods of VSG based WTs can be generally divided into
two categories: the emulated inertia control (EIC) and the de-loading operation-based
primary frequency control (DOPFC) [95,96]. The mechanism of the EIC is that it utilizes
the rotor kinetic energy (KE) to provide short-term frequency support so as to improve
the dynamic frequency performance. The kinetic energy that can be provided by the
WTs is very limited, since the WT rotation speed needs to be controlled within a normal
operational range. ESDs was suggested to be utilized to improve the inertia supporting
capability [97]. The energy storage type EIC does not affect the MPPT control of WTs, which
makes it have better power generation efficiency compared with KE type EIC [98]. The
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principle of DOPFC is the same as RES PR operation mode. Considering the advantages
and disadvantages of EIC and DOPFC, the cooperation control method with both energy
storage type EIC and DOPFC was proposed in [99]. Energy storage type EIC provides
frequency support in the initial phase of disturbances to prevent rapid decline in frequency.
Then the primary frequency regulation is realized by DOPFC. It captures more wind energy
while providing fast frequency support efficiently as well as avoiding power oscillation.
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6.3. Application of VSG in Energy Storage System

Conventional generating sources are being displaced by renewable sources that have
a low level of, or virtually no inertia. An effective means to improve the inertial response is
to use ESDs, because their response speeds are superior to conventional generators [100].
They can obtain the external characteristics of conventional thermal power plants by
integrating with VSG, which make them have the abilities to provide inertial support and
frequency regulation for the grid. The sizing method of ESDs for grid inertial response
is studied in [21,42,101]. In [42], the magnitude of the power disturbance is adopted as
the minimum power of the energy storage unit. In [101], a stochastic method with Monte
Carlo simulation was developed to estimate the low-frequency events for a given period.
A stability index is also developed to quantify the probability of occurrence of low inertia
events in the system, and the energy storage capability was sized accordingly to compensate
for the lost inertia.

Compared with conventional energy storage systems, the stability of energy storage
VSG is more complicated. Due to the high order filters connected between the grid and
converters, problems such as increased harmonic content and system instability are prone
to occur [102]. In [103], the active damping control mechanism of the LCL filter was
investigated. the importance of active damping at the resonance frequency was highlighted.
The LCL filter capacitor-series and parallel active virtual damping control method was
presented in [104]. The grid-connected converter works stably and the current harmonic
content is low without increasing the extra power loss of the system. The resonance
mechanism of the energy storage VSG was studied in [102]. A new damping control
strategy based on the virtual impedance was proposed.

6.4. Application of VSG in VSC-HVDC

HVDC transmission has the advantages of long transmission distance, large transmis-
sion capacity, and small power loss. It is widely used in long-distance power transmission,
cross-regional power grid interconnection, distributed energy integration, and other ar-
eas [105,106]. Compared with line commutated converter-based HVDC (LCC-HVDC),
VSC-HVDC has the advantages of independent control of active and reactive power, fast
and flexible response-ability, and large regulation capacity [107,108]. However, compared
with AC systems dominated by SGs, VSC-HVDC systems with conventional control strate-
gies cannot provide inertia for the grid [109]. It will lead to grid power unbalancing,
making the grid unstable. To improve the frequency stability of the grid, the VSG control
is proposed to be applied in VSC-HVDC systems as shown in Figure 20 [110]. In [110],
to realize fast power tracking ability and high virtual inertia at same time, a two-degree
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control structure was proposed. The results show that the frequency support ability is
significantly improved.
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There are two major challenges when VSG is applied in VSC-MTDC systems [111,112].
The first is the oscillation issue, which results from the similar swing characteristic of SGs.
The second is DC voltage instability. The virtual inertia is achieved by the integrator in the
active power loop, which reduces the power regulation speed. Thus, the power deficiency in
the DC network is hard to compensate in time and could further lead to a large DC voltage
deviation after disturbances in DC network [111]. The damping torque analysis method is
widely used for the small-signal stability analysis of the HVDC system. The influences of
VSG on power system low-frequency oscillations using a damping torque analysis method
were investigated in [112]. It is shown that the VSG can play a significant role in damping
low-frequency oscillations of power grids with proper control. To further enhance the
performance of the VSG-based HVDC system, a dual damping loop is proposed [113]. By
the virtual governor and virtual rotational inertia, the power oscillations are reduced by
the power redistribution among VSC stations. the DC-side resonance of multi-terminal
VSC-HVDC is analyzed in [3]. The benefits of VSG in the stable operation of multi-terminal
VSC-HVDC were demonstrated. The DC voltage is regulated by varying the voltage droop
coefficients in [111]. The relationship between inertia and DC voltage is analyzed in [114].
It was pointed out that the increase in inertia reduces the stability margin of DC voltage.
To achieve both fast power reference tracking ability for DC voltage regulation and high
virtual inertia for frequency support, an approach based on a two-degrees-of-freedom
control structure is proposed in [110].

7. Conclusions

The VSG technology combines the flexibility of power electronic equipment and the
operation mechanism of SGs. The development of VSG can provide a convenient and
economical solution to integrate renewable power generation sources into the grid.

This paper presents a deep analysis of the VSG operational principle and a comprehen-
sive overview of the research status of all parts of VSG technology, including the ontology
model, topologies, control strategies, energy supporting ways, and applications in the
power grid. The existing problems of all parts are discussed. It would serve as a basic
guideline to investigate further technological development and new applications of the
VSG, and thus benefits the readers, researchers, engineers, and academicians who deal
with the research works in the area of the VSG.
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