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Abstract: Electrified ports using medium-voltage DC (MVDC) renewable energy microgrids require
current-fed dc/dc converters in application scenarios such as battery or ultracapacitor charging
units and hydrogen production systems. This paper designs a three-level phase-shift full-bridge
(TL-PSFB) converter that interfaces with the MVDC microgrid. Its operation in the current source
mode requires a wide output voltage range and small output current ripple. Firstly, the dual-output
TL-PSFB topology is introduced, and the principle of phase-shift pulse width modulation (PS-PWM) is
presented. Secondly, the principle of the traditional constant-conduction-duty-cycle (CCDC) strategy
is analyzed. Then, a minimum-output-current-ripple (MOCR) strategy is proposed by analyzing the
relationship between output current ripple, conducting-duty cycle, and phase-shift duty cycle, and a
constant current control combined with the MOCR strategy is designed. The output current ripple of
the MOCR strategy is smaller than that of the CCDC strategy in a full range of operating conditions.
Under the same output current ripple design index, the value and loss of the filter inductor can be
reduced with the MOCR strategy. In addition, the MOCR strategy can widen the output voltage
regulation range and increase the bus voltage utilization without causing significant changes to
the total harmonic distortion (THD) of primary voltage. Finally, experimental results verify the
correctness of the theoretical analysis.

Keywords: current fed; three-level phase-shift full-bridge (TL-PSFB); constant-conduction-duty-cycle
(CCDC) strategy; minimum-output-current-ripple (MOCR) strategy

1. Introduction

Inland and offshore shipping is facing an energy transition due to the economic and
environmental concerns of fossil fuels. Currently, there are some new energy vessels [1] and
electrified port projects applied [2]. Compared with the port microgrid directly supplied by
the power grid, the addition of renewable energy can significantly reduce the utilization
rate of fossil fuel. Port microgrids using renewable energy generation have immediate
environmental benefits as well as long-term economic benefits. Due to the large randomness
of power supply and load of renewable energy microgrid, the AC microgrid is prone to
frequency fluctuation and grid oscillation problems. As a new form of network formation,
a medium-voltage DC (MVDC) microgrid can avoid the above problems and has the
advantages of high reliability of power supply, fast response, and scalability. The typical
structure of an MVDC renewable energy microgrid is shown in Figure 1.

The wind power generation, photovoltaic power generation, and hydroelectric power
generation on the source side of the renewable energy microgrid, and the charging device on
the load side all have strong intermittensity. The connection of the source side to the public
network can solve the short-term high power demand of the load, while the hydrogen
production system on the load side can effectively solve the local consumption of renewable
energy generation and bring new energy types. Ships with different working scenarios can
choose energy sources such as hydrogen fuel, battery, and ultracapacitor storage.
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Figure 1. Topology of MVDC renewable energy microgrid. 
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MVDC input dc/dc converters for load-side charging devices or hydrogen production
power sources are important components of medium-voltage DC renewable energy micro-
grids. The common topologies include the non-isolated Buck converter and Boost converter,
isolated series resonant converter, phase-shift full-bridge converter, and bidirectional full
bridge converter, etc. In MVDC applications, series or multi-level connections are usually
used on the basis of the above topologies to increase output voltage level. Switching
device withstand voltage is half of the bus voltage in the three-level phase-shift full-bridge
(TL-PSFB) topology which can meet the requirements of MVDC input [3,4]. The TL-PSFB
topology adopts an intermediate frequency transformer to achieve isolation and voltage
transformation, and can flexibly configure the output side voltage according to the power
of the electrolyzer or the voltage of the energy storage device. Magnetic coupling can
effectively isolate source and load faults.

Some scholars have performed much research on the TL-PSFB converter controlled in
voltage mode. The TL-PSFB converter and the basic topological derivation are described
by Prof. Xinbo Ruan in [4]. In [5], a three-phase TL-PSFB converter topology was designed
with voltage mode control. Literature [6] proposes a first-order sliding mode controller,
which can eliminate the output voltage error by adding an integrator and achieve a better
control effect. The principle analysis, modeling, and control strategy of the voltage mode
controlled TL-PSFB converter are studied in the literature mentioned above.

Higher power density and efficiency has always been the goal of the power electronic
converter. Increasing the switching frequency of the power device is the most direct
method, however, it will cause a sharp increase in the loss caused by hard switching of
switching devices. Therefore, many scholars have been studying soft switching strategies,
and the main methods can be divided into two categories: proposing a new modulation
strategy and improving the topology structure. The new modulation strategies reported
in the literature mainly include an asymmetric duty cycle modulation strategy [7], double
phase-shift modulation strategy [8], and triple phase-shift modulation strategy [9], etc.
These strategies can extend the soft-switching range of the converter to a certain extent
without changing the topology or adding additional energy storage elements, but they
cannot achieve soft-switching in the full operating range. In [10–15], LLC resonant TL-PSFB
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converter was studied to achieve a wider range of soft switching with the help of resonant
element energy storage. Dr. Bor-Ren Lin designed a new hybrid topology, including a
three-level half-bridge converter and unregulated voltage half-bridge converter structure,
which has the advantages of small circulation, wide soft-switching range, and small output
current ripple [16–18]. In addition, soft switching of the primary-side switching device
can be achieved by adding a clamp diode [19] or fly-across capacitor to the primary
side [20–22]. Prof. Yan Li’s focus is on the intermediate AC side. She proposed a hybrid
TL-PSFB converter to accommodate a wide range of output voltages by adding a clamp
inductor on the AC side, and the converter has good soft switching performance [23].
Soft switching of the secondary diode has also been noticed in the literature [24–26]. In
addition, some scholars have done some improving research on the topology in some
other aspects. Literature [27,28] proposed an improved modulation strategy to equalize
the thermal stress of power devices or supporting capacitors. A modulation strategy to
reduce the common-mode voltage was proposed in the literature [29]. In order to solve the
reverse recovery problem of the secondary rectifying diode, the active clamping strategy
was proposed in [30,31].

Only literature [19] (hundred kW class) and [5] (MW class) have publicly reported
the application of TL-PSFB converter in large-capacity DC conversion applications. Large-
capacity TL-PSFB converters have high losses and complex heat dissipation design. Tradi-
tional topology with improved modulation or control strategy do not fundamentally solve
the problem of narrow soft-switching range and are prone to soft-switching failure. Reso-
nant topology or other improved topology increases power loop components, has complex
topology and low reliability, and the added devices also bring losses. Therefore, the soft
switching strategy is not the focus of the design of a large capacity TL-PSFB converter.

Previous research has focused on the voltage-mode controlled TL-PSFB converter,
while hydrogen power or energy storage converters require a current source, the major
difference between them is that current mode control has no static operating point. In
addition, the output current ripple of the converter directly affects the efficiency of the
electrolyzer or energy storage system, which requires the converter to have a smaller output
current ripple.

This paper is organized as follows. In Section 2, a dual-output TL-PSFB topology is
proposed. The principle of phase-shift pulse width modulation (PS-PWM) is introduced,
and the design method of the traditional CCDC strategy is analyzed. In Section 3, the
relationship between output current ripple and conducting-duty cycle and phase-shift duty
cycle is analytically calculated, and a constant current control with the MOCR strategy
is proposed. Section 4 compares and analyzes the performance of the two strategies in
terms of output current ripple, filter inductance parameters, DC voltage utilization, and the
total harmonic distortion (THD) of primary voltage. In Section 5, the proposed modulation
method’s effectiveness is verified by experiments. Finally, Section 6 summarizes the main
work of this paper.

2. Principle of Dual-Output TL-PSFB Converter
2.1. Topology and Principle of PS-PWM

In order to improve the power density of the converter, a dual-output TL-PSFB con-
verter topology is designed in this paper, as shown in Figure 2. The dual-output TL-PSFB
converter mainly includes support capacitors, diode-clamped three-level H-bridge, three-
winding medium-frequency transformer, uncontrolled rectifier bridge, output filter induc-
tor, and input and output diodes. The diode-clamped three-level H-bridge inverter unit
converts the input DC voltage into a bipolar five-level square wave with adjustable pulse
width, which is divided into two output channels after the step-down by the three-winding
medium-frequency transformer. Then it is connected to two independent sets of uncon-
trolled rectifier bridges. Only inductive filtering is used at the rectifier output, reducing
unnecessary passive components compared to previous LC or LCL filters.
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PS-PWM is adopted in the dual-output TL-PSFB converter, and its principle is shown
in Figure 3. In the figure, dθ is the conducting-duty cycle, dα is the phase-shift duty cycle,
and Ts is the switching period. The diode-clamped three-level H-bridge in Figure 2 uses the
same dθ for the odd-numbered switching devices and a complementary conducting-duty
cycle 1 − dθ for the even-numbered switching devices. The driving pulse of the right
bridge leg lags behind that of the left bridge leg, and the phase difference of the driving
pulse of the left and right bridge legs’ switches is changed by controlling the carrier delay
time of the right bridge leg dαTs. PS-PWM consists of two degrees of freedom: dθ and dα,
both in the range of [0, 1/2].
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Figure 3. Principle of PS-PWM.

By analyzing the corresponding relationship between dθ and dα, the output voltage
of the diode-clamped three-level H-bridge can be obtained, including the three cases as
shown in Figure 4. In order to distinguish different conditions of output voltages more
clearly, the clamping duty cycle dγ is introduced, where dγ = 1/2 − dθ.
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2.2. CCDC Strategy

The design principle of the CCDC strategy is to minimize THD of the primary voltage
uab. The root mean square (RMS) of the nth harmonic component of uab is noted as Unrms
(n = 1, 2, 3 . . . ). THD of uab is defined as,

THD =
1

U1rms
(

∞

∑
n=2

U2
nrms)

1/2

(1)

where the relationship between the rms value Urms of uab and the rms value of each
harmonic component is,

U2
rms =

∞

∑
n=1

U2
nrms (2)

as known from the calculation,

THD =
1

U1rms
(U2

rms −U2
1rms)

1/2
(3)

According to the waveform of uab in Figure 4, the Fourier series expression of uab can
be obtained by analytical calculation shown in (4).

uab(t) =
∞
∑

n=1
(bn sin nt),

bn = 8Ud
nTs

sin ndθπ sin ndαπ(n = 1, 3, 5, 7 · · · )
(4)
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In addition, the relationship between the RMS value of uab, dθ and dα is shown in (5).

Urms =


Ud
√

dα 0 < dα ≤ dγ
Ud

√
2dα + dθ − 1

2 dγ < dα ≤ dθ

Ud

√
dα + 2dθ − 1

2 dθ < dα ≤ 1
2

(5)

Combining (4) and (5) with (2) and (3), THD of uab can be obtained as shown in (6).

THD =



√
2π2dα

16 sin2 πdθ sin2 πdα
− 1 0 < dα ≤ dγ√

π(4πdα−1/2+2πdθ)
16 sin2 πdθ sin2 πdα

− 1 dγ < dα ≤ dθ√
π(2πdα−1/2+4πdθ)
16 sin2 πdθ sin2 πdα

− 1 dθ < dα ≤ 1
2

(6)

Partial differential solution of (6) is performed; that is, let ∂THD/∂dα = 0 and ∂THD/∂dθ = 0,
it can be obtained, {

4πdα − 1
2 + 2πdθ = 2 tan πdα dγ < dα ≤ dθ

2πdα − 1
2 + 4πdθ = tan πdα dθ < dα ≤ 1

2
(7)

{
4πdα − 1

2 + 2πdθ = tan πdθ dγ < dα ≤ dθ
2πdα − 1

2 + 4πdθ = 2 tan πdθ dθ < dα ≤ 1
2

(8)

Two sets of solutions can be obtained by combining (7) and (8) as follows: the first
extremum point is: dθ1 = 0.42, dα1 = 0.35; the second one is: dθ2 = 0.35 and dα2 = 0.42,
which are the two extreme points shown in Figure 5.
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The primary voltage is input to the uncontrolled rectifier bridge via the medium-
frequency transformer. Similarly, the Fourier decomposition of the rectifier bridge output
voltage ur is performed according to the relative relationship between dθ and dα.

ur =



2Uddα
NT

+
∞
∑

n=1

4Ud
nTs NT

cos 2πndθ sin 2πndα cos nωt 0 < dα ≤ dγ

2Uddα
NT

+
∞
∑

n=1

4Ud
nTs NT

cos 2πndθ sin 2πndα cos nωt 0 < dα ≤ dγ

2Uddθ
NT

+
∞
∑

n=1

4Ud
nTs NT

sin 2πndθ cos 2πndα cos nωt dθ < dα ≤ 1
2

(9)
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According to (9), the maximum DC component of the output voltage of the rectifier
bridge is determined by dθ, and the output voltage can be regulated within the range of the
maximum DC component by adjusting dα under the condition that dθ remains unchanged.

The dθ of the CCDC strategy is fixed at one of the two minimum points in Figure 5,
and the upper limit of the DC component of the output voltage of the rectifier bridge is
determined by dθ according to (9). In order to improve the utilization of the DC voltage
at the primary side and obtain a wider regulation range, the CCDC strategy is usually set
dθ = 0.42 and dα = 0.35.

3. MOCR Strategy

In this section, the output current ripple of the converter is analytically calculated, and
the variation trend of the output current ripple with dθ and dα is analyzed. Then, a MOCR
strategy is proposed, and a constant current control with the MOCR strategy is designed.

3.1. Analysis of Output Voltage and Current Ripple of the Rectifier Bridge

According to (9), the output voltage of the rectifier bridge is a DC component super-
imposed several times of AC harmonic components, so the DC component of the output
voltage can be ignored when analyzing the harmonics of the filter inductor, and the load
side can be equivalent to a series of resistor and capacitor. Different loads (such as ultraca-
pacitors, batteries, electrolyzers, etc.) affect the RC parameters. The equivalent circuit at
the output end of the rectifier bridge is shown in Figure 6.
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Transform the AC harmonic component of the output voltage of the rectifier bridge
obtained by (9) into a complex domain expression,

·
Urn =



∞
∑

n=1

2
√

2Ud
nTs NT

cos 2πndθ sin 2πndα∠0 0 < dα ≤ dγ
∞
∑

n=1

2
√

2Ud
nTs NT

cos 2πndθ sin 2πndα∠0 dγ < dα ≤ dθ
∞
∑

n=1

2
√

2Ud
nTs NT

sin 2πndθ cos 2πndα∠0 dθ < dα ≤ 1
2

(10)

The harmonic component of the output current is,

·
Ion =

·
Urn

RC + RLf + jnωLf +
1

jnωC

=
·

Urn

RC + RLf + j n2ω2 LfC − 1
nωC

(11)
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Substitute (10) into (11) to obtain,

·
Ion =



∞
∑

n=1

2
√

2Ud
nTs NT

cos 2πndθ sin 2πndα
Re(Z) ∠−φ 0 < dα ≤ dγ

∞
∑

n=1

2
√

2Ud
nTs NT

cos 2πndθ sin 2πndα
Re(Z) ∠−φ dγ < dα ≤ dθ

∞
∑

n=1

2
√

2Ud
nTs NT

sin 2πndθ cos 2πndα
Re(Z) ∠−φ dθ < dα ≤ 1

2

(12)

where,

Re(Z) =

√
(RC + RL)

2 +
(

n2ω2LfC − 1
nωC

)2

φ = arctan
[

n2ω2LfC − 1
nωC(RC + RL)

] (13)

Express the output current harmonics into the form in the real number field as

ion =



∞
∑

n=1

2
√

2Ud
nTs NT

cos 2πndθ sin 2πndα
Re(Z) cos(nωt−φ) 0 < dα ≤ dγ

∞
∑

n=1

2
√

2Ud
nTs NT

cos 2πndθ sin 2πndα
Re(Z) cos(nωt−φ) dγ < dα ≤ dθ

∞
∑

n=1

2
√

2Ud
nTs NT

sin 2πndθ cos 2πndα
Re(Z) cos(nωt−φ) dθ < dα ≤ 1

2

(14)

Figure 7 shows the comparison between the calculated waveforms and the simulated
waveforms for the output currents at different dθ and dα, the trend of the calculated results
is generally consistent with that of the simulation results, which proves the correctness of
the calculated results. There is a certain error between the calculated and simulated results,
which is mainly due to the fact that the calculated results do not take into account non-ideal
factors such as duty cycle loss.
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Figure 7. Comparison of current ripple calculation and simulation of filter inductor under different
dθ and dα. (a) dα = 1/12, dθ = 1/3 (0 < dα < dγ). (b) dα = 1

4 , dθ = 3/8 (dγ < dα < dθ). (c) dα = 2/5,
dθ = 3/10 (dθ < dα < 1/2).

The output current ripple is equal to the maximum value of the filter inductor current
minus the minimum value in one cycle.

4 io = max(io)Ts
−min(io)Ts

(15)

Combining (14) and (15), the variation of output current ripple under different combi-
nations of dθ and dα can be calculated, as shown in Figures 8 and 9.
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3.2. Constant Current Control Combined with the MOCR Strategy

As can be seen from Figure 9, as dθ and dα increase, there is a changing path that
minimizes the output current ripple. That is, dα, dθ ≤ 1

4

{
dα = 1

4 ; dθ = 0→ 1
4 : RouteI

dθ = 1
4 ; dα = 0→ 1

4 : RouteII
1
4 < dα, dθ ≤ 1

2 dα = dθ = 1
4 →

1
2 : RouteIII

(16)

Equation (16) is the mathematical description of the minimum output current ripple
control rate. Since dθ determines the upper limit of the output voltage, transition path
Route II→Route III is selected to ensure that the control variable is unique. That is, when
dθ is less than 1/4, maintain dθ = 1/4 and adjust dα to control the output voltage. As the
output voltage increases, control dθ is equal to dα.

Combined with the above analysis, this paper designs a constant current control
combined with the MOCR strategy, as shown in Figure 10. The controller collects the
output current for feedback, and dα is calculated by the PI controller, and dθ is calculated
by the MOCR strategy. Since the converter adopts a secondary dual output structure, a
two-output maximum current feedback strategy is used to prevent the output from being
overloaded during actual operation. In Figure 10, dδ is limited to zero level, which is set to
prevent the same level jump as the bus voltage. In engineering, the value is set according
to the dv/dt limit of switching devices and transformers.
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Figure 10. Diagram of constant current control with the MOCR strategy.

4. Comparison of CCDC and MOCR
4.1. Output Current Ripple and Filter Inductor Characterization

Since dα can only be adjusted within the range less than dθ in the CCDC strategy,
the output ripple of the two control strategies is compared below in the range [0, 0.42).
Figure 11 shows the comparison of the normalized results of output current ripple under
the same filtering inductance condition. It can be seen from the figure that the maximum
ripple current modulated by the MOCR strategy is 28% smaller than that controlled by the
traditional CCDC strategy, and the ripple current modulated by the MOCR strategy is all
less than the CCDC strategy in the whole range of working conditions.
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Figure 11. Comparison of current ripple analytical calculations between CCDC and MOCR.

In Figure 11, dα corresponding to the maximum current ripple under the two strategies
is obtained by the analytical calculation method, thus, the minimum filter inductance value
satisfying the maximum ripple index can be calculated. Table 1 compares the values of
minimum filter inductance corresponding to the two modulation methods under different
output current ripple indexes. According to the data in the table, under different output
current ripple indexes, the MOCR strategy can reduce the value of the minimum output
filter inductance by about 23%.

Table 1. Different output current ripple indexes requiring the value of minimum filter inductance
corresponding to two strategies.

∆ io CCDC: Lf/mH MOCR: Lf/mH

5% Io 29.39 22.52
10% Io 14.70 11.26
15% Io 9.80 7.51
20% Io 7.35 5.63
25% Io 5.88 4.50
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According to the inductor multi-objective optimization design method studied in [32]
and the parameters in Table 1, the output filter inductor is designed. Figure 12 shows the
comparison of the volume and weight of the minimum inductance required by the two
strategies corresponding to different output current ripple indexes. It can be seen from the
figure that the volume and weight of the output filter inductor can be optimized to a certain
extent by using the MOCR strategy studied in this paper under different requirements of
ripple indexes, which will improve the power density of the converter.
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Figure 12. Comparison of volume and weight of output filter inductors for different parameters in
Table 1.

The loss of filter inductor mainly includes core loss and winding loss. The winding
losses can be decomposed into the sum of ac and dc losses,

LCu = I2
o Rdc +

∞

∑
n=1

i2onRacn (17)

where Rdc is the dc resistance of the filter inductor, and this parameter can be calculated
from the average turn length and resistivity of the inductor winding. Rdc-n is the winding
ac resistance corresponding to the ripple current of different frequencies. The relation
between ac resistance and ac resistance is shown in (18). FR is the ac resistivity, which can
be obtained by the Dowell model [33].

Racn = FRRdc (18)

Generally, core loss is calculated by loss separation theory and mainly includes hys-
teresis loss, eddy current loss, and other losses. According to the calculation formula of
magnetic core loss derived in [32], combined with (17), the total loss of inductance can be
calculated. Figure 13 shows a comparison of the output filter inductance loss with different
parameters. It can be seen from the figure that, under the same output current ripple index
requirements, the MOCR strategy can reduce the loss of output filtering inductor by up to
29.31%, which improves the efficiency of the converter to a certain extent.
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4.2. Utilization of DC Voltage and THD of Primary Voltage Characterization

The utilization of DC voltage is the ratio of the fundamental wave amplitude of uab
to Ud. Combining with (4). The variation of DC voltage utilization with dθ and dα can be
obtained by combining (4).

Uab
Ud

=
8
Ts

sin dθπ sin dαπ (19)

The theoretical regulation range of both dθ and dα is [0, 0.5). A fixed dθ of 0.42 for
the CCDC strategy leads to lower utilization of the primary-side DC voltage. This leads
to a larger transformer ratio required to achieve the designed output voltage, which will
increase the primary side current and, in turn, leads to an increased transformer and
primary side switching device losses. Besides, the circuit parameters of the converter are
designed according to the rated working condition in general. However, dα in the light
load working condition is far away from 0.35, which will result in the increase of the THD
of uab, as shown in Figure 14, which violates the initial design principle.
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Figure 14 compares the THD of uab with the CCDC and MOCR strategies, respec-
tively, over the full range of operating conditions, and it can be seen from the figure that
the difference in THD performance between the two strategies under the corresponding
operating conditions is not significant. However, it should be noted that the CCDC strategy
is optimized for the THD of uab, but the optimization range is limited to the operating
conditions around dθ of 0.42 and dα of 0.35. The CCDC strategy does not bring optimal
performance for a wide range of output requirements.

5. Experimental Verification

In this paper, a 1:1 test prototype is designed as shown in Figure 15, and the parameters
of the main circuit are shown in Table 2. The output current ripple index is designed to be
less than 20% Io. The prototype experiment uses the ultracapacitor as the load and adopts
the constant current charging mode.
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Figure 15. The physical picture of the dual-output TL-PSFB converter test prototype.

Table 2. The parameters of the main circuit of the test prototype.

Parameters Value Parameters Value

Ud/kV 4 NT 4:3:3
Uo/kV 0–2 Lr/µH 40
Io/A 180 Lf/mH 8

f /kHz 1 C1, C2/mF 4

Figure 16 shows the experimental waveform of the output current of the ultracapacitor
charged from 0 V to the rated voltage at the constant current 180 A. The maximum current
ripple is 34.41 A with the CCDC strategy and 25.37 A with the MOCR strategy, which is
26.27% less. The output current ripple in the whole charging process is smaller than that
of the CCDC strategy, and the trend of ripple current during charging is consistent with
the theoretical analysis shown in Figure 11, which verifies the correctness of the above
theoretical analysis.
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sistent with the theoretical analysis shown in Figure 11, which verifies the correctness of 

the above theoretical analysis. 
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In the initial stage, the converter prototype is designed according to the theoretical
analysis results of the CCDC strategy. In order to meet the output current ripple index,
the output filter inductor is taken to be larger, and its weight and size are also larger. The
physical picture is shown in Figure 17a, with a weight of 142 kg and a three-dimensional
size of 211 mm (height) × 329 mm (width) × 298 mm (depth).
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Figure 17. Three-dimensional comparison of the filter inductor before and after optimization.
(a) Physical picture of the filter inductor before optimization, (b) 3D picture of the filter inductor
after optimization.

According to the theoretical analysis results and experimental results of the MOCR
strategy studied in this paper, the output filter inductance value of the prototype can be
reduced to 6 mH; the three-dimensional figure is shown in Figure 17b. The weight is 120 kg,
and the three-dimensional size is 203 mm (height) × 309 mm (width) × 277 mm (depth).
Compared with the filter inductor before optimization, weight, volume and loss are respec-
tively reduced by 13.98%, 14.94%, and 11.54%.
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6. Conclusions

For the TL-PSFB converter operating in a current-fed mode in DC microgrid, this
paper analyzes and points out the problems such as poor current ripple performance
and non-compliance with the static operating point design principle of the traditional
CCDC strategy. A MOCR strategy is proposed and the performance of the two strategies
is quantitatively compared in four aspects. Both experimental and theoretical analyses
prove that the proposed MOCR strategy has better performance than the traditional CCDC
strategy. In fact, the MOCR strategy adds a degree of control freedom to the CCDC strategy.
Adopting the idea of software-based hardware functions avoids the use of high-order filters
when a small current ripple index is required. To a certain extent, the power density and
efficiency of the converter are improved and the engineering cost is reduced.
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