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Abstract: This paper deals with a method of quantifying the harmonic contribution of each harmonic
source to system voltage distortion. Assessing the harmonic contribution of individual harmonic sources is
essential for mitigating and managing system harmonic levels. Harmonic contributions can be evaluated
using the principle of voltage superposition with equivalent voltage models for harmonic sources. In
general, the parameters of equivalent voltage models are estimated numerically because it is difficult to
measure them directly. In this paper, we present an effective method for estimating equivalent model
parameters based on the random sample consensus (RANSAC) and recursive least square (RLS) with a
variable forgetting factor. The procedure for quantifying harmonic contributions using equivalent models
is also introduced. Additionally, we propose a network diagram of harmonic contributions that makes it
easy to understand the harmonic distortion contributions of all harmonic sources.

Keywords: harmonic contribution diagram; harmonic distortion; outlier; RANSAC algorithm; recursive
least square method

1. Introduction

Harmonic distortion, which appears as a deviation from the nominal sine wave of
AC voltage and current, is one of the major power quality problems in power systems. As
harmonic distortion becomes more severe, various problems such as energy losses, equip-
ment malfunctions, neutral current increase, and metering errors occur. The continued
increase in non-linear loads and inverter-based renewable energy will further exacerbate
harmonic pollution in power systems [1–5]. The effective management and mitigation of
system harmonic levels require identifying the harmonic sources causing severe system
voltage distortions. The traditional total harmonic distortion (THD) and total demand
distortion (TDD) harmonic distortion factors only show the overall degree of harmonic
distortion at a measurement point. However, they do not identify the contribution of
individual harmonic sources to the system’s voltage distortions. Accordingly, several meth-
ods have been studied to quantitatively evaluate the contributions of harmonic sources to
harmonic voltage distortion at a specific point [6]. In most methods, harmonic contribution
assessment requires equivalent voltage models for all harmonic sources. However, since
we cannot directly measure equivalent voltage model parameters, numerical approaches
are used to estimate them. In [7–14], linear regression methods to estimate equivalent
voltage model parameters were introduced. However, because these methods assume that
harmonic sources’ equivalent voltages and impedances are constant, large errors in esti-
mating harmonic contribution can occur with the variation in system operating conditions.
Therefore, applying these methods to real systems is difficult. Other methods based on
the recursive least square (RLS) algorithm, which can estimate time-varying parameters
according to changes in harmonic sources, were also proposed [15,16]. However, they use
constant-forgetting factors, causing potential covariance ‘wind-up’ problems and making it
difficult to expect reliable estimates. To address this issue, Park et al. [17] proposed a new
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estimation method based on the parameter’s change detection scheme and RLS algorithm
with a variable-forgetting factor. However, since all existing methods estimate parameters
using measurement data, the following fundamental problem arises: estimation perfor-
mance significantly degrades with the presence of outliers in measurement data. Outliers
may be recorded for various reasons, causing large estimation errors even in advanced
algorithms. Therefore, to improve parameter estimation performance, an effective method
for removing outliers from measurement data is also required. Statistical techniques, such
as data smoothing and average filtering for removing outliers, were presented [18–21].
However, they are ineffective because the average value is significantly influenced by
outliers, especially when measurement data are insufficient and the equivalent parameters
of harmonic sources frequently change. There is another method called the random sample
consensus (RANSAC) algorithm. Basically, it determines an optimal linear model for all
data and then removes outlying data not included within a certain threshold range for the
linear model [22]. This algorithm is independent of changes in the measured data’s average
value and is effective even when the dataset is relatively small. In this paper, we propose
an advanced method based on the RANSAC and RLS algorithms to evaluate harmonic
contributions. The proposed method demonstrates excellent performance when outliers
exist in measurement data and even with the variation in harmonic equivalent parameters.
Additionally, we developed a method of creating a harmonic contribution diagram that can
intuitively understand the voltage distortion contribution of individual harmonic sources.
In the case study, the proposed methods were verified through a comparative analysis of
various cases.

2. Parameter Estimation of the Harmonic Source’s Equivalent Model
2.1. Data Measurement and the Equivalent Model Estimation of Harmonic Sources

The harmonic contribution assessment is a technique that quantitatively indicates
the voltage distortion levels due to harmonic sources at the point of common coupling
(PCC) in the system. For the assessment, an equivalent voltage model for harmonic sources
connected to the PCC is required. The time-varying parameters of the equivalent model
can be estimated using measured data at PCCs’ and numerical analysis. In this paper,
an effective RLS-based method for estimating equivalent model parameters is proposed.
The RLS method is an adaptive filter algorithm that is widely used for the estimation of
time-varying parameter.

Figure 1 shows a typical distribution network consisting of three PCCs with harmonic
sources. As shown in Figure 1a, the monitoring system measures the customers’ voltages
and currents at each PCC. Figure 1b shows the equivalent model composed of impedance
and voltage for the harmonic sources connected to PCCs. The equivalent model’s parame-
ters are estimated using data measured at each PCC and the RLS method. We can express
the PCC voltage as a linear equation:

Vh, pcc, r + jVh, pcc, i = (Rh,c + jXh, c)(Ih, c, r + jIh,c, i) + Vh, c, r + jVh,c, i (1)

where Rh,c and Xh,c are the equivalent resistance and reactance of customer c for the
hth harmonic order, respectively. Vh,c,r and Vh,c,i are the real and imaginary parts of the
equivalent voltage of customer c for the hth harmonic order. In addition, Vh,pcc,r and Vh,pcc,i
are the real and imaginary parts of PCC voltage for the hth harmonic order.
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Figure 1. An example of a distribution network. (a) Data measurement. (b) The network’s equivalent
harmonic voltage model.

To apply the RLS algorithm for estimating the equivalent model parameters, Equation
(1) is expressed in matrix form as follows:

Y(t) = A(t)Θ (2)

Y(t) =
[
Vh,pcc,r Vh,pcc,i

]
(3)

A(t) = [Ih,c,r Ih,c,i 1] (4)

Θ =

 Rh,c Xh,c
−Xh,c Rh,c
Vh,c,r Vh,c,i

 (5)

where Y(t) and A(t) are measured voltages and currents at a PCC, and Θ represents the
unknown parameters of the equivalent harmonic source model.

In this paper, we utilized the variable-forgetting factor RLS algorithm proposed in [17]
to estimate the unknown parameter matrix Θ. Additionally, to improve parameter es-
timation performance, the parameter-change detection scheme was applied to the RLS
procedure. The proposed method’s scheme adjusts the reflection of past and present data
by calculating the PCC voltage’s change rate, which is calculated using Equation (6). When
this value exceeds a certain threshold voltage, the RLS method is initialized to perform a
new estimation. Therefore, it is possible to prevent estimation performance degradation
due to past data.

∆Vpcc =

∣∣∣∣∣∣ Vstart
pcc −V(N)

pcc

Vstart
pcc

∣∣∣∣∣∣× 100(%) (6)

where ∆Vpcc is the PCC voltage’s change rate. Vstart
pcc is its starting value, which is a reference

voltage for parameter-change detection. V(N)
pcc is the Nth value of the PCC voltage.

2.2. Outlier Detection and Removal Using the RANSAC Algorithm

Recently, the use of measurement devices, such as PMU, AMI, and smart meters, has
been expanding, making it possible to acquire measurement data at a system’s various
locations [23]. However, measurement data may include outliers due to various causes
such as communication errors, power outages, and sensor malfunctions [24–27]. An outlier
is a value that deviates significantly from the normal distribution of the measurement
data. In applying the RLS method, there is a fundamental problem, namely the significant
degradation in the parameter estimation performance in the presence of outliers in the
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measurement data. Therefore, to improve the performance of the RLS estimation, outliers
should be detected and removed from the measured voltages and currents. In this paper,
we propose an efficient RANSAC algorithm-based outlier removal method. A method for
determining a data block (DB) consisting only of inliers is also presented. After remov-
ing outliers, the inliers included in the measurement data’s normal distribution are the
remaining data.

The RANSAC is a method that determines the most stable data model by removing
outliers that include severe noise from the measurement dataset [28–30]. Figure 2 shows the
basic procedure for detecting and removing outliers based on the RANSAC algorithm. First,
N linear functions (F1(t), F2(t), . . . , FN(t)) passing through two randomly selected data,
namely (ti,1, di,1) and (ti,2, di,2), from a given DB are derived. N, which is calculated using
Equation (7), represents the theoretical maximum number of iterations for determining the
optimal linear function [29]. In general, since it is difficult to know exactly the number of
inliers (NI) in a given DB, the value of N is determined to be large enough considering the
number of measured data.

N =
log α

log(1− γm)
(7)

where m is the amount of data in a DB, and γ is the probability of picking an inlier, that is,
the ratio of inliers to the whole data (the inlier ratio). α is the probability of failing to pick
an inlier.
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Figure 2. The RANSAC algorithm for detecting and removing outliers.

Next, among the linear functions, the linear function Fk(t) containing the most data
within the threshold range T is determined as the DB’s optimal model. T is the threshold
range for determining outliers in the linear function models. Finally, data outside the
threshold range of the linear model Fk(t) are removed as outliers, and a new dataset is
created with only inliers within the threshold range.
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2.3. Parameter Estimation of an Equivalent Voltage Model

Figure 3 shows the overall equivalent parameter estimation procedure based on the
proposed RANSAC and RLS methods. The values of the required parameters in the
RANSAC and RLS algorithms are first initialized. Next, we initiate the RANSAC process to
remove outliers from measured voltages and currents. A linear function, Fi(t), is obtained
using two randomly selected points, namely (ti,1, di,1) and (ti,2, di,2), from a given DB. N
linear functions, F1(t), F2(t), . . . , FN(t), are derived and the NI is calculated for each linear
function model within the T range. We then determine the optimal linear model, Fk(t),
including most NI within the T range.
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Figure 3. The estimation procedure of equivalent model parameters.

As shown in Figure 4, the threshold range T greatly influences the NI decision. If
the threshold range T is too large, outliers cannot be properly detected and removed. On
the other hand, if T is too small, both inliers and outliers can be removed. Therefore, this
paper proposes a variable threshold range to reduce the effect of an inappropriate threshold
T, as shown in Figure 4. By comparing the calculated NI and NImin, if the NI is greater
than NImin, the linear model Fk(t) is determined as the final model. NImin is the minimum
number of inliers in a given DB for RLS estimation. On the other hand, if NI is less than
NImin, the threshold range T increases by ∆T and repeats until NI is greater than NImin to
find an optimal linear model. If the T value exceeds Tmax or if no model satisfies NImin,
the DB’s entire dataset is removed for reliable RLS estimation. After removing outliers, a
data matching process is required. Using the proposed RANSAC method, we can detect
and remove outliers that degrade the RLS estimation performance for voltage and current
measured in a PCC. However, such outliers may have different data sizes. Therefore, data
matching is required using only voltage and current inliers.
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Figure 5 shows an example of data matching for the PCC voltage and the current of
customer k. If outliers are removed at times t1, t2, and t3 of the PCC voltage’s real part, its
imaginary part and customer k’s current data at the corresponding time should also be
removed to create a valid dataset. As shown in Equation (8), data matching is performed
using only PCC voltage inliers and all customer currents at the same time points.

tinlier =
{

t ∗Vpcc, r ∩ t ∗Vpcc, i

}
∩
{

t ∗I1, r ∩ t ∗I1, i
}
∩ · · ·

{
t ∗In, r ∩ t ∗In, i

}
(8)

where
{

t ∗Vpcc, r ∩ t ∗Vpcc, i

}
is the times of inliers of the PCC voltage’s real and imaginary parts

from which the outliers have been removed. Additionally,
{

t ∗I1, r ∩ t ∗I1, i

}
, . . . ,

{
t ∗In, r ∩ t ∗In, i

}
are the times of the inliers set for the n-customer currents.
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Next, after performing data matching, the voltage’s rate of change (∆PCC) is calculated
using Equation (6). If the rate is smaller than the threshold Vth, equivalent parameters are
estimated using the RLS algorithm. On the other hand, if it is greater than the threshold,
the RLS algorithm is initialized and a new estimation is performed. This procedure applies
until the last measurement data (tend).

3. Harmonic Contribution Assessment
3.1. Harmonic Contribution Assessment Based on the Principle of Superposition

Harmonic contribution assessment requires equivalent voltage models of the utility
side and customers connected to PCCs. We can use the proposed method to estimate
an individual harmonic customer’s equivalent voltage and impedance. On the other
hand, voltage and current measurements on the utility side are basically possible, so the
feeder impedance between the utility and PCC can be calculated using Equation (9). If
the measurement on the utility side is not possible, the utility’s system impedance can be
approximately calculated using a short-circuit analysis program [15].

Zh,u =
Vh,u −Vh,pcc

Ih,u
(9)

where Vh,u and Ih,u are the hth harmonic voltage and current of the utility side.
The PCC voltage of the hth harmonic order in the equivalent model circuit can be

represented by the vector sum of the utility voltage of Vsp
h,u and the customer k voltage of

Vsp
h,k, calculated using the principle of superposition, as shown in Figure 6. However, since

Vsp
h,u and Vsp

h,k are complex vector values, the voltage contribution of the utility and customer
k cannot be quantified as a single value. In [16], a method for quantifying the harmonic
voltage contribution (HVC) using a scalar dot product was proposed. HVC indicates the
contributions of harmonic sources to PCC voltage distortion.
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If n-customers are connected to a PCC, Vsp
h,u and Vsp

h,k are calculated, as shown in
Equations (10)–(13). Then, the PCC voltage of the hth harmonic can be calculated, as in
Equation (14).

Vsp
h,k =

Z T
h,k

Zh,u + ZT
h,k
×Vh,k (10)

Vsp
h,u =

ZT
h,u

Zh,u + ZT
h,u
×Vh,u (11)

ZT
h,k =

[
(Zh,u)

−1 + ∑n
i=1,i 6=k(Zh, i)

−1
]−1

(12)

ZT
h,u =

[
∑n

i=1(Zh, i)
−1
]−1

(13)

Vh,pcc = Vsp
h,k + ∑n

i=1 Vsp
h,i (i = 1, 2, . . . , k, . . . , n) (14)

where Vsp
h,u and Vsp

h,k are the hth harmonic voltage contributed by utility and customer k.
Moreover, Zh,u and Zh,k are the equivalent impedances of the hth harmonic order for the
utility and customer k, and Vh,u and Vh,i are the equivalent voltages of the hth harmonic
order for the utility u and customer i. ZT

h,u and ZT
h,k represent the impedances as viewed

from the utility and customer k at the hth harmonic order, respectively.
Based on the scalar projection, each harmonic source’s hth HVC can be calculated as follows:

HVCh, s =
Vsp

h,s· Vh,pcc∣∣∣Vh,pcc

∣∣∣ (15)

where · and | | respectively present the dot product and absolute value. The subscript s
represents each harmonic source of the utility u and customer i connected to the PCC.

The harmonic contribution ratio (HCR), which is the ratio of the relative contribution
of each harmonic source to the PCC voltage distortion, can also be calculated as follows:

HCRh,s =
HVCh,s∣∣∣Vh,pcc

∣∣∣ × 100% (16)

where HCRh,s is the HCR of the hth harmonic order for harmonic sources s.
As described above, the HVC and HCR calculations allow us to evaluate the con-

tribution of harmonic sources in individual harmonic orders. However, there is a need
for a comprehensive evaluation method that considers all harmonic orders. In [16], the
total harmonic contribution (THC) was introduced based on a concept similar to THD. As
shown in Equation (17), the THC is defined as the ratio of HVCs for all harmonic orders to
the fundamental HVC. THC quantifies the contribution of each harmonic source to PCC
voltage distortion for all harmonic orders. The total harmonic contribution ratio (THCR),
which is the relative THC of each harmonic source to all sources, is also calculated as shown
in Equation (18).

THCs =

√
∑h_end

h=2 (HVCh, s)
2

|∑ HVC1,s |
× 100% (17)

THCRs =
THCs
∀T HC

× 100% (18)

where h_end is the highest harmonic order and THCS is the total harmonic contribution
for the harmonic source s. ∀THC is the THC sum of all harmonic sources at the PCC and
THCRs is the ratio of the relative THC of the harmonic source s to ∀THC.
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3.2. A Harmonic Contribution Diagram

The harmonic contribution diagram shows the calculated THC and THCR along
with a system diagram providing an intuitive understanding of the voltage distortion
contributions of harmonic sources. The harmonic contribution diagram can help identify
and manage system harmonic levels and sources, causing significant impacts. Using the
proposed method, the diagram can be constructed via a sequential evaluation at all system
PCCs. Figure 7 shows an example of a harmonic contribution diagram for a distribution
system consisting of four PCCs and six customers. For PCC1, the THCs of feeders 1 and
2 were 3.25% and 2.31%, respectively, and the THCR of feeder 1 was 58.35%, indicating
that feeder 1 had a relatively higher contribution to the PCC1 voltage distortion than
utility and feeder 2. For PCC4, customer 5, with a THC of 0%, did not contribute to the
voltage distortion. On the other hand, customer 6, with a THC of 5.13%, showed a larger
contribution to the PCC4 voltage distortion than other harmonic sources.
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3.3. Entire Procedure of the Proposed Harmonic Contribution Assessment

The entire RANSAC and RLS algorithm-based harmonic contribution assessment
procedure is shown in Figure 8. First, we performed an FFT analysis on the voltage and
current measured at the PCC and decomposed it into components for each harmonic
order. As introduced in [17], we performed symmetric component transformation for each
order voltage and current for contribution evaluation under the three-phase unbalanced
condition. The proposed RANSAC algorithm, including the variable threshold range
scheme, was performed for a certain DB’s voltage and current. After determining an
optimal linear model, outliers were removed, and the DB was reconstructed with only
the inliers. Then, we completed the RLS estimation input dataset by performing the data
matching of Equation (8) on DBs of inlier voltages and currents. Next, by comparing the
change rate of PCC voltage of Equation (6) with the threshold value, Vth, the RLS estimation
was either initialized or continued. The equivalent voltage models of all harmonic sources
were estimated using the RLS algorithm. We then calculated each harmonic source’s HVC
and HCR. After performing the HVC evaluation on all harmonic orders, we calculated the
THC and THCR using Equations (17) and (18). The above procedure was performed for all
PCCs in the system. Finally, we constructed a harmonic contribution diagram using the
evaluated THCs and THCRs.



Energies 2022, 15, 6448 10 of 18Energies 2022, 15, x FOR PEER REVIEW 10 of 18 
 

 

 

Figure 8. The entire procedure of harmonic contribution assessment based on the proposed 

method. 

4. Case Study 

To verify the proposed method’s performance, we conducted a case study using the 

PSCAD/EMTDC test system consisting of a utility and five customers, as shown in Figure 

9. Customers 1, 2, and 3 are connected to PCC2, while customers 4 and 5 are connected to 

PCC3. 

 

Figure 9. The PSCAD/EMTDC test system for harmonic contribution assessment. 

Figure 8. The entire procedure of harmonic contribution assessment based on the proposed method.

4. Case Study

To verify the proposed method’s performance, we conducted a case study using the
PSCAD/EMTDC test system consisting of a utility and five customers, as shown in Figure 9.
Customers 1, 2, and 3 are connected to PCC2, while customers 4 and 5 are connected to PCC3.
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The detailed parameters of the utility and customers are summarized in Table 1.
Customers 1, 2, and 5 were modeled as harmonic sources while customers 3 and 4 were
modeled as linear loads without harmonic sources.

Table 1. The initial parameters of utility and the five customers.

Harmonic Order Utility Customer 1 Customer 2 Customer 3 Customer 4 Customer 5

Voltage [kV]

1st 12.999 + j2.292 0.000 + j0.000 0.000 + j0.000 0.000 + j0.000 0.000 + j0.000 0.000 + j0.000
3rd 0.001 + j0.001 1.201 + j0.212 1.398 + j0.247 0.000 + j0.000 0.000 + j0.000 1.753 + j0.309
5th 0.001 + j0.001 0.709 + j0.125 0.935 + j0.165 0.000 + j0.000 0.000 + j0.000 0.738 + j0.130
7th 0.001 + j0.001 0.807 + j0.142 0.542 + j0.095 0.000 + j0.000 0.000 + j0.000 0.345 + j0.061

Impedance [Ω]

1st 1.000 + j0.377 4.000 + j3.770 3.000 + j1.131 2.000 + j0.754 3.000 + j0.754 2.000 + j1.131
3rd 1.000 + j1.131 4.000 + j11.310 3.000 + j3.393 2.000 + j2.262 3.000 + j2.262 2.000 + j3.393
5th 1.000 + j1.885 4.000 + j18.850 3.000 + j5.655 2.000 + j3.770 3.000 + j3.770 2.000 + j5.655
7th 1.000 + j2.639 4.000 + j26.389 3.000 + j7.917 2.000 + j5.278 3.000 + j5.278 2.000 + j7.917

The total simulation time was 5 s for each case. The voltage and current were mea-
sured at 10,000 samples per second and the DB’s size was 40 samples of measured data.
Additionally, it was assumed that the equivalent parameters of customers 1 and 5 change,
as shown in Table 2. Figure 10 shows voltages and currents measured at PCC1, PCC2, and
PCC3. Random white noise and outliers were included in the measurement data to achieve
realistic conditions.

In this case study, we evaluated the harmonic contributions to voltage distortion
at the three PCCs using the proposed method. The outliers were removed using the
RANSAC algorithm. Moreover, the equivalent voltage models for all harmonic sources
were estimated. Additionally, through HVC and HCR calculations, the harmonic source’s
harmonic contribution was evaluated. The harmonic contribution diagram was also derived
by calculating THC and THCR considering all harmonic orders.

Table 2. The equivalent parameter changes on two customers 1 and 5.

Harmonic Order
Customer 1 Customer 5

0~2 s 2~5 s 0~3.5 s 3.5~5 s

Voltage [kV]
3rd 1.201 + j0.212 0.847 + j0.149 1.753 + j0.309
5th 0.709 + j0.125 1.104 + j0.195 0.738 + j0.130
7th 0.807 + j0.142 0.551 + j0.097 0.345 + j0.061

Impedance [Ω]
3rd 4.000 + j11.310 2.000 + j3.393 6.000 + j6.786
5th 4.000 + j18.850 2.000 + j5.655 6.000 + j11.310
7th 4.000 + j26.389 2.000 + j7.917 6.000 + j15.834
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Figure 10. The measured voltage and currents at each PCC. (a) The PCC1 voltage and the currents of
feeders 1 and 2. (b) The PCC2 voltage and the currents of customers 1, 2, and 3. (c) The PCC3 voltage
and the currents of customers 3 and 4.

4.1. Equivalent Parameter Estimation Using the Proposed Method

The estimation of an accurate equivalent model for each harmonic order is the most
important part of harmonic contribution evaluation. As an example, we analyzed the
estimation result of the 3rd harmonic equivalent model of customer 1. To prove the
proposed method’s superiority, we performed a comparative analysis with the existing
constant forgetting fact RLS (CFRLS) [16] and variable forgetting fact RLS (VFRLS) [17]
estimation methods. In the case of customer 1, five outliers were detected and removed
for the measured current using the proposed RANSAC algorithm. Considering the out-
liers in the PCC2 voltage and the measured currents of customers 1, 2, and 3, a total of
15 data points were excluded through the data matching of Equation (8). We estimated
the equivalent model’s voltage source and impedance using the inliers and the proposed
RLS algorithm. Figure 11 shows the results of customer 1’s equivalent model estimation
using the CFRLS, VFRLS, and the proposed method. According to the parameter detection
of Equation (6), for the entire simulation time, parameter estimation was conducted for
three time sections: T1, T2, and T3. The CFRLS and VFRLS methods showed very unstable
estimation performance for all time sections due to the presence of outliers, while the
proposed method showed an overall stable estimation performance even when with the
change in parameters. Table 3 summarizes the average values of the estimation results
of the three methods. The CFRLS and VFRLS methods showed large errors between the
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estimated and actual values, while the proposed method showed very accurate results, with
a parameter estimation error rate of less than 1%. The equivalent models for all harmonic
sources were estimated using the proposed method.
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Figure 11. The results of the 3rd harmonic parameter estimation for customer 1 by the CFRLS, VFRLS,
and proposed method. (a) Resistance. (b) Reactance. (c) The real value of voltage. (d) The imaginary
value of voltage.

Table 3. The comparison of 3rd harmonic equivalent parameter estimates for customer 1.

Parameter Estimation
Method

Time Section

T1 T2 T3

Estimation Actual Error (%) Estimation Actual Error (%) Estimation Actual Error (%)

R [Ω]

CFRLS 9.074

4.000

126.85 7.092

4.000

77.30 14.505

4.000

262.63

VFRLS 3.426 14.35 3.502 12.45 5.281 32.03

Proposed 4.002 0.05 3.996 0.10 4.005 0.12

X [Ω]

CFRLS 9.616

11.310

14.98 8.194

11.310

27.55 −3.699

11.310

132.71

VFRLS 7.066 37.52 7.576 33.01 6.317 44.15

Proposed 11.282 0.25 11.285 0.22 11.305 0.04

V [kV] (Re)

CFRLS 1.276

1.201

6.24 0.822

0.847

2.95 0.620

0.847

26.80

VFRLS 0.983 18.15 0.749 11.57 0.734 13.34

Proposed 1.200 0.08 0.846 0.12 0.847 0.01

V [kV] (Im)

CFRLS −0.080

0.212

137.74 0.025

0.149

83.22 −0.387

0.149

359.73

VFRLS 0.110 48.11 0.101 32.21 0.031 79.19

Proposed 0.211 0.47 0.148 0.67 0.149 0.01
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4.2. HVC and HCR Evaluation

As shown in Table 4, each harmonic source’s HVC and HCR were calculated using
the estimated equivalent model and the principle of superposition. The results provide
a quantitative understanding of the contributions of harmonic sources to each harmonic
order’s PCC voltage distortion. Particularly speaking, the averages of the 7th HVC and
HCR estimation results are shown in Figure 12. Figure 12a shows the estimated average
HVCs of harmonic sources connected to PCC2 for each time section. We can observe that
customer 2 causes the largest voltage distortion of 0.127 kV in all time sections. On the
other hand, customer 3, which is a linear load, does not contribute to the voltage distortion
of PCC2. Figure 12b shows the results of HVCs for PCC3. For the time sections T1 and T2,
customer 5 had the highest HVC of 0.067 kV. For the time section T3, the HVC of customer
5 decreased from 0.067 to 0.036 kV, while PCC1 showed the highest contribution with
an HVC value of 0.044 kV. Through HVC and HCR evaluations, we can quantitatively
determine the contributions of harmonic sources to specific harmonic voltage.
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Table 4. The assessment results of HVC and HCR for the 3rd, 5th and 7th orders.

Harmonic Order Time Section Evaluation
Index

PCC1 PCC2 PCC3

Utility F1 F2 PCC1 C1 C2 C3 PCC1 C4 C5

3rd

T1
HVC 0.00 0.12 0.22 0.12 0.10 0.32 0.00 0.19 0.00 0.39

HCR 0.33 35.43 64.24 21.51 18.82 59.67 0.00 33.22 0.00 66.78

T2
HVC 0.00 0.11 0.22 0.11 0.072 0.32 0.00 0.19 0.00 0.39

HCR 0.38 33.77 65.85 22.31 14.10 63.59 0.00 32.62 0.00 67.38

T3
HVC 0.00 0.12 0.11 0.08 0.07 0.32 0.00 0.15 0.00 0.19

HCR 0.51 50.83 48.66 16.68 15.12 68.20 0.00 43.73 0.00 56.27

5th

T1
HVC 0.00 0.08 0.08 0.06 0.05 0.22 0.00 0.09 0.00 0.15

HCR 0.69 47.48 51.83 17.09 16.43 66.48 0.00 37.88 0.00 62.12

T2
HVC 0.00 0.09 0.08 0.06 0.09 0.22 0.00 0.10 0.00 0.15

HCR 0.67 50.12 49.21 16.36 23.32 60.32 0.00 39.11 0.00 60.89

T3
HVC 0.00 0.09 0.05 0.05 0.09 0.22 0.00 0.09 0.00 52.08

HCR 0.77 65.57 33.66 13.43 24.12 62.45 0.00 52.11 0.00 47.89

7th

T1
HVC 0.00 0.05 0.04 0.03 0.06 0.13 0.00 0.05 0.00 0.07

HCR 1.23 57.52 41.25 14.57 27.31 58.12 0.00 43.15 0.00 56.85

T2
HVC 0.00 0.05 0.04 0.03 0.04 0.13 0.00 0.05 0.00 0.07

HCR 1.43 54.82 43.75 14.81 20.93 64.26 0.00 41.69 0.00 58.31

T3
HVC 0.00 0.05 0.02 0.03 0.04 0.13 0.00 0.04 0.00 0.04

HCR 1.53 69.04 29.43 14.55 21.17 64.28 0.00 54.98 0.00 45.02

Note: F1 and F2 indicate the feeders 1 and 2; C1, C2, C3, C4, and C5 represent the five customers.

4.3. Creating a Harmonic Contribution Diagram with THC and THCR

To create a harmonic distortion diagram, THC and THCR evaluations were performed
for all harmonic sources. The THC and THCR, reflecting the fundamental and all harmonic
orders, are calculated using Equations (17) and (18). These indices allow us to grasp
the synthesized contributions of all harmonic orders. Figure 13 shows the median and
average values of THC corresponding to each time section at PCC2. We can observe that
the deviation between the THC’s median and average values is very small, indicating a
very stable estimation performance. The THC of customer 2 was about 4.3% in all time
sections, showing the highest contribution to voltage distortion at PCC2. On the other hand,
the THC of customer 3, which is a linear load, was 0%.
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Figure 13. The results of the THC assessment for PCC2. (a) The average and median values of THC
for the time section T1. (b) The average and median values of THC for time section T2. (c) The
average and median values of THC for the time section T3.

For all harmonic sources, we calculated each time section’s THC and THCR. The
harmonic contribution diagram was completed, as shown in Figure 14. From the diagram,
we can intuitively determine that for the case of PCC1, the THC and THCR on the feeder
2 side are relatively high for time sections T1 and T2, indicating the highest contribution
to voltage distortions. However, for the time section T3, the THC and THCR of the feeder
2 side decreased, and the harmonic contribution of the feeder 1 side was the highest. Based
on these harmonic evaluations, we can identify harmonic sources that cause severe system
voltage distortions and effectively manage these harmonics.
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5. Conclusions

This paper presented an advanced method of harmonic contribution assessment based
on the RANSAC and RLS methods. In the parameter estimation of harmonic equivalent
models, there is a problem that the estimation performance is significantly deteriorated
when outliers exist in measured data. The proposed method effectively detects and removes
outliers using the RANSAC algorithm and performs equivalent model estimation and
harmonic contribution evaluation using only inliers, which shows superior performance
than existing methods. In addition, a method for creating a harmonic contribution diagram
that can effectively identify harmonic sources in a distribution system was proposed. By
displaying the THC and THCR evaluation results at each common coupling point along
with a system diagram, the contributions of harmonic sources to PCC voltage distortion
can be intuitively understood. Along with the advancement of monitoring and measuring
technology, the proposed method can be effectively used for system harmonic management
and establishment of mitigation measures.
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